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Abstract. Information and processes are both important aspects of
information systems. Nevertheless, most existing languages for model-
ing information systems focus either on one or the other. Languages
that focus on information modeling often neglect the fact that informa-
tion is manipulated by processes, while languages that focus on processes
abstract from the structure of the information. In this paper, we present
an approach for modeling and verification of information systems that
combines information models and process models using an automated
theorem prover. In our approach, set theory and first-order logic are used
to express the structure and constraints of information, while Petri nets
of a special kind, called Petri nets with identifiers, are used to capture
the dynamic aspects of the systems. The proposed approach exhibits
a unique balance between expressiveness and formal foundation, as it
allows capturing a wide range of information systems, including infinite
state systems, while allowing for automated verification, as it ensures the
decidability of the reachability problem. The approach was implemented
in a publicly available modeling and simulation tool and used in teaching
of Information Systems students.

Keywords: IS modeling · Verification of IS models ·
Tools for IS modeling

1 Introduction

An information system is an organized collection of concepts and constraints for
storing, manipulating, and disseminating information. Finding the right balance
between concepts and constraints for specifying static and dynamic aspects is
essential when designing an information system. However, existing modeling lan-
guages often focus on one of the two aspects, leaving the other to play the second
fiddle. Many information modeling notations introduce concepts to capture and
verify domain constraints, but neglect that information is populated through pro-
cesses. Similarly, process modeling languages often contain dedicated constructs
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to represent information/data, e.g., documents and messages, and data/infor-
mation flows, but are of limited help when specifying beyond trivial information
constraints imposed by the domain.

This work is motivated by the need, as witnessed by research in the last
decade [6,10,18,27], for theoretical and practical languages, methods, and tools
to effectively integrate processes driven and information managed by information
systems, as well as on our experiences in teaching information systems [33]. We
propose a language for conceptual modeling of information systems that fulfills
these requirements:

R1. Can be used to model concepts and constraints that govern the aspects
related to the information that a system can manage, i.e., data, and the
semantics of the data, that the processes of the system can manipulate;

R2. Can be used to model concepts and constraints that govern the aspects
related to the dynamic behavior that a system can exercise, i.e., processes
that manipulate the information managed by the system;

R3. Can be used to specify an aspect of an information system using information
and/or process concepts and constraints;

R4. Has a formal foundation that allows automated verification.

The language we propose, called Information Systems Modeling Language
(ISML), builds upon established formalisms for modeling process- and
information-related concepts and constraints. Other criteria for assessing the
quality of conceptual modeling languages, such as clarity, semantic stability,
semantic relevance, and abstraction mechanisms (cf. [15]), are not considered in
this work. These are addressed in isolation by the languages that constitute our
formalism. Studies of manifestations of these criteria for the proposed overarch-
ing language are left for future work.

Requirements R1–R4 are standard for IS modeling languages [6,10,18,27].
We use mathematical modeling and formal proof methods to develop a formalism
that instantiates them in a unique way, as listed below (this claim is justified in
Sect. 2):

I1. The create, read, update, and delete (CRUD) operations over information
facts are supported, along with the expressiveness of the first-order logic
over finite sets with equality for specifying information constraints;

I2. The process constraints of an information system, captured using Petri nets
with identifiers, can induce a finite or countably infinite number of reachable
states;

I3. An aspect of an information system can be captured using either process
only, information only, or a combination of process and information concepts
and constraints;

I4. The reachability problem, which given a model of an information system,
its initial state, and some other state of the system consists of deciding if
the information system can evolve from the initial into the given state, is
computable.
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These instantiations allow capturing a wide range of systems in a flexible way
while ensuring a solid formal foundation. Instantiation I1 ensures standard sup-
port for CRUD operations over information facts and the ability to specify arbi-
trary constraints over them. Instantiation I2 ensures that the dynamic behavior
of a captured system can be analyzed based on a wide range of semantics, includ-
ing the interleaving/noninterleaving and linear/branching time semantics [29].
Consequently, the support of noninterleaving semantics necessitates the support
for infinite collections of reachable states, as it often breaks the by-construction-
guarantee of a bound on a number of reachable states. Instantiation I3 addresses
the standard mechanism for balancing information and process concepts and con-
straints in models of information systems. We argue that instantiation I4 sets a
solid formal foundation. For example, for the well-established formalism of Petri
nets for describing distributed systems, many interesting verification problems
were demonstrated to be recursively equivalent to the reachability problem [12];
these are the problems of liveness, deadlock-freedom, and several variants of the
reachability problem, e.g., submarking reachability, zero reachability, and single-
place zero reachability. The in this work presented reachability result is yet to be
capitalized on in future studies to extend the repertoire of decidable verification
problems for ISML models.

The next section discusses related work. Section 3 presents our modeling lan-
guage. Section 4 is devoted to the decidability of the reachability problem. Then,
Sect. 5 discusses a proof-of-concept implementation of a tool that supports mod-
eling and simulation of information systems captured using the proposed lan-
guage and reports on a preliminary evaluation of the approach with a cohort of
Information Systems students. The paper closes with conclusions and an outlook
at future work.

2 Related Work

To identify existing techniques for modeling information systems, we looked
into survey papers on the topic of integrated data and process modeling. The
survey papers, in turn, were identified by first using Scopus to find papers
with titles that contain strings “data-centric process”, “data-aware process”,
“process-centric data”, or “process-aware data”, and have the subject area of
Computer Science (18 papers), then taking only survey papers (2 papers), and
finally including other survey papers that cite any of the papers related to data
and process modeling among the initially identified 18 papers. This procedure
resulted in four identified survey papers, concretely [6,10,18,27]. In what fol-
lows, we discuss those techniques included in the identified surveys that were
assessed to deliver the best balance of expressiveness and verifiability. We clas-
sify the techniques based on their origin in one of the requirements R1 or R2
from Sect. 1. The discussions of languages for capturing exclusively process or
exclusively information concepts and constraints are omitted, because of the
space limitations. Hence, for instance, Entity Relationship diagrams or Object
Role Model diagrams, as well as Petri nets, reset nets, or transfer nets, are not
discussed.
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Data-Aware Process Models. The core formalism for describing data-aware
processes is arguably colored Petri nets (CPNs). CPNs extend classical Petri nets
by equipping each token with a data value, or color, which can be of an arbitrarily
complex type [19]. For CPNs, reachability is undecidable unless the finiteness of
the color domain is imposed. In [1], CPNs were used for modeling process-aware
information systems. This instantiation of CPNs allows token manipulations to
be captured as arbitrary programs, which benefits expressiveness but hinders
analysis, as reachability stays undecidable.

In a Petri net with data, every token carries a data value and executions of
transitions depend on and augment values associated with tokens. If data values
are tested only for equality, like in the case of ν-PNs, the reachability problem
is undecidable [28]. However, coverability, termination, and some boundedness
problems are decidable for ν-PNs. The coverability, termination, and bounded-
ness are decidable if in addition to the equality testing data values are drawn
from a totally ordered domain [21]. However, the reachability problem remains
undecidable even under this additional constraint [20].

In [9], the authors propose another model, called RAW-SYS, that combines
Petri nets with relational databases. A RAW-SYS may induce an infinite state
transition system, which complicates the analysis. In fact, the authors indeed
conclude that, unless one limits the number of objects that can co-exist in a
reachable state, the reachability problem is undecidable. Note that we do not
impose this requirement on our models.

In [8], the authors integrate Petri nets, first-order logic, and specifications
of how nets update data populations. Although closely related, this approach is
limited to workflows represented as classical Petri nets only. The authors do not
report any results on the decidability of verification problems for the proposed
integrated modeling approach.

In [24], the authors take inspiration from [9] and propose a three-layered
model of DB-nets. In a DB-net, the persistence layer maintains data values
in a relational database, the control layer uses a variant of colored Petri nets
to describe processes, and the data logic layer provides methods to extract and
augment data values. The authors demonstrate that for a special class of bounded
DB-nets that use string and real data types and may (despite the name) induce
infinite collections of reachable states, the problem of reachability of a nonempty
place is decidable.

Process-Aware Data Models. A business artifact describes information
about a business entity that evolves over time according to a well-defined life-
cycle [26]. In [14], the authors study systems of artifacts that exhibit collec-
tive behaviors captured as Kripke structures and demonstrate that certain CTL
properties are decidable for these systems when values of attributes and variables
(scalars) that encode information managed by the system range over bounded
or unbounded (but ordered) domains. Note that a Kripke structure cannot be
used to encode the noninterleaving semantics of a system and can only be used
to describe a finite number of reachable states. In [5], the authors study the
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problems of verifying whether an execution of a system can complete, the exis-
tence of an execution that leads to a dead-end, and redundancy of an attribute
in a given system. These problems are shown to be decidable only under var-
ious restrictions, such as abstracting from actual attribute values or imposing
restrictions on information manipulations, e.g., a value of an attribute is allowed
to be modified at most once. The behavior of the overall system is captured as
a set of declarative constraints that describe a collection of allowed executions
and interpreted using the interleaving semantics. Differently from the approaches
in [5,14], our formalism does not impose restrictions over domains or structure
of values used to encode information facts.

In [25], the authors propose to use state transition systems to capture life
cycles of data objects. The life cycles of such data objects are then linked accord-
ing to the relationships between the objects. Consequently, such an integrated
system is capable of describing only a finite number of states. A similar approach
is followed in artifact-centric modeling [13]. Each artifact has a life cycle, repre-
sented by a state machine that manipulates a data model via OCL. Verification
may not always terminate, and, as shown in [7], verification is only possible in
limited cases.

In [11], the authors present some decidability results on verification of a rich
artifact model that surpasses the previous work from IBM on artifact systems
at expressiveness. However, the results are obtained under eight restrictions,
which limit the management of data and recursive computation. The authors
demonstrate that lifting any of the eight restrictions leads to undecidability of
the verification. In [4], the authors formalize artifact systems as multi-agent
systems and study the decidability of the problem of verifying some temporal
logic properties. The authors state the undecidability of the problem for the
general class of systems and derive at the decidability result for the subclass of
systems whose behavior does not depend on the data values in reachable states.

A relational transducer [3,30] based on Gurevich’s Abstract State Machine
(ASM) is a relational database along with an ASM that governs management
of the database. The problems of verifying temporal properties, log equivalence,
and finite log validation are undecidable for transducers [30]. Some decidability
results were obtained by a priori limiting the number of possible relations in each
transducer state, limiting the number of database changes, and restricting the
behavior of the transducers [3,30]. Active XML (AXML) is an extension of XML
with embedded service calls [2]. Some decidability results for AXML models for
verifying data and process related properties were shown to be decidable under
several restrictions, e.g., by ensuring a static bound on the total number of
function calls in an execution of the system.

In [16], the authors address verification of data-centric dynamic systems
(DCDSs). In a DCDS data is maintained in a relational database, while the
process is captured as a set of condition-action rules that govern updates in
the database. A DCDS can induce infinite collections of reachable states. As
shown in [16], verification, in terms of some temporal logic properties, is unde-
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cidable in general and becomes decidable under constraints over data values in
the reachable states.

Summary. None of the existing formalisms for describing process and informa-
tion aspects of information systems is capable of describing an infinite amount of
states while imposing no bounds on the values of governed information facts and
enjoying the decidability of the reachability problem. Hence the work at hand
to address the gap. In addition, our formalism supports CRUD operations over
information facts and can be interpreted using interleaving/noninterleaving and
linear/branching time semantics.

3 Information Systems Modeling Language

The language we propose has three constituents: an information model to
describe the domain, a Petri net with identifiers to describe dynamic processes,
and a specification defining how the processes manipulate information. In the
remainder, we use the following running example to demonstrate the proposed
language.1

Running Example. The educational institute “Private Teaching Institute”
(PTI) offers different education tracks, such as Information Sciences and Com-
puter Science. Each track at PTI has a small team, called the track management
team, and a small student administration for all tracks together. For each track,
different courses can be followed. Every person is entitled to register for a track.
Once registered, and accepted by the track management, a person becomes a
student of that track. A student accepted for a track must create a study plan,
consisting of the courses she wants to follow. This plan has to be approved by the
track management. Students enroll for courses. A student of a track is allowed
to follow up to two courses concurrently. A lecturer decides whether a student
fails or passes the course. In case a student fails, she is allowed to retake the
course, until she passes it. Once the student passed all courses approved upon
in the study plan, the student can request a diploma for that track. The track
management verifies the certificates and the plan, after which they award the
diploma.

3.1 Information Models

Many languages are available that satisfy the goal of requirement R1 to govern
information and its manipulations, such as ERDs, UML class diagrams, and
ORM diagrams. Each notation comes with its constructs and ways to express
constraints. Yet, all these notations are similar in that they are founded in set
theory and first-order logic. In ISML, we do not advocate the use of specific

1 Related materials can be found at: http://informationsystem.org/ismsuite/.

http://informationsystem.org/ismsuite/
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Fig. 1. An information model of the running example in ORM notation.

notations, but rather focus on the underlying principles. An information model
consists of a set of possible entity types and relations, which are characterized
by finite sequences of entity types, together with a set of conditions, specified in
first-order logic on finite sets with equality.

Let I and Λ be a universe of identifiers and a universe of labels, respectively.

Definition 3.1 (Information model)
An information model is a 4-tuple (E,R, ρ, Ψ), where:

• E ⊆ P(I) is a finite set of entity types;
• R ⊆ Λ is a finite set of relation types;
• ρ : R → E∗ is a relation definition function that maps every relation type

onto a finite sequence of entity types for which it holds that for every e ∈ E
there exists r ∈ R, called the entity relation of e, such that ρ(r) = 〈e〉; and

• Ψ is a collection of constraints defined as a formal theory of the first-order
logic statements over a collection of predicates that for every r ∈ R contains
a predicate with the domain

∏|ρ(r)|
i=1 ρ(r)(i). �

An information model of our running example in ORM notation is shown
in Fig. 1. Boxes with rounded corners denote entity types, while rectangles stand
for relation types, or facts using the ORM terminology. The diagram allows for
traceability between the visual notation and the formalism. Note that in classical
ORM, the running example would normally be captured using value types and
objectified fact types, refer to [15].

Each entity and relation type of an information model is identified by a
label and a corresponding sequence of entity types. For example, entity type
Person is characterized by entity relation Person and the sequence of entity
types ρ(Person) = 〈Person〉. To indicate that a person can enroll into a track,
one can define relation enrolls such that ρ(enrolls) = 〈Person, Track〉. Figure 2
gives the relation definition function of the running example (without the entity
relations).

An information model can be instantiated with entities and relations, called
facts, which define its population. Every population is typed, i.e., every relation
obeys its definition given by the relation definition function.
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Fig. 2. Relation definition function for our running example, also visualized in Fig. 1.

Definition 3.2 (Population, Fact)
A population of an information model (E,R, ρ, Ψ) is a function π : R →
P(

⋃
n∈N

In) such that every element in the population is correctly typed, i.e., for
every r ∈ R it holds that π(r) ∈ P(

∏|ρ(r)|
i=1 ρ(r)(i)).2 An element in π(r) is called

a fact. �

Domain constraints are captured as first-order logic statements that define the
formal theory of the information model. Based on the structure, one can dis-
tinguish various classes of constraints. In the context of the running example,
we discuss several classes of constraints. In the remainder, let (E,R, ρ, Ψ) be an
information model.

Subtyping. Each entity of one type (X ∈ E) belongs to another type (Y ∈ E)
iff ∀x∈I : [x ∈ X ⇒ x ∈ Y ]. In Fig. 1, arrows c1, c2, and c3 capture subtype
constraints.

Uniqueness. A combination of elements in a tuple is unique within a population.
In Fig. 1, c5 specifies that the last three elements of a tuple in accepts are
unique: ∀x,y,z,u,v∈I : [((x, z, u, v) ∈ accepts ∧ (y, z, u, v) ∈ accepts) ⇒ x = y].

Mandatory. An element or fact must take part in another fact. For example,
constraint c6, denoted by a small filled circle in Fig. 1, specifies that enrolls
must appear in accepts: ∀x,y∈I : [∃u,v∈I : [(x, y) ∈ enrolls ⇒ (u, v, x, y) ∈
accepts]].

Domain-specific. Constraints that do not fall into predefined categories, like
those listed above, for which typically no corresponding graphical nota-
tions exist. For example, administrators are not allowed to cheat: ∀x,y,z∈I :
[(x, y, x, z) �∈ accepts ], i.e., an administrator cannot accept herself for a track.

A population may invalidate the constraints. Thus, we say that a population π
is valid if it satisfies all the constraints of the information model, denoted by
π |= Ψ ; otherwise the population is invalid. By Π(D) and Λ(D) we denote the
set of all possible populations of information model D and the set of all possible
valid populations of D, respectively.

The population of an information system changes frequently. Entities and
facts can be added, deleted, or updated. We define two operations for manipu-
lating populations: inserting entities into a relation and removing entities from

2
N denotes the set of all natural numbers, i.e., N = {1, 2, 3, . . .}, set N

0 = N ∪ {0}.
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a relation. Note that an update can be interpreted as a delete followed by an
insert.

Definition 3.3 (Transaction)
Let D = (E,R, ρ, Ψ) be an information model. Let r ∈ R be a relation, let
v ∈

∏|ρ(r)|
i=1 ρ(r)(i) be a fact, and let π ∈ Π(D) be a population. An operation o

is a tuple o ∈ O(D) with O(D) =
(
R × {⊕,} ×

⋃
n∈N

In
)
.

• Operation o = (r,⊕, v) inserts fact v into r in π, i.e., it results in population
π′ ∈ Π(D), denoted by (D : π

r⊕v−→ π′), iff π′ = (π \ {(r, π(r))}) ∪ {(r, π(r) ∪
{v})}.

• Operation o = (r,, v) deletes fact v from r in π, i.e., it results in population
π′ ∈ Π(D), denoted by (D : π

r�v−→ π′), iff π′ = (π \ {(r, π(r))}) ∪ {(r, π(r) \
{v})}.

A transaction s ∈ (O(D))∗ is a finite sequence of operations, such that every
subsequent operation is performed in a population resulting from the previous
operation. A transaction is valid if the starting and resulting populations are
valid. �

Fig. 3. A valid population for the running example.

When the context is clear, i.e., the scope of the information model and its cur-
rent population are known, we write insert(r, v) and delete(r, v) instead of
(D : π

r⊕v−→ π′) and (D : π
r�v−→ π′), respectively. A valid population of the infor-

mation model of Fig. 2 is depicted in Fig. 3. Suppose student 520639 is working
on her study plan. Updating the course Programming (PR) into Data Modeling
(DM) can be expressed as follows:

〈delete(contains , (SP98,PR)), insert(contains , (SP98,DM))〉.

As the initial population is valid, and the result of executing the transaction will
not violate any constraint, the above transaction is valid.

3.2 Process Models

Many different approaches for modeling processes exist that satisfy requirement
R2. Each comes with its own notation and applications. For requirement R4 and
its instantiation I4, a formal grounding of process modeling is required. Similar
to [1], we utilize Petri nets to model processes. Notice that many languages
can be translated into Petri nets, thus allowing tools to rely on a grounding
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formalism, while the modeler is using their own preferred modeling language.
The Petri net in Fig. 4 reflects the process model of the running example.

Many analysis techniques for processes ignore data, i.e., tokens in places
resembling the state of the process are considered to be indistinguishable. How-
ever, this results in an over-approximation of the possible firings, as shown with
the following example: Starting with two tokens in place i, resembling two stu-
dents, the model can eventually mark place max concurrent courses with four
tokens, refer to Fig. 4; note that places with tokens encode all the correspond-
ing entity instances currently kept in the population of the information model.
Now, each student can start following one course by firing register course. As two
tokens remain in place max concurrent courses, transition register exam remains
enabled. However, if considering the students in isolation, this transition would
not have been enabled.

The literature describes several approaches to address requirement R4, refer
to Sect. 2. In ν-PN, tokens carry identifiers, while markings map places to bags
of identifiers, indicating how many tokens in each place carry the same identifier.

In this paper, we extend the idea of tokens carrying identifiers to vectors of
identifiers, to obtain Petri nets with identifiers (PNIDs). Vectors of identifiers
have the advantage that a single token can represent multiple entities at the same
time. In this way, a token may resemble a (composed) fact from a population of
an information model.

In a PNID, each arc is labeled with a vector of variables. Similar to ν-PN, a
valuation instantiates the variables to identifiers. The size of the vector on the
arc is implied by the cardinality of the place it is connected to. Tokens carrying
vectors of size 0 represent classical – black – tokens. If for a transition some
variable only appears on outgoing arcs, it is called a creator variable. Let Σ
denote a universe of variables.

Definition 3.4 (Petri net with identifiers)
A Petri net with identifiers (PNID) is a 5-tuple (P, T, F, α, β), where:

• (P, T, F ) is a Petri net, with a set of places P , a set of transitions T , such
that P ∩ T = ∅, and a flow function F : ((P × T ) ∪ (T × P )) → N

0; if for
n,m ∈ P ∪ T , F (n,m) > 0, an arc is drawn from n to m;

• α : P → N
0 defines the cardinality of a place, i.e., the length of the vector

carried on the tokens residing at that place; its color is defined by C(p) =
Iα(p);

• β defines the variable vector for each arc, i.e., β ∈
∏

f∈F Vf , where V(p,t) =
V(t,p) = Σα(p) for p ∈ P, t ∈ T . �

A marking of a PNID defines for each place the amount of tokens per vector
identifier.

Definition 3.5 (Marking)
Given a PNID N = (P, T, F, α, β), its set of all possible markings is defined as
M(N) =

∏
p∈P C(p) → N

0. For m ∈ M(N), pair (N,m) is a marked PNID. �
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Fig. 4. PNID that describes processes students follow at PTI.

A transition is enabled if a valuation of variables to identifiers exists, such that
each input place contains sufficient tokens with vectors of identifiers induced by
the instantiated variable vector of the corresponding arc. The same valuation is
used to determine which vectors of identifiers are produced in the output places.
Note that a transition can only create new identifiers through variables that do
not occur on its input arcs.

Definition 3.6 (Transition firing in a PNID)
Let (N,m) be a marked PNID with N = (P, T, F, α, β). Let valuation ν : Σ → I
be an injective function that maps each variable to an identifier. A transition
t ∈ T is enabled in (N,m) if [ν(β((p, t)))F (p,t)] ≤ m(p) for all places p ∈ P .
Its firing, denoted by (N : m

(t,ν)−→ m′), results in a marking m′ with m′(p) +
[ν(β((p, t)))F (p,t)] = m(p) + [ν(β((t, p)))F (t,p)], for all places p ∈ P . �

Details on the semantics of PNIDs are in [34]. Consider again the net in Fig. 4.
This net is a PNID. Transition start creates a token with a single identifier,
representing a person entering PTI. Place education track contains all the tracks
PTI offers. Firing transition register, models that some person s chooses a track
t and registers for that track. The result is a token with a vector containing two
identifiers: one for the person and one for the track. A token in place d resembles
a student with an accepted plan. Similarly, place e represents students following
a course, and carries three identifiers: the student (person and track), and the
course.
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Fig. 5. Abstract transaction for transition register, and its instantiation with valuation
{s �→ 520639, t �→ IS}.

3.3 Information Systems Modeling Language

A transition firing can resemble some fact manipulation in the information
model. Its firing requires a valuation that determines which identities can be
used. For example, transition register resembles adding a fact to the population:
insert(register , (p, t)), for some person p and track t. The intent of requirement
R2 is to make this relation explicit. In our proposed formalism, each transi-
tion is specified with an abstract transaction that describes how the transition
manipulates the population of the information model. Similar to transition fir-
ings in PNID, valuations are used to compute the transaction by instantiating
the abstract transaction. For example, transition accept student from Fig. 4 can
have the abstract transaction depicted in Fig. 5, that inserts two facts into a
population: one to add the student as a person, and one to relate the person to
the track.

Definition 3.7 (Abstract transaction)
Let D = (E,R, ρ, Ψ) be a data model. An abstract transaction is a sequence
of abstract operations o ∈

(
R × {⊕,} ×

⋃
n∈N

(Σ ∪ I)n)∗, using variables from
Σ and identifiers I. An abstract transaction o is instantiated using a valuation
ν : Σ → I, denoted by ν(o), which results in a transaction by replacing all
variables by their valuation. The set of all abstract transactions for data model
D is denoted by T (D). �

Starting with a valid population, a transaction should not invalidate the popula-
tion. Hence, we only allow transitions to fire if both the transition is enabled and
its corresponding transaction is valid in the current population. This forms the
basis of an ISM, whereas ISML consists of three languages for specifying infor-
mation models, PNIDs, and specifications which define abstract transactions of
the transitions of PNIDs.

Definition 3.8 (Information System Model, Semantics)
An Information System Model (ISM) is a tuple IS = (D,N, S), where D =
(E,R, ρ, Ψ) is an information model, N = (P, T, F, α, β) is a PNID, and S : T →
T (D) is a specification. A state of an information system is a pair (π,m), with
population π ∈ Λ(D) and marking m ∈ M(N). Given markings m,m′ ∈ M(N)
and valid populations π, π′ ∈ Λ(D), transition t ∈ T with valuation ν is enabled
in (π,m) iff (D : π

ν(S(t))−→ π′) and (N : m
(t,ν)−→ m′). Its firing results in the new

state (π′,m′), and is denoted by (IS : (π,m)
(t,ν)−→ (π′,m′)). A state (πn,mn) is

said to be reachable from (π0,m0) if intermediate states (πi,mi) and transitions
ti with valuations νi exist such that (IS : (πi,mi)

(ti,νi)−→ (πi+1,mi+1)) for all
0 ≤ i < n. �
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Fig. 6. Three process models of ISMs that capture the same behavior (subject to
the information model); ISMs that rely on models N1 and N3 are information- and
process-driven, respectively.

A Spectrum of Information System Models. Domain constraints can be
expressed in the information model or in the process model, or in both. As an
example, consider the models in Fig. 6. Suppose we have information model D
with relation types defined by ρ(P) = 〈P〉 and ρ(Q) = 〈P, P〉. Let the informa-
tion model be constrained by ∀x,y∈I : [(x, y) ∈ Q =⇒ ((x) ∈ P ∧ (y) ∈ P )]. Let
the specification map all the transitions in Fig. 6 labeled a to the transaction
〈delete(P, (p)), insert(P, (q))〉, and all the transitions labeled b to the transac-
tion 〈insert(Q, (p, p))〉. The three process models result in the following ISMs:
IS1 = (D,N1, S), IS 2 = (D,N2, S), and IS 3 = (D,N3, S). Suppose, we start
from the empty population. In all three ISMs, transition b is only enabled after
a transition with label a has fired at least once; it requires a fact (x) ∈ P ,
which initially does not hold. Similarly, suppose we have a population with fact
(x) ∈ P . Firing a transition with label b results in the population with facts
(x) ∈ P and (x, x) ∈ Q. Removing fact (x) ∈ P is not allowed anymore, as this
will violate the constraint. Hence, transition a is never enabled once transition
b fired. Consequently, given the initial empty population, all three ISMs model
exactly the same behavior.

The above example shows that different ISMs can describe exactly the same
behavior. Model N1 does not impose any order on the process. Hence, always
if a transaction in N1 is valid, the corresponding transition is enabled. We call
this behavior information-driven. On the other hand, in model N3 it becomes
directly apparent that there is a constraint on the order of firing transitions a and
b: always if the transition is enabled in the net, the corresponding transaction is
valid. We say such transitions are process-driven. Model N2 is a combination of
the two: the top transition a and transition b are both process- and information-
driven, whereas the other transition a is only information-driven. These examples
show the existence of a spectrum of ISMs:

Definition 3.9 (Information- and process-driven ISMs)
Let IS = (D,N, S) be an ISM with N = (P, T, F, α, β). Transition t ∈ T is
called:

• information-driven if (D : π
ν(S(t))−→ π′) implies (IS : (π,m)

(t,ν)−→ (π′,m′)),
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• process-driven if (N : m
(t,ν)−→ m′) implies (IS : (π,m)

(t,ν)−→ (π′,m′)),

for any two markings m,m′ ∈ M(N), valuation ν, and populations π, π′ ∈ Λ(D).
If all transitions in the PNID are information-driven (process-driven), the ISM
is called information-driven (process-driven). �

Most transitions are neither information- nor process-driven. Instead, for each
transition, the modeler balances between information and process. As an exam-
ple, consider transition register exam from Fig. 4. Suppose PTI prescribes that
registering for an exam is only allowed if all courses the student listed in the
study plan are passed. In the current model, if the student has its study plan
accepted, but did not yet follow a single course, transition register exam is
enabled. Although the above constraint could be modeled in the process model,
it adds unnecessary complexity, whereas the constraint is relatively simple to
be expressed in first-order logic (see Fig. 7). Therefore it can be added to the
information model, rather than to encode it in the process model.

Being aware of how constraints manifest in the different models and their
consequences is essential when designing information systems. This is the main
idea behind requirement R3 and our instantiation of this requirement with ISMs,
i.e., that designers of information systems are aware of which constraints are
imposed and how they interplay within the system, as these are a possible cause
of mistakes, as experienced by many students [33]. ISML allows modelers to
decide how to specify constraints, and to verify the consequences of that decision.

4 Automated Verification

Automated verification assists designers in checking whether their system sat-
isfies expected properties. An important class of properties are reachability
related [12]: Given some current state of an IS, it should always be possible
to reach some other state of the system. For example, a student that starts
studying a track, should always be able to finish the track. This results in the
following definition of the reachability problem:

Definition 4.1 (Reachability problem)
Given an initial state (π0,m0) of an ISM (D,N, S), the reachability problem
consists in deciding whether a state (π,m) is reachable from (π0,m0). �

Combining information and process models is almost a guarantee to violate
requirement R4 [6]. In general, the reachability problem is undecidable for Petri
nets with identifiers, as there is no structure on the countably infinite set of
identifiers; this observation is similar to the one for ν-PNs [21,28]. In ISMs,
identifiers represent elements in the information model. Under the assumption
that no information model becomes infinite, which is a reasonable assumption [6],
there is a bound on the number of elements the identifiers represent. Further
assuming that each identifier is generated consecutively, provides an ordering
on the identifiers. These two assumptions form the basis of the class of counter-
valuated PNIDs [17]. In this class, identifiers are mapped on the natural numbers,
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and an implicit counter place is used to generate the next, fresh, identifier for
every fresh element in the information model. As the last generated identifier
for a given net is always known, the net can be translated into a classical Petri
net [34], for which the reachability problem is decidable [12].

Based on the same assumptions, one can conclude that the set of popula-
tions for an information model induced from a finite set of elements is finite.
In addition, the set of transactions possible on these populations is finite. Con-
sequently, the process of moving between populations can be represented by a
deterministic finite automaton. Hence, given an upper bound k on the identi-
fiers, the semantics of the information system model becomes the synchronous
product of a classical Petri net, the one constructed from the corresponding
counter-valuated PNID, and a deterministic finite automaton, the one obtained
from the information model, for which reachability is again decidable [23]. All
these observations lead to the main reachability result for ISMs.

Theorem 4.2 (Decidability of the reachability problem)
GivenanISM (D,N, S),whereN isacounter-valuatedPNID, it isdecidablewhether
some state (π,m) is reachable from the initial state (π0,m0) of the ISM. �

Proof (sketch). Let N̄ be the classical Petri net derived from the k-bounded
net N , where k ∈ N

0 is the last generated identifier in N , cf. [34]. Let Q be
the automaton induced by the up-to-k-bounded populations of D. Then Q is
finite and deterministic. As each transition in N̄ maps to a transaction in Q
via specification S, one can construct the synchronous product of N̄ and Q that
describes the semantics of the ISM. Hence, the reachability of the k-bounded ISM
translates to the reachability of the synchronous product, which is decidable [23].

�

Based on the result in [22], we conclude that the proposed decision procedure
requires at least 2 c×(2k

u×v
+ p×kw) space for some constant c > 0, where k, as

in the above proof sketch, is the identifier in the counter place of N , u is the
number of relations in D, v is the length of the shortest relation in D, w is the
minimal sum of all incoming and outgoing arcs of some place of N , and p is
the number of places in N . Details on obtaining this result and for the rigorous
proof of Theorem 4.2 can be found in [34].

5 Tool Support and Initial Evaluation

To show the applicability of ISML, we have implemented our approach in a
prototype called ISM Suite.3 In this prototype, we build upon CPN tools [35] for
simulating the PNID, and an own implementation of a theorem prover on finite
sets. Constraints of the information model are specified in TPTP syntax [32]; an
example constraint is shown in Fig. 7. The specification uses a special format to

3 The source code is available from https://github.com/information-systems/ismsuite.

https://github.com/information-systems/ismsuite
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Fig. 7. Constraint in TPTP-format. Fig. 8. Excerpt of the specification.

define transactions of transitions. An excerpt of the specification of the running
example is in Fig. 8. The specification language has three constructs that can be
used to define transactions: register, to register an element in the population,
and insert and remove to add and remove facts, respectively. If an unregistered
element is used in a fact, the resulting population is invalid.

All enabled transitions that result in valid populations are listed in the user
interface, from which the user can select a transition to fire. For each transition
that yields an invalid population, the violated constraints can be requested, to
support the designer in better understanding the reasons of the violation.

In [33], we reported on an initial evaluation of the modeling component of
ISM Suite with a cohort of Information Systems students in a real teaching and
learning environment; the students used our tool to solve an information system
modeling task. The initial results are promising, as evidenced by the collected
qualitative comments from the students, refer to [33]. This and subsequent col-
lected feedback will be used to inform evolution of our tool.

6 Conclusions and Future Work

The paper at hand proposes an approach for modeling an information system as
an integration of an information model and a process model via a specification
on how processes manipulate information. The proposal constitutes a unique
instantiation of standard requirements for capturing concepts and constraints of
an information system. Using the proposed formalism, one can express an infinite
state system that supports CRUD operations over arbitrary finite populations of
information facts governed by the constraints expressed in first-order logic with
equality. At the same time, the proposed formalism enjoys the decidability of
the reachability problem, which sets a solid foundation for verification of formal
properties of the described systems.

Future work will strengthen the results reported in this paper to allow the
adoption of the language by practitioners. The concrete next steps include stud-
ies of other verification problems and data flow anomalies [31], studies of the
interplay between information and process concepts and constraints, improve-
ment of the tool support, development of methodologies for designing informa-
tion systems using our formalism, and empirical studies aimed at improving the
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usability of the approach. Finally, the high lower bound on the space require-
ment reported at the end of Sect. 4 justifies that one can use ISML to capture
a wide range of systems. It is interesting to study how often do the extremely
complex cases manifest in the problems encountered in the real world.
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Research Council Discovery Project DP180102839.

References

1. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes—A Petri Net-
Oriented Approach. Cooperative Information Systems Series. MIT Press, Cam-
bridge (2011)

2. Abiteboul, S., Segoufin, L., Vianu, V.: Modeling and verifying active XML artifacts.
IEEE Data Eng. Bull. 32(3), 10–15 (2009)

3. Abiteboul, S., Vianu, V., Fordham, B.S., Yesha, Y.: Relational transducers for
electronic commerce. J. Comput. Syst. Sci. 61(2), 236–269 (2000)

4. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact sys-
tems. J. Artif. Intell. Res. 51, 333–376 (2014)

5. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis
of artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75183-0 21

6. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data-aware process
analysis: a database theory perspective. In: PODS, pp. 1–12. ACM (2013)
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