

This is an electronic reprint of the original article. This reprint may differ from the original
in pagination and typographic detail.

Exhaustive Simulation and Test Generation Using fUML Activity Diagrams

Iqbal, Junaid; Ashraf, Adnan; Truscan, Dragos; Porres Paltor, Ivan

Published in:
Advanced Information Systems Engineering

DOI:
10.1007/978-3-030-21290-2_7

Published: 01/01/2019

Link to publication

Please cite the original version:
Iqbal, J., Ashraf, A., Truscan, D., & Porres Paltor, I. (2019). Exhaustive Simulation and Test Generation Using
fUML Activity Diagrams. In G. Paolo, & W. Barbara (Eds.), Advanced Information Systems Engineering (pp.
96–110). Springer, Cham. https://doi.org/10.1007/978-3-030-21290-2_7

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 26. Apr. 2024

https://doi.org/10.1007/978-3-030-21290-2_7
https://research.abo.fi/en/publications/d33cdf0c-1a93-43b6-9b10-aae366893773
https://doi.org/10.1007/978-3-030-21290-2_7

Exhaustive Simulation and Test Generation
Using fUML Activity Diagrams

Junaid Iqbal, Adnan Ashraf, Dragos Truscan, and Ivan Porres

Faculty of Science and Engineering
Åbo Akademi University, Turku, Finland

{jiqbal, aashraf, dtruscan, iporres}@abo.fi

Abstract. The quality of the specifications used for test generation
plays an important role in the quality of the generated tests. One ap-
proach to improve the quality of the UML specification is the use of ex-
ecutable models specified using the Foundational Subset for Executable
UML Models (fUML) and the Action language for fUML (Alf). Due to
their precise semantics, fUML and Alf models can be simulated or ex-
ecuted using an fUML execution engine. However, in order to execute
the models exhaustively, one must provide input data required to reach
and cover all essential elements not only in the graphical fUML models,
but also in the textual Alf code associated with the graphical models. In
this paper, we present an approach for exhaustive simulation and test
generation from fUML activity diagrams containing Alf code. The pro-
posed approach translates fUML activity diagrams and associated Alf
code into equivalent Java code and then automatically generates: (1) in-
put data needed to cover or execute all paths in the executable fUML
and Alf models and (2) test cases and test oracle (expected output) for
testing the actual implementation of the system under development. We
also present a tool chain and demonstrate our proposed approach with
the help of an example.

Keywords: fUML · activity diagram · Alf · simulation · model-based
testing · test data generation · Eclipse · Papyrus · Moka

1 Introduction

The Unified Modeling Language (UML) is the de facto standard for modeling
software systems. It allows to model the structure and the behavior of the soft-
ware at a high level of abstraction. UML models can be used for Model-Driven
Development (MDD) and Model-Based Testing (MBT). However, UML lacks
precise semantics, which hinders the creation of high quality models. To address
this problem, the Object Management Group (OMG) has published the Foun-
dational Subset for Executable UML Models (fUML)1 and Action Language for
fUML (Alf)2 standards. fUML provides precise semantics and allows to create

1 https://www.omg.org/spec/FUML
2 https://www.omg.org/spec/ALF

https://www.omg.org/spec/FUML
https://www.omg.org/spec/ALF

2 J. Iqbal et al.

models that are not only executable, but also provide the basis to generate fully
functional code.

fUML includes many basic modeling constructs of UML. To implement the
precise behavior of the specified system, fUML Activity Diagram (AD) plays an
import role. fUML ADs are similar to UML ADs, but they allow to combine
and complement the graphical modeling elements with textual syntax specified
using the Alf programming language, which is particularly useful for specifying
detailed behaviors in complex activities.

There are several fUML implementations, including the open source fUML
Reference Implementation3 and the Moka4 simulation engine for Papyrus5, which
is an open source Eclipse-based6 UML editing tool. fUML ADs containing Alf
code can be executed and tested in Moka. Model execution and testing allows
to examine and improve the functional correctness and the overall quality of
models. However, one must provide input data required to reach and execute
all important elements in the graphical fUML and textual Alf models. Manual
generation of input data might be suitable for small and simple models, but it
is often not the case for real-life complex models. Similarly, test generation for
executable models is a difficult and tedious task. The work presented in this
paper addresses two research questions:

1. How to automatically generate input data needed to simulate all execution
paths in fUML ADs containing Alf code?

2. How to generate test cases with oracle from fUML ADs containing Alf code?

To address these research questions, we present an approach for exhaustive
simulation and test generation from fUML ADs containing Alf code. The pro-
posed approach, called MATERA2-Alf Tester (M2-AT), translates fUML ADs
and associated Alf code into equivalent Java code and then automatically gen-
erates: (1) input data needed to cover or execute all paths in the executable
fUML and Alf models and (2) a test suite comprising test cases and test oracle
(expected output) for testing the actual implementation of the system under de-
velopment. The generated test cases in M2-AT satisfy 100% code coverage of the
Java code. The generated input data is used for executing the original fUML and
Alf models in the Moka simulation engine. The interactive execution in Moka
allows to determine model coverage of the executable models. In addition, the
generated Java code can be reused later on as a starting point for the actual
implementation of the system. We also present our tool chain integrated with
Papyrus and demonstrate our proposed approach with the help of an example.

The rest of the paper is organized as follows. Section 2 presents relevant
background concepts including UML ADs and fUML. In Section 3, we present
our proposed M2-AT approach. Section 4 and 5 present an example and an
experimental evaluation, respectively. In Section 6, we review important related
works. Finally, Section 7 presents our conclusions.

3 https://github.com/ModelDriven/fUML-Reference-Implementation
4 http://git.eclipse.org/c/papyrus/org.eclipse.papyrus-moka.git
5 http://www.eclipse.org/papyrus
6 http://www.eclipse.org

https://github.com/ModelDriven/fUML-Reference-Implementation
http://git.eclipse.org/c/papyrus/org.eclipse.papyrus-moka.git
http://www.eclipse.org/papyrus
http://www.eclipse.org

Exhaustive Simulation and Test Generation Using fUML Activity Diagrams 3

2 Preliminaries

The UML Activity Diagram (AD) is an important diagram for modeling the
dynamic aspects of a system7. Following the Petri nets semantics, the UML
ADs use Petri nets concepts such as places, tokens, and control flows [6,20].
However, the UML AD specification is semi-formal.

UML ADs can depict activities (sequential and concurrent), the data objects
consumed or produced by them, and the execution order of different actions.
An action specifies a single step within an AD. Edges are used to control the
execution flow of the nodes in an activity. A node does not begin its execution
until it receives the control or input on each of its input flows. As a node com-
pletes its computation, the execution control transits to the nodes existing on
its output flows. The execution of an AD is completed if it reaches a final node
and/or returns a data object as a result of the internal computations. Passing
parameters to an AD as data objects is possible and used for the exchange of
information between two actions.

Executable modeling languages allow one to model the specification of the
static and dynamic aspects, that is, the executable behavior of the system [4].
The main advantage of executable modeling languages is to specify a software
system based on a limited subset of UML comprising class diagrams, state charts,
and ADs. The class diagram outlines conceptual entities in the domain while the
state chart for each class models the object life cycle. The AD is used to model
the behavior of a state in the state chart by exhibiting the sequence of actions to
be performed in a particular state [13]. An executable model executes dynamic
actions such as creating class instances, establishing associations, and performing
operations on attributes and call state events. Meanwhile, in executable UML,
the aforementioned dynamic actions are executed via Alf action language which
conforms to the UML Action Semantics.

The fUML standard defines the semantics of the class diagrams and ADs for
a dedicated virtual machine (called fUML VM) that can interpret both class and
activity diagrams [19]. fUML provides concepts similar to object-oriented pro-
gramming languages, including implementation of operations either by graphical
activities or via the Alf action language. Hence, fUML allows one to capture the
detailed executable system behavior at the model level. Modeling system behav-
ior in an executable form enables dynamic analysis to be carried out directly at
the model level and paves ways for generating fully-functional code from models.

3 MATERA2-Alf Tester (M2-AT)

Figure 1 presents a high-level overview of our proposed MATERA2-Alf Tester
(M2-AT) approach. The input to M2-AT consist of executable fUML ADs and
their associated Alf code. These executable models can be created in the model-
ing phase of the software development process by refining software requirements

7 https://www.omg.org/spec/UML/2.5/

https://www.omg.org/spec/UML/2.5/

4 J. Iqbal et al.

Test suite

Exhaustive
simulation & test

generation
approach

fUML activity
diagram Simulator

Test inputs

Fig. 1. A high-level overview of the proposed M2-AT approach

and use cases, which define the desired system functionality. M2-AT produces:
(1) input data needed for the exhaustive simulation of the fUML ADs and as-
sociated Alf code and (2) a test suite comprising test cases and test oracle for
testing the actual implementation of the system under development. The gener-
ated input data is transformed into an Alf script which allows to use these data
in an automated manner.

Internally, the approach is composed of several steps. First, the fUML ADs
and their associated Alf code are converted into Java code. Then, we obtain all
the inputs of the Java program to achieve 100% coverage of the code. These
inputs are used to simulate the AD. Since the Java code and the ADs are behav-
iorally equivalent, the input will also satisfy 100% coverage of the AD. During
the simulation, one can detect and fix problems in the specifications. In the next
step, the Java code is used to generate input data and a test suite.

The proposed approach allows to left-shift testing activities in the software
development process. In M2-AT, exhaustive simulation of fUML models helps in
validating software specifications and improving their quality at an early stage.
Moreover, test cases and test oracle are generated before the actual implemen-
tation of the system is developed. In the following text, we present the two
main phases of the approach namely, translation and input data and test suite
generation phase.

3.1 Translation Phase

In order to translate fUML ADs and their associated Alf code into equivalent
Java code, M2-AT performs the following steps: (1) separating structural and
behavioral elements, (2) generating a dependency graph, (3) topologically sort-
ing the dependency graph to solve node dependencies in the graph, and (4)
generating Java code from the sorted dependency graph. Figure 2 presents the
translation process.

Exhaustive Simulation and Test Generation Using fUML Activity Diagrams 5

fUML AD Model
separation

Structural model

Behavioral model
CDFG generation
and topological

sorting

Java code
generation

Sorted control-
data flow

graph

Java code

Fig. 2. Translation phase steps

Separating Structural and Behavioral Elements In the first step, the
structural and behavioral elements in the executable fUML and Alf models are
separated. The structural elements include static features of the systems, while
the behavioral elements have a dynamic nature and they represent different
interactions among the structural elements. The structural elements can be di-
rectly translated into equivalent Java code. However, for behavioral elements a
dependency graph is first constructed.

Dependency Graph In order to identify data and control flow dependen-
cies in the behavioral elements, M2-AT constructs a Control-Data flow graph
(CDFG) [1]. A CDFG is a directed acyclic graph, in which a node can either be
an operation node or a control node and an edge represents transfer of a value
or control from one node to another.

Topological Sorting of Dependency Graph To solve node dependencies
in a CDFG and to decide a starting point for code generation, M2-AT applies
topological sorting [11] on CDFGs. The topological sorting algorithm takes a
directed acyclic graph G as input and produces a linear ordering of all nodes or
vertices in G such that for each edge (v, w), vertex v precedes vertex w in the
sorted graph.

Java Code Generation After resolving node dependencies and the order of ac-
tivity nodes in CDFGs, M2-AT translates structural model elements and sorted
CDFGs into equivalent Java code. The structural elements such as packages,
classes, interfaces, and associations are used to generator static structure of the
Java code. An example of the structural mapping is shown in Figure 3. The
fUML class object in Figure 3(a) is directly mapped to a Java class having
fUML class properties as Java class attributes and fUML class operations as
Java methods [10].

6 J. Iqbal et al.

(a) (b)

Fig. 3. Structural mapping between fUML class and Java code:
(a) fUML Class with attributes and operations, and (b) Java code of fUML Class

The fUML ADs are translated into Java code using Java representation for
UML activity as presented in the fUML standard. We support a subset of fUML
diagram, which excludes asynchronous communication behaviors e.g, Signal,
Messages, and Reception. Similarly, M2-AT currently does not support paral-
lel execution of fUML nodes. Table 1 shows examples of some fUML AD model
elements and their equivalent Java representation. To translate Alf code associ-
ated with fUML ADs, we devised a similar mapping that translates each element
from Alf code to its equivalent code in Java.

fUML element Java representation fUML element Java representation

value = ValueSpecifcationAc-
tion.value;

class.attribute = value;

return = class.attribute; Object object = new
Object();

result =
callOperationAction(para1,
para2);

result =
CallBehaviorAction(valueX,
valueY);

Table 1. Java representation of fUML activity digram nodes

3.2 Input Data and Test Suite Generation Phase

After translating the executable fUML and Alf models to their equivalent Java
code, M2-AT uses the generated Java code to produce input data and test suite

Exhaustive Simulation and Test Generation Using fUML Activity Diagrams 7

Java code
Input data &

test suite
generation

Input data &
test suite

Alf script
generation

Alf script

Fig. 4. Input data and test suite generation phase

for exhaustive simulation and testing activities. Figure 4 presents the input data
and test suite generation steps. The input data and test suite are generated by
using EvoSuite [7]. EvoSuite generates and optimizes a test suite for different
coverage criteria such as branch coverage, line coverage, method coverage, and
exception coverage [8]. It also suggests possible test oracles by adding small
and effective sets of assertions that concisely summarize the current behavior.
Additionally, one can also use assertions to detect deviations from the expected
behavior. In M2-AT, we use line and branch coverage criteria because achieving
100% line and branch coverage in the generated Java code ensures 100% node
and edge coverage in fUML ADs.

In order to allow automated use of the generated input data for simulation
purposes, M2-AT transforms these data into an Alf script that can be run in the
Moka simulation engine. At the end of the simulation, Moka produces a model
coverage report.

3.3 M2-AT Tool Chain

Figure 5 presents the M2-AT tool chain comprising M2-AT components along
with Papyrus8 (an open source Eclipse-based UML editing tool), Moka9 (a sim-
ulation engine for Papyrus), and EvoSuite [7] (a test generation tool for Java
classes). Papyrus provides a graphical user interface for creating and editing
UML and fUML models. In our proposed approach, Papyrus is used for creating
fUML models including class diagrams and ADs containing Alf code. M2-AT
translates these models into equivalent Java code.

EvoSuite is a search-based tool for automatic generation of test suites from
Java classes. Given the name of a target class, EvoSuite produces a set of JUnit10

test cases aimed at maximizing code coverage. M2-AT uses EvoSuite to generate
input data and a test suite from Java code and then transforms the input data
into an Alf script that can be run in the Moka simulation engine. Moka is an
Eclipse plug-in for Papyrus [21]. It provides support for model execution or
simulation, debugging, and logging facilities for fUML models. Moka also allows
to measure model coverage and produces a model coverage report at the end of
the simulation. When the Alf script is run in Moka, the fUML ADs along with
their associated Alf code are executed and a coverage report is produced.

8 http://www.eclipse.org/papyrus
9 http://git.eclipse.org/c/papyrus/org.eclipse.papyrus-moka.git

10 https://junit.org/

http://www.eclipse.org/papyrus
http://git.eclipse.org/c/papyrus/org.eclipse.papyrus-moka.git
https://junit.org/

8 J. Iqbal et al.

fUML
AD

M2-AT

Papyrus

Moka
simulation

engine

Java code
generation

Alf script generation

Java code

Input data &
test suite

Alf
script

Fig. 5. M2-AT tool chain

3.4 Scalability of the Proposed Approach

The performance and scalability of the proposed approach is based on the time
complexities of the M2-AT translation phase (Section 3.1) and the input data
and test suite generation phase (Section 3.2). The M2-AT translation phase
uses a linear-time topological sorting algorithm [11] that sorts a CDFG with
O(|V | + |E|) complexity, where V and E represent CDFG vertices and edges,
respectively. The overall time complexity of the M2-AT translation phase is
also linear. Therefore, M2-AT provides highly scalable code generation. The
scalability of the M2-AT input data and test suite generation phase is mainly
based on the time complexity of EvoSuite, which uses several search-based test
generation strategies to optimize test generation time and code coverage. The
time complexity of the tool varies from one testing strategy to another and can
not be generalized [17].

4 Example

In order to demonstrate the feasibility of our proposed approach, we use an au-
tomatic teller machine (ATM) system example originally presented in [15]. The
structure of the ATM system is shown in Figure 6. The ATM system can be used
to perform withdrawal and deposit transactions in a bank account. The with-
drawal operation is realized with the withdraw and makeWithdrawal methods in
the ATM and Account classes, respectively. Similarly, the ATM.deposit and Ac-
count.makeDeposit methods implement the deposit operation. These operations
can be modeled with fUML ADs and Alf code.

Figure 7 and 8 present the fUML ADs for the ATM.withdraw and Ac-
count.makeWithdrawal methods, respectively. To perform a withdrawal trans-

Exhaustive Simulation and Test Generation Using fUML Activity Diagrams 9

Fig. 6. Class diagram of the ATM system

action, the user inserts an ATM card and enters the associated pin and the
amount of money to be withdrawn from the associated bank account. It invokes
the withdraw method in the ATM class, which creates a new transaction and
sets it as the current transaction (startTransaction method in ATM class). Next,
it validates the entered pin (validatePin method in Card class). If validatePin
returns true, the withdrawal transaction is successfully performed and the ac-
count balance is updated (makeWithdrawal method in Account class). Finally,
the completed withdrawal transaction is recorded in the system (endTransaction
method in ATM class).

Please note that the actions startTransaction, validatePin, makeWithdrawal,
and endTransaction are call actions calling the declared operations. The ex-
plained functionality of these operations are implemented by dedicated activi-
ties. Additionally, the primitive behaviors such as addition and subtraction are
encoded in Alf code. In the remainder of this paper, we use fUML ADs of the
ATM.withdraw and Account.makeWithdrawal methods to demonstrate our pro-
posed approach. ADs of all other operations in the ATM system are omitted due
to space limitations.

5 Experimental Evaluation

As presented in Section 3.1, to translate fUML ADs and their associated Alf code
into equivalent Java code, M2-AT first separates the structural and behavioral
model elements and then generates a CDFG to identify and resolve data and
control flow dependencies in the behavioral elements. Figure 9(a) presents the
CDFG of the ATM.withdraw AD presented in Figure 7. It shows that the readAc-
count method must be invoked before makeWithdrawal. Similarly, the readAc-

10 J. Iqbal et al.

Fig. 7. fUML AD for ATM.withdraw

Fig. 8. fUML AD for Account.makeWithdrawal

count requires a Card object to perform its execution. This data-dependency
path is independent of the main control-flow path in the AD, which consist of
InitialNode → startTransaction → validatePin → isValid → makeWithdrawal.
In such scenarios, manually deciding a starting point for code generation can be
challenging and tedious. Figure 9(b) shows that by using topological sorting of
the CDFGs, one can easily resolve all node dependencies in CDFGs and deter-
mine the starting point for code generation. Finally, Figure 9(c) shows the Java
code generated by traversing the topologically sorted CDFG in Figure 9(b).

In the next step, M2-AT used the Java code in Figure 9(c) to generate input
data for model simulation and a test suite for testing the system under develop-
ment. The initial test suite contained 8 test cases. However, 6 of them were not
usable in the Moka simulation engine because they contained invalid null values.
The invalid cases were also redundant for simulation purposes because they did
not have any effect on the node and edge coverage of the ATM.withdraw AD.
The remaining 2 valid test cases provided 100% node and edge coverage. We
parsed the valid test cases to extract input data for model simulation and then
transformed the extracted data into an Alf script. Listing 1 presents a fragment
of the generated Alf script used for simulating the ATM.withdraw AD. Moreover,
Figure 10 shows the model coverage results, in which: (1) a solid line represents

Exhaustive Simulation and Test Generation Using fUML Activity Diagrams 11

(a) (b) (c)

Fig. 9. Code generation from fUML AD: (a) CDFG for ATM.withdraw AD, (b) topo-
logically sorted CDFG, and (c) generated Java code.

a covered edge, (2) a dashed line denotes an uncovered edge, and (3) a dotted
line represents an unutilized object.

Listing 1. A fragment of the generated Alf script

namespace structure;
activity ActivityTester15() {
ATM aTM0 = new ATM();
Card card0 = new Card();
card0.pin = 234532;
card0.number=1;
Account account = new Account();
Boolean boolean0 = aTM0.withdraw(card0.number, card0, card0.number);
}

6 Related Work

In this section, we discuss the most important related works on verification of
ADs and test and code generation from ADs.

6.1 Verification of ADs

Model verification aims at verifying certain properties in the models under con-
sideration. Model checkers like UPPAAL11, NuSMV12, and SPIN13 verify several

11 http://www.uppaal.org/
12 http://nusmv.fbk.eu/
13 http://spinroot.com/

http://www.uppaal.org/
http://nusmv.fbk.eu/
http://spinroot.com/

12 J. Iqbal et al.

Fig. 10. Model coverage results

properties including deadlock-freeness, reachability, liveness, and safety. Using
a model checker for fUML ADs requires that the original or extended ADs are
first translated into a graph-based intermediate format and then the intermediate
models are translated into the input language of the model checker. For exam-
ple, for UPPAAL, the intermediate models are translated into UPPAAL Timed
Automata (UTA). Daw and Cleaveland [6] translated extended UML ADs into
flow graphs and then the flow graphs into the input language of several model
checkers including UPPAAL, NuSMV, and SPIN.

Planas et al. [16] proposed a model verification tool called Alf-Verifier that
checks the consistency of Alf operations with respect to integrity constraints
specified in a class diagram using Object Constraint Language (OCL). For each
inconsistency found in the Alf code, the tool returns corrective feedback com-
prising a set of actions and guards that should be added to the Alf operations to
make their behavior consistent with the OCL constraints. Micskei et al. [14] pre-
sented a modeling and analysis approach for fUML and Alf. In their approach,
the system behavior is first modeled as UML state machines, which are then
translated to fUML ADs. In the next step, they manually enrich the fUML ADs
with Alf code and then translate them to full Alf code. Finally, the Alf code is
translated to UTA to perform model verification. In this approach, Alf is used
as an intermediate modeling formalism.

6.2 Test Generation from ADs

Samuel and Mall [18] translated UML ADs to flow dependency graphs (FDGs)
to generate dynamic slices for automated test case generation. In their approach,
FDGs are created manually, but then an edge marking method is used to generate
dynamic slices automatically from FDGs. To generate test data for a dynamic
slice, a slice condition is formed by conjoining all conditional predicates on the
slice and then function minimization is applied on the slice condition.

Mijatov et al. [15] presented a testing framework for fUML ADs, comprising
a test specification language for defining assertions on fUML ADs and a test
interpreter for evaluating the defined assertions to produce test verdicts. Tests

Exhaustive Simulation and Test Generation Using fUML Activity Diagrams 13

are run by executing fUML ADs in an extended fUML VM, which allows to
capture execution traces.

Arnaud et al. [2] proposed a timed symbolic execution [5] and conformance
testing framework for executable models. Their approach checks correctness
of fUML ADs with respect to high-level system scenarios modeled as UML
MARTE14 sequence diagrams. The test data is generated from sequence dia-
grams by using symbolic execution and constraint solving techniques. The fUML
ADs are tested in the standardized fUML VM in Moka. Yu et al. [22] presented
a model simulation approach for UML ADs. It uses model-based concolic exe-
cution [12], which combines concrete and symbolic execution.

6.3 Code Generation from ADs

Gessenharter and Rauscher [9] presented a code generation approach for UML
class diagrams and UML ADs. For the structural part, their approach generates
Java code from class diagrams comprising classes, attributes, and associations.
For the behavioral part, additional code corresponding to UML activities and
actions is added into the Java classes. Their code generator is designed for ac-
tivities with at most one control node in an activity flow and does not provide
support for more realistic, complex flows. Backhauß [3] proposed a code gen-
eration approach that translates UML ADs for realtime avionic systems into
ANSI-C code. The approach works for control flow edges, but requires further
investigations for data flow edges.

In comparison to the aforementioned model verification, test generation, and
code generation approaches, the main focus of the proposed M2-AT approach is
not on formal verification of ADs. M2-AT provides a light-weight approach that
generates input data from fUML ADs containing Alf code and then uses the
generated data to exhaustively simulate the original fUML models with the aim
of improving their quality. The proposed approach also generates a test suite,
which can be used for testing the actual implementation of the system under
development. Moreover, it generates and uses topologically sorted CDFGs and
Java code as intermediate formalisms. The generated Java code can also be
reused for the actual implementation of the system.

7 Conclusion

The Foundational Subset for Executable UML Models (fUML) and the Action
language for fUML (Alf) allow to create executable models, which can be sim-
ulated using an fUML execution engine. However, to execute such models ex-
haustively, one must provide input data required to reach and cover all essential
elements not only in the graphical fUML models, but also in textual Alf code as-
sociated with the graphical models. In this paper, we presented an approach for

14 https://www.omg.org/omgmarte/

https://www.omg.org/omgmarte/

14 J. Iqbal et al.

exhaustive simulation and test generation from fUML ADs containing Alf code.
The proposed approach, called MATERA2-Alf Tester (M2-AT), translates fUML
ADs and associated Alf code into equivalent Java code and then automatically
generates: (1) input data needed to cover or execute all paths in the executable
fUML and Alf models and (2) a test suite comprising test cases with oracle
(expected output) for testing the actual implementation of the system under
development. The generated test cases in M2-AT satisfy 100% code coverage
of the Java code. The generated input data is used for executing the original
fUML and Alf models in the Moka simulation engine. The interactive execution
in Moka allows to measure model coverage of the executable models. In addition,
the generated Java code can be reused as a starting point for the actual imple-
mentation of the system. We also presented our tool chain and demonstrated
our proposed approach with the help of an example. Our proposed tool chain in-
tegrates M2-AT code generation and Alf script generation components with the
state-of-the-art model simulation and test generation tools allowing researchers
and practitioners to generate test suites and input data for exhaustive model
simulation at early stages of the software development life cycle.

Acknowledgments

This work has received funding from the Electronic Component Systems for
European Leadership Joint Undertaking under grant agreement number 737494.
This Joint Undertaking receives support from the European Unions Horizon 2020
research and innovation programme and Sweden, France, Spain, Italy, Finland,
the Czech Republic.

References

1. Amellal, S., Kaminska, B.: Scheduling of a control data flow graph. In: 1993 IEEE
International Symposium on Circuits and Systems. pp. 1666–1669 vol.3 (1993)

2. Arnaud, M., Bannour, B., Cuccuru, A., Gaston, C., Gerard, S., Lapitre, A.: Timed
symbolic testing framework for executable models using high-level scenarios. In:
Boulanger, F., Krob, D., Morel, G., Roussel, J.C. (eds.) Complex Systems Design
& Management. pp. 269–282. Springer International Publishing (2015)

3. Backhauß, S.: Code Generation for UML Activity Diagrams in Real-Time Systems.
Master’s thesis, Institute for Software Systems , Hamburg University of Technology
(2016)

4. Breton, E., Bézivin, J.: Towards an understanding of model executability. In: Pro-
ceedings of the International Conference on Formal Ontology in Information Sys-
tems - Volume 2001. pp. 70–80. FOIS ’01, ACM (2001)

5. Cadar, C., Godefroid, P., Khurshid, S., Păsăreanu, C.S., Sen, K., Tillmann, N.,
Visser, W.: Symbolic execution for software testing in practice: Preliminary as-
sessment. In: Proceedings of the 33rd International Conference on Software Engi-
neering. pp. 1066–1071. ICSE ’11, ACM (2011)

6. Daw, Z., Cleaveland, R.: Comparing model checkers for timed UML activity dia-
grams. Science of Computer Programming 111, 277 – 299 (2015), special Issue on
Automated Verification of Critical Systems (AVoCS 2013)

Exhaustive Simulation and Test Generation Using fUML Activity Diagrams 15

7. Fraser, G., Arcuri, A.: EvoSuite: Automatic test suite generation for object-
oriented software. In: Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering. pp. 416–
419. ESEC/FSE ’11, ACM (2011)

8. Gay, G.: Generating effective test suites by combining coverage criteria. In: Search
Based Software Engineering. pp. 65–82 (2017)

9. Gessenharter, D., Rauscher, M.: Code generation for UML 2 activity diagrams. In:
France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) European Conference
on Modelling Foundations and Applications (ECMFA). Lecture Notes in Computer
Science, vol. 6698, pp. 205–220. Springer Berlin Heidelberg (2011)

10. Harrison, W., Barton, C., Raghavachari, M.: Mapping UML designs to Java. SIG-
PLAN Not. 35(10), 178–187 (2000)

11. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562
(Nov 1962). https://doi.org/10.1145/368996.369025

12. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proceedings of the 29th Inter-
national Conference on Software Engineering. pp. 416–426 (2007)

13. Mellor, S.J., Balcer, M.: Executable UML. A Foundation for Model-Driven Archi-
tecture. Addison-Wesleyy (2002)

14. Micskei, Z., Konnerth, R.A., Horváth, B., Semeráth, O., Vörös, A., Varró, D.: On
open source tools for behavioral modeling and analysis with fUML and Alf. In:
Bordelau, F., Dingel, J., Gerard, S., Voss, S. (eds.) 1st Workshop on Open Source
Software for Model Driven Engineering (2014)

15. Mijatov, S., Mayerhofer, T., Langer, P., Kappel, G.: Testing functional require-
ments in UML activity diagrams. In: Blanchette, J.C., Kosmatov, N. (eds.) Tests
and Proofs. pp. 173–190. Springer International Publishing, Cham (2015)

16. Planas, E., Cabot, J., Gómez, C.: Lightweight and static verification of UML exe-
cutable models. Computer Languages, Systems & Structures 46, 66 – 90 (2016)

17. Rojas, J.M., Vivanti, M., Arcuri, A., Fraser, G.: A detailed investigation of the
effectiveness of whole test suite generation. Empirical Software Engineering 22(2),
852–893 (Apr 2017). https://doi.org/10.1007/s10664-015-9424-2

18. Samuel, P., Mall, R.: Slicing-based test case generation from UML activity dia-
grams. ACM SIGSOFT Software Engineering Notes 34(6), 1–14 (2009)

19. Selic, B.: The Less Well Known UML, pp. 1–20. Springer Berlin Heidelberg (2012)
20. Störrle, H.: Semantics and verification of data flow in UML 2.0 activities. Electronic

Notes in Theoretical Computer Science 127(4), 35–52 (2005)
21. Tatibouet, J., Cuccuru, A., Gérard, S., Terrier, F.: Principles for the realization of

an open simulation framework based on fUML (WIP). In: Proceedings of the Sym-
posium on Theory of Modeling & Simulation - DEVS Integrative M&S Symposium.
pp. 4:1–4:6. DEVS 13 (2013)

22. Yu, L., Tang, X., Wang, L., Li, X.: Simulating software behavior based on UML ac-
tivity diagram. In: Proceedings of the 5th Asia-Pacific Symposium on Internetware.
pp. 31:1–31:4. Internetware ’13, ACM (2013)

https://doi.org/10.1145/368996.369025
https://doi.org/10.1007/s10664-015-9424-2

	Exhaustive Simulation and Test Generation Using fUML Activity Diagrams

