Skip to main content

Dimensions Affecting Representation Styles in Ontologies

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1029))

Abstract

There are different ways to formalise roughly the same knowledge, which negatively affects ontology reuse and alignment and other tasks such as formalising competency questions automatically. We aim to shed light on, and make more precise, the intuitive notion of such ‘representation styles’ through characterising their inherent features and the dimensions by which a style may differ. This has led to a total of 28 different traits that are partitioned over 10 dimensions. The operationalisability was assessed through an evaluation of 30 ontologies on those dimensions and applicable values. It showed that it is feasible to use the dimensions and values and resulting in three easily recognisable types of ontologies. Most ontologies had clearly one or the other trait, whereas some were inherently mixed due to inclusion of different and conflicting design decisions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A cut-off at 3 layers is subjective, based mainly on the experience that a 2–3 layer mini-hierarchy is easy to declare, whereas 4 or more requires some thought to put it right, and conceptual models typically do not have more than 2–3 layers, if there is a hierarchy at all.

  2. 2.

    http://protegeproject.github.io/protege/views/ontology-metrics/.

  3. 3.

    There are arguments from Ontology for option 1 and 2 vs option 3, but the intended choice here the corresponding commitment built into the language.

  4. 4.

    The intended choice here is also the commitment built into the language, not theory (option 3) versus applied (options 1 and 2).

  5. 5.

    http://www.meteck.org/files/StyleDimensionsData.xlsx.

  6. 6.

    https://bioportal.bioontology.org/visits.

  7. 7.

    https://www.w3.org/TR/owl-ref/#EnumeratedDatatype as owl:OneOf and in OWL 2 as DataOneOf (https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Enumeration_of_Literals).

  8. 8.

    http://www.acsu.buffalo.edu/~bittner3/Theories/BFO/.

References

  1. Common Logic (CL): A framework for a family of logic-based languages (2007). https://www.iso.org/standard/39175.html

  2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logics Handbook: Theory and Applications, 2nd edn. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  3. Fernandez-Izquierdo, A.: Ontology testing based on requirements formalization in collaborative development environments. In: Aroyo, L., Gandon, F. (eds.) Doctoral Consortium at ISWC (ISWC-DC 2017). CEUR-WS, vol. 1962, vienna, Austria, 22 October 2017 (2017)

    Google Scholar 

  4. Fillottrani, P.R., Keet, C.M.: Patterns for heterogeneous TBox mappings to bridge different modelling decisions. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 371–386. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_23

    Chapter  Google Scholar 

  5. Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 221–243. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_10

    Chapter  Google Scholar 

  6. Grüninger, M., Hahmann, T., Hashemi, A., Ong, D., Ozgovde, A.: Modular first-order ontologies via repositories. Appl. Ontol. 7(2), 169–209 (2012)

    Google Scholar 

  7. Hoehndorf, R., Oellrich, A., Dumontier, M., Kelso, J., Rebholz-Schuhmann, D., Herre, H.: Relations as patterns: bridging the gap between OBO and OWL. BMC Bioinform. 11(1), 441 (2010)

    Article  Google Scholar 

  8. Keet, C.M., Ławrynowicz, A.: Test-driven development of ontologies. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 642–657. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_39

    Chapter  Google Scholar 

  9. Keet, C.M., et al.: The data mining optimization ontology. Web Semant. Sci. Serv. Agents World Wide Web 32, 43–53 (2015)

    Article  Google Scholar 

  10. Lawrynowicz, A., Potoniec, J., Robaczyk, M., Tudorache, T.: Discovery of emerging design patterns in ontologies using tree mining. Semant. Web J. (2018, in press)

    Google Scholar 

  11. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology library. WonderWeb Deliverable D18 (ver. 1.0, 31-12-2003) (2003). http://wonderweb.semanticweb.org

  12. Mikroyannidi, E., Iannone, L., Stevens, R., Rector, A.: Inspecting regularities in ontology design using clustering. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 438–453. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_28

    Chapter  Google Scholar 

  13. Mikroyannidi, E., Stevens, R., Rector, A.: Identifying ontology design styles with metrics. In: 7th International Workshop on Semantic Web Enabled Software Engineering (SWESE) (2011)

    Google Scholar 

  14. Miles, A., Bechhofer, S.: SKOS simple knowledge organization system reference. W3C recommendation, World Wide Web Consortium (W3C), 18 August 2009. http://www.w3.org/TR/skos-reference/

  15. Niles, I., Pease, A.: Towards a standard upper ontology. In: Welty, C., Smith, B. (eds.) Proceedings of the 2nd International Conference on Formal Ontology in Information Systems, FOIS 2001, Ogunquit, Maine, 17–19 October 2001 (2001)

    Google Scholar 

  16. Noy, N., Rector, A.: Defining nary relations on the semantic web. W3C Working Group Note, 12 April 2006. https://www.w3.org/TR/swbp-n-aryRelations/

  17. Pinggera, J., et al.: Styles in business process modeling: an exploration and a model. Softw. Syst. Model. 14(3), 1055–1080 (2015)

    Article  Google Scholar 

  18. Reynolds, D.: The organization ontology, January 2014. https://www.w3.org/TR/vocab-org/

  19. Roussey, C., Corcho, O., Vilches-Blázquez, L.: A catalogue of OWL ontology antipatterns. In: Proceedings of K-CAP 2009, pp. 205–206 (2009)

    Google Scholar 

  20. Stevens, R., Goble, C.A., Bechhofer, S.: Ontology-based knowledge representation for bioinformatics. Brief. Bioinform. 1(4), 398–414 (2000)

    Article  Google Scholar 

  21. Uschold, M., Healy, M., Williamson, K., Clark, P., Woods, S.: Ontology reuse and application. In: Guarino, N. (ed.) Proceedings of the International Conference on Formal Ontology and Information Systems (FOIS 1998). IOS Press, FAIA (1998)

    Google Scholar 

  22. Walk, S., Singer, P., Strohmaier, M., Tudorache, T., Musen, M.A., Noy, N.F.: Discovering beaten paths in collaborative ontology-engineering projects using Markov chains. J. Biomed. Inform. 51, 254–271 (2014)

    Article  Google Scholar 

  23. Wisniewski, D., Potoniec, J., Lawrynowicz, A., Keet, C.M.: Competency questions and SPARQL-OWL queries dataset and analysis. Technical report 1811.09529, November 2018. https://arxiv.org/abs/1811.09529

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Maria Keet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fillottrani, P.R., Keet, C.M. (2019). Dimensions Affecting Representation Styles in Ontologies. In: Villazón-Terrazas, B., Hidalgo-Delgado, Y. (eds) Knowledge Graphs and Semantic Web. KGSWC 2019. Communications in Computer and Information Science, vol 1029. Springer, Cham. https://doi.org/10.1007/978-3-030-21395-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21395-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21394-7

  • Online ISBN: 978-3-030-21395-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics