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Abstract. Formal Concept Analysis and its associated conceptual struc-
tures have been used to support exploratory search through conceptual
navigation. Relational Concept Analysis (RCA) is an extension of For-
mal Concept Analysis to process relational datasets. RCA and its mul-
tiple interconnected structures represent good candidates to support ex-
ploratory search in relational datasets, as they are enabling navigation
within a structure as well as between the connected structures. However,
building the entire structures does not present an efficient solution to
explore a small localised area of the dataset, for instance to retrieve the
closest alternatives to a given query. In these cases, generating only a
concept and its neighbour concepts at each navigation step appears as
a less costly alternative. In this paper, we propose an algorithm to com-
pute a concept and its neighbourhood in extended concept lattices. The
concepts are generated directly from the relational context family, and
possess both formal and relational attributes. The algorithm takes into
account two RCA scaling operators. We illustrate it on an example.

Keywords: Relational Concept Analysis, Formal Concept Analysis, On-
demand Generation

1 Introduction

Many datasets in thematic areas like environment or product lines comprise
databases complying with a relational data model. Typical applications in which
we are currently involved concern issues relative to watercourse quality4 (Fresqu-
eau project), the inventory and use of pesticidal, antibacterial and antifungal
plants5 (Knomana project), and the analysis and representation of product lines
[4]. In these applications, there is a wide range of question forms, such as classical
querying, establishing correlations between descriptions of objects from several
categories or case based reasoning. These questions can be addressed by comple-
mentary approaches including conceptual classification building, knowledge pat-
tern and rule extraction, or exploratory search [17,20]. In the Knomana project,
4 http://engees-fresqueau.unistra.fr/presentation.php?lang=en
5 http://www.cirad.fr/en/news/all-news-items/articles/2017/science/identifying-
plants-used-as-natural-pesticides-in-africa-knomana
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for example, one main purpose will be, after the ongoing inventory, to support
farmers, their advisors, local entrepreneurs or researchers in selecting plants of
immediate interest for agricultural crop protection and animal health. As such
users will face large amounts of data, and mainly will formulate general, poten-
tially imprecise, and potentially inaccurate queries without prior knowledge of
the data, exploratory search will be a suitable approach in this context.

Previous work [14,5,7,11,8] has shown that Formal Concept Analysis may
be a relevant support for data exploration and we expect Relational Concept
Analysis (RCA) to be beneficial as well. Considering RCA for relational dataset
exploration brings issues relative to the use of the scaling (logical) operators,
the iterative process and the presence of several concept lattices connected via
relational attributes. Despite this additional complexity, RCA helps the user to
concentrate on the classification of objects of several categories, where the object
groups (concepts) are described by intrinsic attributes and by their relations
to object groups of other categories. Besides, the relational attributes offer a
support to navigate between the object groups of the different categories, while
the concept lattices offer a (by-specialisation) navigation between object groups
of the same category.

There are several complementary strategies to explore datasets using RCA.
One may consist in exhaustively computing concept lattices (and related arte-
facts like implication rules) at several steps, using several logical operators and
considering only some of the object categories and some of the inter-categories
relationships. Another strategy, which is followed here, consists in an on-demand
computation of a concept and its neighbourhood comprising its upper, lower and
relational covers.

The next section presents the main principles of Relational Concept Analysis
(Section 2). The on-demand computation of a concept and its neighbourhood
is presented in Section 3. Section 4 illustrates the algorithm with the example
introduced in Section 2. Related work is exposed in Section 5. We conclude the
paper with a few perspectives in Section 6.

2 Relational Concept Analysis

Formal Concept Analysis (FCA) [12] allows to structure a set of objects described
by attributes in a canonical structure called a concept lattice. It is based on
a formal context K = (O,A, I), where O is the set of objects, A the set of
attributes, and I an incidence relation stating "which objects possess which
attributes". From this context, the application of FCA extracts a finite set CK

of formal concepts (X,Y ) such that X = {o ∈ O | ∀a ∈ Y, (o, a) ∈ I} is
the concept’s extent, and Y = {a ∈ A | ∀o ∈ X, (o, a) ∈ I} is the concept’s
intent. The concept lattice is obtained by ordering the concepts of CK by the
set-inclusion order on their extents. We call an object-concept (resp. attribute-
concept) the lowest (resp. the greatest) concept in the lattice possessing an object
(resp. an attribute).
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Relational Concept Analysis (RCA) [15,16] is an adaptation of FCA to pro-
cess relational datasets. A relational dataset is composed of several sorts of ob-
jects described by both their own attributes and their relationships with other
objects. As input, RCA takes a Relational Context Family (RCF), gathering a
set of formal contexts and a set of relational contexts defining links between the
objects of different formal contexts.

Definition 1 (Relational Context Family). A Relational Context Family is
a pair (K,R) such that:
- K = {Ki = (Oi,Ai, Ii)} is a set of formal contexts (object-attribute relations)
- R = {rk}, rk ⊆ Oi×Oj is a set of relational contexts (object-object relations),
with Oi and Oj being sets of objects (respectively of Ki and Kj). Ki is called
the source context and Kj the target context.

The three contexts of Table 1 present an example of RCF (Ks,Rs) taken from
the software product line domain. Table 1 (top) displays two formal contexts. The
one on the left-hand side presents 5 Data Modelling tools (DM_tools) against 7
attributes representing their compatible operating systems (OS:), and the data
models (DM:) the tools may manage. The table on the right-hand side describes
4 DataBase Management Systems (DBMS ) according to the data types (DT:)
they may handle. Table 1 (bottom) presents a relational context stating which
Data Modelling tools support which DataBase Management Systems.

Table 1. (top) Two formal contexts: (left-hand side) Data Modelling tools (DM_tools)
and (right-hand side) DataBase Management Systems (DBMS). (bottom) Relational
context stating which DM_tools support which DBMS

Ks =
DM_tools O

S:
W

in
do

w
s

O
S:

M
ac

O
S

O
S:

L
in

ux
D

M
:C

on
ce

pt
ua

l
D

M
:P

hy
si

ca
l

D
M

:L
og

ic
al

D
M

:E
T

L

Astah x x x x
Erwin DM x x x x
ER/Studio x x x x x
Magic Draw x x x x x x
MySQL Workbench x x x x

DBMS D
T

:E
nu

m
D

T
:S

et
D

T
:G

eo
m

et
ry

D
T

:S
pa

ti
al

D
T

:A
ud

io
D

T
:I
m

ag
e

D
T

:V
id

eo
D

T
:X

M
L

D
T

:J
SO

N
D

T
:P

er
io

d

MySQL x x x
Oracle x x x x x
PostgreSQL x x x x
Teradata x x x x x

Rs =

support MySQL Oracle PostgreSQL Teradata
Astah x x
Erwin DM x x x
ER/Studio x x x x
Magic Draw x x x
MySQL Workbench x

Applying RCA on the contexts ofK builds, in a first time, one concept lattice
per context (i.e., sort/category of objects), without taking links into account. The
two concept lattices associated with Table 1 (top) are presented in Fig. 1. In a
second time, RCA introduces links between objects of different lattices depending
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C_DM_tools_9

OS:Windows

C_DM_tools_6

OS:Mac
OS:Linux

C_DM_tools_4

Astah

C_DM_tools_8

DM:Conceptual

C_DM_tools_1

Magic Draw

C_DM_tools_3

MySQL Workbench

C_DM_tools_5

DM:Logical

Erwin DM

C_DM_tools_7

DM:Physical

C_DM_tools_0

C_DM_tools_2

DM:ETL

ER/Studio

C_DBMS_7

C_DBMS_6

DT:Enum
DT:Geometry

C_DBMS_3

DT:Set

MySQL

C_DBMS_0

C_DBMS_2

DT:Spatial
DT:Audio
DT:Image
DT:Video

Oracle

C_DBMS_1

DT:Period

Teradata

C_DBMS_5

DT:XML

C_DBMS_4

DT:Json

PostgreSQL

Fig. 1. (left) concept lattice of DM_tools, (right) concept lattice of DBMS

on the relations expressed inR. These links take the form of relational attributes;
they introduce the abstractions (i.e., concepts) from the target context into the
source context through a specific relation and a specific scaling operator. In our
example, we may introduce the relational attribute ∃ support.(C_DBMS_4)
to characterise the DM_tools that support at least one DBMS offering Json and
XML. More generally, given two formal contexts Ki,Kj ∈ K and a relational
context r ⊆ Oi × Oj , the application of RCA extends the set of attributes Ai

with a set of relational attributes representing links to the concepts of Kj . The
extended attribute set is denoted A+

i . Then, the incidence relation Ii is extended
to take into account these new attributes (denoted I+i ), by associating them to
each object of Oi depending on the relation r, the concept (denoted C) involved
in the relational attribute and a scaling operator ρ. A relational attribute is
thus of the form ”ρ r.(C)”. In this paper, we focus on two scaling operators:
the existential operator (denoted ∃), associating an object o to the relational
attribute ∃r.(C) if o is linked to at least one object of the extent of C by r; the
universal strict operator (denoted ∃∀), associating an object o to ∃∀r.(C) if all
the objects linked to o by r are included in the extent of C, and r(o) 6= ∅.

The concept lattice associated with a formal context K+ = (O,A+, I+) then
structures the objects fromO both by their attributes and their relations to other
sets of objects through the relational attributes. Fig. 2 presents the extended con-
cept lattice corresponding to the extended formal context DM_tools+, according
to the relation support and the existential scaling operator.
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C_DM_tools_9

OS:Windows
exists support(C_DBMS_7)
exists support(C_DBMS_6)
exists support(C_DBMS_3)

C_DM_tools_6

OS:Mac
OS:Linux

C_DM_tools_4

Astah

C_DM_tools_8

DM:Conceptual
exists support(C_DBMS_2)
exists support(C_DBMS_5)

C_DM_tools_1

Magic Draw

C_DM_tools_3

MySQL Workbench

C_DM_tools_5

DM:Logical
exists support(C_DBMS_4)

C_DM_tools_7

DM:Physical

C_DM_tools_0

exists support(C_DBMS_0)

C_DM_tools_2

DM:ETL

ER/Studio

C_DM_tools_10

exists support(C_DBMS_1)

Erwin DM

Fig. 2. Concept lattice of the extended context DM_tools+

In this way, for complex data models including more than one relation, RCA
produces a succession of concept lattices, extended at each step by the new
abstractions obtained at the previous step. At step 0, the concept lattices in the
set L0 are the ones built from the initial formal contexts from K. At step n, the
formal contexts in the set Kn are extended depending on the concepts of the
concept lattices in Ln−1 and the relations expressed in R.

3 The Exploration Algorithm

In this section, we present an algorithm for taking a step in an exploration.
It considers an RCF potentially extended at previous steps, a starting concept
C from a context Ki of the RCF and an exploration strategy which consists in
choosing a set of relations of the RCF (with Ki as a source) provided with scaling
operators. The objective of one step is to complete the intent corresponding
to the extent of C, as well as compute its upper, lower and relational covers.
Meanwhile, the RCF is updated with the relational attributes for a next step.

Redefining Derivation Operators The explicit knowledge of all the relational at-
tributes of a context requires the computation of all the concepts of the target
contexts. However, we cannot afford what amounts to the exhaustive compu-
tation of the relational concepts of multiple contexts. We would prefer to ma-
nipulate only a minimal number of relational attributes allowing us to derive,
on-the-fly, the other relational attributes.
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Any object described by an attribute ρ r.(X,Y ) (instead of ρ r.((X,Y ))
by abuse of notation) is also necessarily described by all the attributes of the
form ρ r.(X2, Y2) where Y2 ⊆ Y . As such, intents can be represented without
loss of information by their relational attributes constructed from attributes-
wise maximal concepts. However, a problem arises with such a representation:
the set intersection cannot be used to compute the intent of a set of objects
anymore. Similarly, if only maximal relational attributes are explicitly present
in the context, the extent of a set of attributes cannot be computed through
a simple test of set inclusion. To remedy this, we provide three algorithms to
use on sets of attributes (both intrinsic and relational) with only the maximal
relational attributes given explicitly.

Intersect takes as input two sets of attributes A and B represented by their
maximal relational attributes. It outputs the set of maximal relational attributes
of their intersection. A relational attribute ∃r.(X,Y ) is in the intersection of A
and B if and only if there exists two attributes ∃r.(X2, Y2) ∈ A and ∃r.(X3, Y3) ∈
B such that X ⊆ X2 and X ⊆ X3. The same holds for the ∃∀ scaling operator.
As such, intersecting the intents of the concepts in the attributes of A and B
and keeping the maximal ones results in the maximal relational attributes. It
uses Ex (Algorithm 3).

Algorithm 1: Intersect(Ki, A,B)

Input: Ki = (Oi,Ai, Ii) a formal context, A ⊆ Ai an attribute set, B ⊆ Ai the
intent of an object o

Output: The relational intersection of the attribute set A and the intent of o
1 A2 ← A ∩B
2 F ← ∅
3 foreach a1 ∼ ∃r.(X1, Y1) ∈ B with r ⊆ Oi ×Oj and Kj = (Oj ,Aj , Ij) do
4 foreach a2 ∼ ∃r.(X2, Y2) ∈ A do
5 F ← F ∪ {∃r.(Ex(Kj ,Intersect(Kj , Y1, Y2)),Intersect(Kj , Y1, Y2))}

6 A2 ← A2∪Max(F ,⊆Ai)
7 F ← ∅
8 foreach a1 ∼ ∃∀r.(X1, Y1) ∈ B with r ⊆ Oi ×Oj and Kj = (Oj ,Aj , Ij) do
9 foreach a2 ∼ ∃∀r.(X2, Y2) ∈ A do

10 F ← F ∪ {∃∀r.(Ex(Kj ,Intersect(Kj , Y1, Y2)),Intersect(Kj , Y1, Y2))}

11 A2 ← A2 ∪ F
12 return A2

In uses Intersect to compute the intent of a set of objects described by
their maximal relational attributes. It starts with the set of all explicitly known
attributes and intersects it with the description of each object in the context Ki.

Ex computes the extent of a set of maximal relational attributes A. For each
object o and attribute ρ r.(X,Y ) ∈ A, it checks whether r(o) and X intersect in
the correct way (depending on the scaling operator).
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Algorithm 2: In(Ki, O)

Input: Ki = (Oi,Ai, Ii) a formal context, O ⊆ Oi a set of objects
Output: Computes the intent of a set of objects O

1 A← Ai

2 foreach o ∈ O do
3 A←Intersect(A, Intent({o}))
4 return A

Algorithm 3: Ex(Ki, A)

Input: Ki = (Oi,Ai, Ii) a formal context, A ⊆ Ai a set of attributes
Output: Computes the extent of a set of attributes A

1 O ← Oi

2 foreach a ∈ A do
3 if a ∼ ∃∀r.(X,Y ) then
4 foreach o ∈ O do
5 if r(o) 6⊆ X then
6 O ← O \ o

7 else if a ∼ ∃r.(X,Y ) then
8 foreach o ∈ O do
9 if r(o) ∩X = ∅ then

10 O ← O \ o

11 else
12 foreach o ∈ O do
13 if (o, a) 6∈ Ii then
14 O ← O \ o

15 return O

Computing the Closed Neighbourhood Now that we have redefined the derivation
operators on implicitly known relational contexts, we are able to compute the
upper, lower and relational covers of a concept.

The easiest are the relational covers. A concept (X,Y ) is a relational cover
of a concept (U, V ) if and only if ρ r.(X,Y ) is a maximal relational attribute
in V . Upper covers are easy too. Candidates can be generated by adding an
object – the set of which we have perfect knowledge of – to the current extent
and computing the corresponding concept. The covers are the candidates that
have the smallest extent. Computing the lower covers is more challenging. They
could be computed by adding attributes to the intent but the full set of relational
attributes is only known implicitly. We chose to, instead, remove objects. The
lower covers of (X,Y ) being the concepts with the maximal extents that are
contained in X and do not contain any of the minimal generators of X, a simple
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way to compute them would be to remove minimal transversals of the minimal
generators.

Algorithm 4 computes the closed neighbourhood of a concept C. It takes
as input a set of formal contexts K = (K1, . . . ,Kw) of a RCF, a strategy S =
{(r, ρ)lj , . . . }, l, j ∈ {1, . . . , w} and a starting concept C from a context Ki. The
goal is to compute (or complete) the intent corresponding to the extent of C, as
well as its upper, lower and relational covers, in the extended context K+

i .
For each (r, ρ)ij ∈ S such that r : Ki 7→ Kj , the first loop (Lines 1 to 4):

computes OCj the object-concepts of Kj ; then, each object-concept (X,Y ) ∈
OCj , relation r and scaling operator ρ give rise to a new relational attribute
ρ r.(X,Y ) that is added to the context Ki with GrowContext.

In Line 5, the intent of concept C is extended with the relational attributes
added during the previous loop. The next loop (Lines 6 to 8) computes the
relational covers R of concept C. For each relational attribute in the intent of
C, the corresponding concept (in the target context) is added to the cover.

In Lines 9 to 11, the lower covers L of C are computed by removing from the
extent of C a minimal transversal of the set of minimal generators of C’s extent.

Finally, the upper covers U of C are computed in Lines 12 to 14. Candidates
are created by adding an object o to the extent of C. Only the extent-wise
minimal resulting concepts are kept.

Algorithm 4: RCA(K,S, C,Ki)

Input: K = {K1, . . . ,Kw}, S = {(r, ρ)lj , . . . }, l, j ∈ {1, . . . , w} a strategy,
C = (O,A) a concept of Ki = (Oi,Ai, Ii)

Output: C,U ,R,L the completed concept C and its closed relational
neighbourhood

1 foreach (r, ρ)ij ∈ S do
2 OCj ←ObjectPoset(Kj)
3 foreach o ∈ Oi do
4 GrowContext(Ki, r, ρ, o, OCj)

5 A←In(Ki, O)
6 R← ∅
7 foreach a ∼ ρr.(X1, Y1) ∈ A do
8 R ← R∪ {(X1, Y1)}
9 L ← ∅

10 foreach T ∈ minTrans(minGen(O)) do
11 L ← L ∪ {(O \ T,In(Ki, O \ T ))}
12 U ← ∅
13 foreach o ∈ Oi \O do
14 U ← U ∪ {(Ex(Ki,In(Ki, O ∪ {o})), In(Ki, O ∪ {o}))}
15 U ←Min(U ,⊆Oi)
16 return C,U ,R,L
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Algorithm 5: GrowContext(Ki, r, q, o, OCj)

Input: Ki = (Oi,Ai, Ii) a formal context, r ⊆ Oi ×Oj a relational context, ρ a
scaling operator, o ∈ Oi an object, OCj the set of object-concepts of
Kj = (Oj ,Aj , Ij)

Output: Extends the context Ki and adds the crosses
1 if ρ == ∃ then
2 foreach (X,Y ) ∈ OCj such that ∃obj ∈ r(o), obj ∈ X do
3 Ai ← Ai ∪ ∃r.(X,Y )
4 Ii ← Ii ∪ (o, ∃r.(X,Y ))

5 if ρ == ∃∀ then
6 X ←In(Kj , r(o))
7 Ai ← Ai ∪ ∃∀r.(Ex(Ki, X), X)
8 Ii ← Ii ∪ (o, ∃∀r.(Ex(Ki, X), X))

4 Example

In this section, we illustrate the defined algorithms. We consider the RCF (Ks,Rs)
withKs = {DM_tools,DBMS} andRs = {support} as presented in Section 2.
We decide to apply the strategy {(support,∃)}.

Let us imagine that a user wants to select a data modelling tool that runs on
Windows (OS:Windows) and that handles logical and conceptual data models
(DM:Logical and DM:Conceptual). Traditional FCA may compute the formal
concept associated with these 3 attributes (i.e., C_DM_tools_5, left-hand side
of Fig. 1), and inform the user that 1) the corresponding tools are Erwin DM,
Magic Draw and ER/Studio, and that 2) all these tools also handle DM:Physical.

Let us apply our algorithms on this concept to 1) retrieve the supported
DBMS (relational cover) and 2) find the closest alternatives to the query (lower
and upper covers): RCA(Ks, {(support,∃)}, C_DM_tools_5, DM_tools).

Lines 1 to 4 extend the context of DM_tools with the relational attributes
representing the object-concepts of DBMS (support ’s target context). In our
case, we have only one relation (support, ∃) visited at Line 1. In Line 2, OCj

takes the object-concepts of DBMS , i.e., concepts 1, 2, 3 and 4 from the right-
hand side of Fig. 1. Then, the loop on Lines 3 and 4 considers the 5 objects of
DM_tools, on which GrowContext is called. Each object oi of DM_tools is
associated to the relational attributes representing the concepts of OCj having
in their extents at least one object linked with oj .

As support(Astah) = {MySQL,Oracle}, ∃support(C_DBMS_3) (MySQL
object-concept) and ∃support(C_DBMS_2) (Oracle object-concept) are added
to DM_tools and associated to Astah. At the end of Line 4, we obtain the
extended context presented in Table 2.

Line 5 updates the intent of the input concept to take into account the re-
lational attributes: {OS:Windows, DM:Conceptual, DM:Physical, DM:Logical,
∃sup.(C_DBMS_2), ∃sup.(C_DBMS_3), ∃sup.(C_DBMS_4)}). The con-
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Table 2. Formal context DM_tools extended according to the relation support
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Astah x x x x x x
Erwin DM x x x x x x x x
ER/Studio x x x x x x x x x
Magic Draw x x x x x x x x x
MySQL Workbench x x x x x

cepts of DBMS corresponding to the relational attributes of C (C_DBMS_2
to 4) form the relational cover of the input concept (lines 6 to 8).

Then, (Lines 9 to 11) we compute the minimal generators of the extent of
C, which are {Erwin DM, Magic Draw} and {ER/Studio, Magic Draw}. Their
minimal transversals are {Magic Draw} and {Erwin DM, ER/Studio}. The two
concepts having {Magic Draw} and {Erwin DM,ER/Studio} for extent represent
the lower cover (respectively C_DM_tools_1 and C_DM_tools_2 in Fig. 2).

Finally, in Lines 12 to 14, we consider the objects of DM_tools that are not in
C’s extent, i.e., MySQL Workbench and Astah. For each one of them, we compute
the concept corresponding to their union with C’s extent, and we obtain the two
concepts C_DM_tools_7 and 8 of Fig. 2. They represent the upper cover of C.

5 Related Work

Lattice structures are among the first structures used as a support for exploratory
search [14], and this task has later attracted a lot of attention in Formal Concept
Analysis theory [6]. Many works focus on conceptual neighbourhood to present
both information related to a query and its closest variants [13,7,1]. In this paper,
we consider RCA to retrieve the conceptual neighbourhood in interconnected
lattices, structuring both intrinsic and relational attributes.

The exponential growth of concept lattices is well-known [12]. As a conse-
quence, the main limitation of FCA-based exploratory search lies in the complex-
ity and computation of the structures [5]. Many solutions have been proposed to
reduce the complexity of conceptual navigation. Some authors propose to prune
the concept lattice to restrict the explorable dataspace, by computing iceberg
concept lattices [21], or by applying constraints to bound the final structure
[5]. To ease the navigation, the authors of [18] seek to extract more simplified
browsable structures; they first extract a tree from the concept lattice, and then
reduce the obtained tree using clustering and fault-tolerance methods. The tool
SearchSleuth [7] enables FCA-based exploratory search for web queries, a field
where the domain cannot be entirely processed using FCA and concept lattices.
To tackle this issue, they generate a new formal context specific to a query at
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each navigation step. In a previous work [2], we proposed to compute the concep-
tual neighbourhood of a query in a sub-order of the concept lattice restricted to
the attribute- and object-concepts (attribute-object-concept poset), a condensed
alternative to concept lattices. At each step, only the conceptual neighbourhood
is computed. In the present work, we also generate the conceptual neighbourhood
on-the-fly, but this time in interconnected concept lattices.

Mimouni et al. [19] use RCA to structure, query and browse a collection of
legal documents. First, they build interconnected lattices representing different
types of legal documents referring to each other. Then, their approach allows for
the retrieval of the concept corresponding to a user query, and to explore varia-
tions of this query by navigation in the neighbour concepts. In their approach,
they compute all the lattices during the first step.

Ferré and Hermann [9] propose Query-based Faceted Search and an imple-
mentation in the tool SEWELIS, that allows to browse relational datasets in the
form of RDF files. Also, Ferré et al. [10] propose RLCA, a relational extension of
Logical Formal Analysis, an adaptation of FCA to describe objects by formulas
of ad-hoc logics instead of binary attributes. While RCA computes connected
yet separate concept lattices, one per sort of objects, RLCA gathers the objects,
their descriptions and their relations to other objects in one structure.

6 Conclusion

In this paper, we proposed algorithms to compute the conceptual neighbour-
hood of a query in connected concept lattices generated with RCA. First, we
redefined the traditional FCA derivation operators to take into account rela-
tional attributes. Then, we presented a way to compute the relational, upper
and lower covers of a given concept in extended lattices, without computing all
the structures. Two RCA scaling operators, i.e., existential and universal strict,
may be used. We illustrated how the algorithms work on a running example from
the domain of software product line engineering.

In the future, we plan to study the properties of the algorithm and to imple-
ment it to perform exploratory search in relational datasets. A scalability study
on real datasets from the projects Fresqueau and Knomana and from available
product descriptions [3] is then envisioned. To this end, we will generate random
queries and exploration paths. We also are collecting concrete questions from
the Knomana project partners for having real exploration tasks in their domain
and qualitatively evaluate the benefits of the approach.
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