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Abstract. Floor recognition is a conventional task in computer vision
with several applications in different fields, from augmented reality to
autonomous driving. To address this problem, there is a plethora of
methods, several of them based on the use of visual descriptors. However,
most previous work has low robustness under image degradation. One
alternative to address image degradation problems is the use of binary
descriptors. Unfortunately, these descriptors are sensitive to noise. In
addition, these descriptors use only some pixels within a patch, this lim-
its the floor recognition scope since useful information is available just for
a small pixel set. To cope with these problems, we propose a new texture
descriptor based on binary patterns suitable for floor recognition. This
descriptor is robust to noise, robust to illumination changes, invariant to
rotation and it considers a larger number of pixels than the used in the
previous LBP-based approaches. Experimental results are encouraging,
the proposed texture descriptor reach high performance under several
real-world scenarios, 7.4% more recall and 3.7% F −score than previous
texture descriptors and it has high robustness under image degradation.
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1 Introduction

Urban structures (lines, planes, etc.) recognition is a useful task for computer
vision systems since it provides rich scene information that can be exploited
to understand the scene. This is due to the fact that human-made scenes floor
have a consistent appearance and they can be used to improve several computer
vision applications performance [1–4]. For instance, floor recognition could be
used as preliminary cues to infer the road for autonomous vehicle navigation
[5]. Currently, there are several trends for floor recognition, for example, some
works propose the use of external devices such as Radio-Frequency Identification
or pressure sensing to solve the floor recognition problem [6,7]. However, floor
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information acquisition can be affected by several environmental factors such as
type of material or shape of the road (i.e. if it is uneven, bumpy, etc) [8].

Other approaches focus on the analysis of two or more images captured from
different camera views for the same scene, some of these works extend their
methodology to the use of Simultaneous Localization And Mapping algorithms,
from which cloud points and camera poses can be estimated and used within the
floor segmentation problem [9]. More generally speaking, multi-view approaches
also rely on fitting algorithms, typically RANSAC and some optimization tech-
nique to fit the plane floor within the 3D point clouds (mapping), provided by
the SLAM algorithm or any other point cloud generation algorithm based on
two or more views. Nevertheless, several thresholds and specialized tuning are
required to guarantee high performance for a specific scene. This is an important
limitation because in several cases it is difficult to set appropriate threshold val-
ues. Also, this approach requires sufficient parallax, i.e., some difference between
camera views in order to reach accurate results.

Another approach, which we are interested in this work, is that of carrying out
floor recognition from a single image [10]. Unlike the previous approaches (using
two views or using external devices) this approach performs floor recognition
without thresholds and without parallax constraints. Besides, it has high stability
under outdoor scenarios and in most cases, it uses RGB cameras (easy to mobilize
and with low size and cost) as the only sensing mechanism. Moreover, there exit
several single views available from shots taken from historical images, internet
images, personal pictures, holiday photos, etc, which do not have an additional
view, hence, floor recognition could not be performed with the conventional
methods described before. In contrast, this cases are ideal test benches for an
algorithm designed to work with single view images.

Motivated by the high scope of floor recognition from a single image, in this
work we are interested in tackling the problem of floor recognition from a single
image. In particular, we are interested in how to improve performance under
image degradation (i.e., blur, lighting changes, noise, etc.), especially because
most of the previous work, also in the domain of single RGB images, fail under
high image degradation. Different to previous work we do not classify every
pixel in the input image via semantic segmentation. Instead, we propose a novel
method that relates image regions with floor patterns. The proposed floor recog-
nition method uses a new binary descriptor which is robust to image degradation,
noise and that considers a larger pixels number than previous work, LBP-based
solutions [11–14].

Therefore, in order to present our proposal, this paper has been organized
as follows: Sect. 2 discusses the related work; Sect. 3 describes the methodology
behind our approach; Sect. 4 presents and discusses our results; conclusions are
finally outlined in Sect. 5.

2 Related Work

In recent work, important progress under floor recognition from a single image
has been made. In particular, the promising result was achieved via learning
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algorithms that learn the relationship between visual appearance and the floor
[15]. In this context, one popular trend is for learning algorithms used in a
semantic segmentation core where the aim is for assigning object labels to each
pixel of an image. Another approach is direct learning, more efficient regarding
computational size and cost. In this case, floor recognition is carried out without
segmentation core and therefore input parameters are directly correlated with
the image content to recover floor patterns.

For the direct approaches, [16] propose a methodology to estimate the ground
plane structure. This methodology uses a supervised learning algorithm with
MRF to find the relation between image descriptors (texture and gradient) and
its depth information. In order to locate the ground plane boundaries on the
depth map, this method divides the input image in similar regions using super-
pixels information within depth map. In our case, in recent years we have focused
in to develop previous work within the direct learning-based approach. In first
manuscript [17], we present a new dominant plane recognition method from a
single image that provides five 3D orientation within dominant planar struc-
tures to detect (floor, wall and ceiling) on interior scenes. For that, we train
a learning algorithm with texture descriptors to predict the 3D orientation in
a planar structure. In the second manuscript [18], we present a floor recogni-
tion method to integrate virtual information on interior scenes. To detect the
floor light variations, we proposed a rule system that integrates three variables:
texture descriptors, blurring and superpixels-based segmentation. In order to
remove noise, we proposed a remove noise technique that analyzes the consecu-
tive pixels behavior.

Although in our previous works we used descriptors to obtain floor recog-
nition information on interior scenarios. These descriptors have low robustness
under image degradations (blur, lighting changes, noise, etc.) that outdoor sce-
narios provide. To solve these problems, in this work we propose a new floor
recognition method that aims for high robustness under image degradations and
high density for floor recognition on interior and outdoor scenarios. To solve
these problems, we introduce a new texture descriptor based on binary patterns.
This descriptor is robust to noise, robust to lighting changes and invariant to
rotation. Also, a texture descriptor with these properties (robust to noise, robust
to lighting changes and invariant to rotation) is useful considering learning algo-
rithms since would be possible to decrease elements number used within training
and it decrease elements number to detect.

3 The Proposed Method

In this section, we present the proposed method to obtain floor recognition using
a learning algorithm, a proposed texture descriptor based on binary patterns, a
color descriptor using a Gaussian filter and floor recognition analyses.
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Fig. 1. (a) Grid of 3× 2 for the BIRRN; (b) example of n BIRRN circles Δj (Color
figure online)

3.1 Input Image

In this article, the input image is denoted as I. The image I is used to obtain
the texture and RGB color descriptors. We divide the image I in a grid Θ to
obtain faster processing. For that, the grid Θ consists of sections Θw. Section
Θw is a finite set of pixels Θw = {x1, ..., xq}, Θw ∈ Θ, where, q is the number of
pixels in one section Θw ⇐⇒ q is an odd number. Each section Θw has a patch
ϑϕ,ω. Patch ϑϕ,ω is a finite set of pixels ϑϕ,ω = {x1, ..., xu}, ϑϕ,ω ∈ Θ, where, u
is the number of pixels in one patch ϑϕ,ω ⇐⇒ u is an odd number. Pixel ρϕ,ω

is the central pixel within patch ϑϕ,ω. Pixel �ϕ,ω is a pixel within patch ϑϕ,ω.
Where, w denotes the w-th section in Θ, ϕ is the abscissa from grid Θ and ω
is the ordinate from grid Θ. Fig. 1(a) shows a grid example Θ of 3 × 2. Where
orange squares are the patches ϑϕ,ω of 7× 7, green square is one section Θw of
5 × 5 and the gray lines are the limits of sections Θw.

3.2 Patches Detection with Floor

In this work, to obtain the floor recognition, we use a training system that detects
floor patches. The training system is to recognize the floor with its different light
intensities using texture and color descriptors.

Training Set. In the patches ϑϕ,ω we extract the training matrix descriptors.
Where, the training labels υϕ,ω are the floor light intensities variations and
training matrix descriptors ψϕ,ω are extracted through the pixels of patches ϑϕ,ω.
Our training matrix descriptors ψϕ,ω are conformed of the texture descriptor
Ψϕ,ω and color descriptor χk

ϕ,ω. We obtained the descriptors number for training
matrix used the Pareto principle or 80/20 rule [19].
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Training Labels. The training labels υϕ,ω are the different light intensities
of the floor. Where, the different light intensities are a finite set of classes
i = {1, 2, ...,m} and m correspond to the light intensities number.

Texture Descriptor. We propose a new descriptor to obtain texture based on
binary patterns: BIRRN (Binary descriptor Invariant to Rotation and Robust to
Noise). The BIRRN descriptor considers a set of neighbor pixels within circular
distributions with binary values, where binary values are added in each circular
distribution. We defined to Δj as the set of neighboring pixels in a circular
distribution or BIRRN circle. The BIRRN provides the texture information in
a patch ϑϕ,ω, applying Eqs. 1–5.

pcϕ,ω = (
n∑

τ=1

ςτ −1∑

k=0

p(τ sin 2πk
ςτ

,τ cos 2πk
ςτ

))/(
n∑

τ=1

ςτ ) (1)

Ψϕ,ω =
n∑

τ=1

(
ςτ −1∑

k=0

S(pv(τ sin 2πk
ςτ

,τ cos 2πk
ςτ

) − pcϕ,ω))fτ (2)

Where, n is the radios number, τ are the radius of different BIRRN circles
τ = {1, 2, ..., n} ⇐⇒ τ > 0, ςj is the neighboring pixels number of BIRRN
circle Δj , ς is a set of the neighboring pixels number ςj within of different
BIRRN circles ς = {ς1, ..., ςn}, ς ∈ ϑϕ,ω ⇐⇒ ς1, ..., ςn > 1, pcϕ,ω is the gray
value average within BIRRN circles, pvx,y is the gray value of each neighboring
pixel, pα,β is gray value of a pixel within BIRRN circles, α is the abscissa of a
pixel within BIRRN circles, β is the ordinate of a pixel within BIRRN circles,
j denotes the j-th BIRRN circle Δj of patch ϑϕ,ω, S is a thresholding function
and Ψϕ,ω is the BIRRN value. In addition, f is a factor to discriminate the
values of BIRRN circles. The pixels distribution (x, y) used in BIRRN circles
are defined as:

x = τ sin
2πk

ςτ
(3)

y = τ cos
2πk

ςτ
(4)

The threshold function S, which is used to determine the types of local
pattern transition, is defined as a characteristic function:

S(pvx,y − pcϕ,ω) =
{

1 if pvx,y − pcϕ,ω ≥ 0,
0 otherwise,

(5)

Figure 1(b) shows an image generalized of BIRRN descriptor. Where, this
image has n BIRRN circles (green ring) Δj , each BIRRN circles has different
numbers of neighbor pixels (red circle) pvx,y and the blue squares are the pixels
of the BIRRN circles Δj .
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Color Descriptor. The color descriptor χk
ϕ,ω is obtained using a Gaussian filter

on patches ϑϕ,ω. The Gaussian filter information in this work is used to consider
uniform RGB values in the training set. To obtain the Gaussian information
Eq. 6 the image I is divided in patches ϑϕ,ω as in the Fig. 1(a). Where, I is the
input image, ϕ is the abscissa from grid Θ, ω is the ordinate from grid Θ, δ is
the pixel number of the rows or columns of the patch ϑϕ,ω, σ is the standard
deviation of the distribution of the Gaussian function, i′ denotes the position
of an i′-th pixel, j′ denotes the position of a j′-th pixel, a is the abscissa of
Gaussian filtering, b is the ordinate of Gaussian filtering, the Gaussian function.

is expressed as g(i′, j′) = 1
2πσ2 e

i′2+j′2
2σ2 , χk

ϕ,ω are the RGB gaussian values of a
patch ϑϕ,ω and k is a set with the RGB channel k = {R,G,B}.

χk
ϕ,ω =

a∑

i′=1

b∑

j′=1

(
1

2πσ2
e

i′2+j′2
2σ2 )I((δ ∗ ϕ) + i′, (δ ∗ ω) + j′) (6)

Learning Algorithm. We use gradient descent to adjust the parameters θ0, θ1,
θ2, θ3, ..., θn of the logistic regression hypothesis [20]. The cost function used in
this methodology is shown in Eq. 7. Where, the number of elements is n, the
number of examples in training set is m, the i-th elements of the training set are
(xi, yi) and the regularization parameter is denoted by λ.

J(θ) = −[
1
m

m∑

i=1

yi log hθ(xi) + (1 − yi) log(1 − hθ(xi))] +
λ

2m

n∑

j=1

θi
j (7)

Trained System. The proposed method recognizes m different floor light inten-
sities. We use regularized logistic regression with one against all technique to pre-
dict the different light intensities [20]. To estimate the light intensities the image
I is divided in patches ϑϕ,ω as in the Fig. 1(a). The logistic regression hypothe-
sis used to recognizes light intensities is presented in Eq. 8. Where, the logistic
regression classifier hi

θ(x) looks for to find the probability that y is equal to the
classes i, i.e., hi

θ(x) = P (y = i|x; θ) be i a finite set of classes i = {1, 2, ...,m}.
Element θj is a parameter adjusted of the logistic regression, the element xj is
the texture Ψϕ,ω and color χk

ϕ,ω descriptor of a patch ϑϕ,ω in the image I.

hi
θ(x) = g(θT

j xj) (8)

3.3 Floor Recognition Analyses

The first analysis increases the floor recognition and removes the floor recogni-
tion with a low connection. For that, the first analysis connects patches with
floor recognition and the patches with less connections are removed. The second
analysis uses the floor recognition with connection to obtain recognition surface
sets. Finally, the set with more connection and more surface is considered the
floor.
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Fig. 2. Floor and grass recognition using our method and proposed texture descriptor.

4 Discussion and Results

We elaborated a dataset to validate the floor recognition on urban environments.
This dataset consists of urban scenes with 1,500 images (720 × 1280 pixels), five
different classes (grass, road, smooth carpet, tile and square carpet). These 1,500
images have floor labeled. The dataset images were divided into training images
and test images. We use the proposed dataset to compares our floor recogni-
tion method using different binary descriptors: [11–14]. To provide quantitative
results, we use three measures (recall, precision and F − score). Comparing
the recall, precision and F − score measures of regularized logistic regression
(Table 1) and proposed floor recognition method (Table 2), all texture descrip-
tors increase using the proposed method (Table 2). The recall has an increase of
21% to 33%, the precision has an increase of 7% to 11% and the F −score has an
increase of 17% to 28%. In Table 2 our method using proposed texture descriptor
(BIRRN) has the best result in the average recall, its precision has a similar
result to the other descriptors (with an average variation of 1%) and its F −score
has the best result in the average. In addition, for our floor recognition method
using proposed texture descriptor, experimental results demonstrated that it
delivers high stability under different scenes, it reaches lower misrecognition and
higher recall and F − score than previous descriptors under floor recognition
domains.
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Table 1. Texture descriptors comparison only using regularized logistic regression.

Scene Descriptor Recall Precision F-score

Grass LBP [11] 0.339743 0.787709 0.474732

CsLBP [12] 0.615155 0.820368 0.703093

LBSP [13] 0.323829 0.727545 0.448176

XcsLBP [14] 0.526395 0.812915 0.639008

ours 0.681719 0.797602 0.735121

Road LBP [11] 0.383351 0.857511 0.529837

CsLBP [12] 0.583576 0.890922 0.705217

LBSP [13] 0.363858 0.857059 0.510842

XcsLBP [14] 0.588648 0.81216 0.682573

ours 0.650204 0.860244 0.74062

Smooth carpet LBP [11] 0.334685 0.814794 0.474474

CsLBP [12] 0.53772 0.872703 0.665431

LBSP [13] 0.304254 0.809285 0.442244

XcsLBP [14] 0.22865 0.814368 0.357051

ours 0.52631 0.846607 0.649097

Tile LBP [11] 0.391476 0.769171 0.518869

CsLBP [12] 0.473832 0.794269 0.593565

LBSP [13] 0.352952 0.773199 0.484663

XcsLBP [14] 0.552328 0.815355 0.658549

ours 0.623673 0.754467 0.682863

Square carpet LBP [11] 0.415673 0.856402 0.559689

CsLBP [12] 0.486353 0.902816 0.632158

LBSP [13] 0.388417 0.857615 0.534677

XcsLBP [14] 0.933961 0.910821 0.922246

ours 0.588064 0.891786 0.708757

Average LBP [11] 0.3729856 0.8171174 0.5115202

CsLBP [12] 0.5393272 0.8562156 0.6598928

LBSP [13] 0.346662 0.8049406 0.4841204

XcsLBP [14] 0.5659964 0.8331238 0.6518854

ours 0.613994 0.8301412 0.703291

We evaluate our approach on proposed dataset, a dataset with multi-class
segmentation (MSRC-21) [21] and a dataset that provide different urbanized
scenes (Make3D) [22]. Quantitative evaluation is performed using pixels com-
parisons of the floor recognition with ground-truth. Figure 2 shows floor and
grass recognition using our method and proposed texture descriptor. The blue
regions show our results on the proposed dataset, Make3D dataset, and MSRC-
21 dataset.
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Table 2. Texture descriptors comparison using our floor recognition method.

Scene Descriptor Recall Precision F-score

Grass LBP [11] 0.645875 0.94219 0.766388

CsLBP [12] 0.881022 0.917091 0.898695

LBSP [13] 0.608002 0.8642 0.713809

XcsLBP [14] 0.836078 0.939789 0.884905

ours 0.912708 0.941358 0.926811

Road LBP [11] 0.739093 0.930369 0.823774

CsLBP [12] 0.895929 0.906249 0.901059

LBSP [13] 0.701121 0.935607 0.801567

XcsLBP [14] 0.858454 0.870907 0.864636

ours 0.935818 0.906268 0.920806

Smooth carpet LBP [11] 0.623882 0.9596 0.756153

CsLBP [12] 0.830134 0.969362 0.894362

LBSP [13] 0.550838 0.965192 0.70139

XcsLBP [14] 0.388786 0.929895 0.548321

ours 0.866503 0.961508 0.911537

Tile LBP [11] 0.7147 0.856645 0.779262

CsLBP [12] 0.762408 0.859603 0.808094

LBSP [13] 0.642524 0.878089 0.74206

XcsLBP [14] 0.844669 0.883588 0.863691

ours 0.930751 0.830872 0.87798

Square carpet LBP [11] 0.786115 0.939599 0.856032

CsLBP [12] 0.836924 0.954079 0.89167

LBSP [13] 0.746683 0.939989 0.832259

XcsLBP [14] 0.958729 0.962195 0.960459

ours 0.933335 0.950606 0.941891

Average LBP [11] 0.701933 0.9256806 0.7963218

CsLBP [12] 0.8412834 0.9212768 0.878776

LBSP [13] 0.6498336 0.9166154 0.758217

XcsLBP [14] 0.7773432 0.9172748 0.8244024

ours 0.915823 0.9181224 0.915805

5 Conclusions

In this work, we have introduced a new floor recognition algorithm which is
robust enough to provide accurate floor recognition under different urbanized
environments. In order addressed the image degradation and improved the floor
recognition performance, two different algorithmic improvements were proposed.
The first one consists of a new binary texture descriptor (BIRRN) that it is
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robust to noise, illumination and rotation, and it uses a larger pixel number
than the used in the previous LBP-based descriptors. The second improvement
consists of two analyses that consider the floor connection and its segmentation in
floor surface sets. Regarding the experimental results, it was demonstrated that
our binary texture descriptor and the proposed analyses improves the floor recog-
nition performance. For the proposed binary texture descriptor, it reaches high
performance under several real world scenarios, more recall and F − score than
previous texture descriptors and higher robustness under image degradation.
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