
Data-driven choreographies à la Klaim ?

Roberto Bruni1, Andrea Corradini1, Fabio Gadducci1, Hernán Melgratti2,
Ugo Montanari1, and Emilio Tuosto3

1 University of Pisa, Italy
2 Universidad de Buenos Aires & Conicet, Argentina

3 Gran Sasso Science Institute, Italy & University of Leicester, UK

Abstract. We propose Klaim as a suitable base for a novel choreo-
graphic framework. More precisely we advocate Klaim as a suitable lan-
guage onto which to project data-driven global specifications based on
distributed tuple spaces. These specifications, akin behavioural types,
describe the coordination from a global point of view. Differently from
behavioural types though, our specifications express the data flow across
distributed tuple spaces rather than detailing the communication pat-
tern of processes. We devise a typing system to validate Klaim programs
against projections of our global specifications. An interesting feature of
our typing approach is that well-typed systems have an arbitrary number
of participants. In standard approaches based on behavioural types, this
is often achieved at the cost of considerable technical complications.

1 Introduction

Communication-centered programming is playing a prominent role in the pro-
duction of nowadays software. Programming peers that need to exchange in-
formation is an error-prone activity and the behaviour of even small systems
is subject to a combinatorial blow-up as the number of peers increases. There-
fore well-structured principles and rigorous foundations are needed to develop
well-engineered, trustworthy software. One possibility is to exploit some sort
of behavioural types [15,8] to manage abstract descriptions of peers and for-
mally study their properties such as communication safety, absence of deadlocks,
progress or session fidelity: given the types of the peers, the emerging behaviour
of their composition is analysed. In the seminal paper [14], recently nominated
the most influential POPL paper (Award 2018), the authors push forward an
abstract notion of global type of interaction that represents a sort of contract
between the communicating peers. This is paired with the notion of local type
that gives an abstract description of the behaviour of each peer, as taken in
isolation. Interestingly, local types can be obtained “for free” by projection from

?
Research partly supported by the EU H2020 RISE programme under the Marie Sk lodowska-Curie
grant agreement No 778233, by UBACyT projects 20020170100544BA and 20020170100086BA,
and CONICET project PIP 11220130100148CO, by the EU COST Action IC1405, by the MIUR
PRINs 201784YSZ5 ASPRA: Analysis of program analyses and 2017FTXR7S IT-MaTTerS:
Methods and tools for trustworthy smart systems, and by University of Pisa PRA 2018 66 DE-
CLWARE: Metodologie dichiarative per la progettazione e il deployment di applicazioni.

2 R. Bruni, A. Corradini, F. Gadducci, H. Melgratti, U. Montanari, E. Tuosto

global types, while the properties of interest can be studied and guaranteed just
at the level of global types, without the need of studying the composition of local
types. The conformance of peers implementation w.r.t. the global type can be
studied instead at the level of local types, allowing a more efficient form of type
checking. Roughly this means that properties are stated globally but checked lo-
cally. Global types have been inspired by session types [13] and by choreography
languages in service oriented computing (WS-CDL4), where complex interac-
tions are modelled from the point of view of the global sequence of events that
must take place in order to successfully complete the computation.

In the literature, global/local types have been studied mostly in the context of
point-to-point channel-based interactions. This means that the main action in a
choreography is the sending of a message from one peer to another on a specific
channel (of a given type). In this paper we explore a different setting, where
interaction over tuple-spaces replaces message passing, in the style of Linda-like
languages [10]. Instead of primitives for sending and receiving messages, here
there are primitives for inserting a tuple on a tuple space, for reading (without
consuming) a tuple from a tuple space or for retrieving a tuple from a tuple space.
We call these interactions data-driven, as decisions will be taken on the basis of
the type of the tuples that are manipulated. We coined the term klaimographies
in honour of the process language Klaim [6,1], a main contribution of Rocco De
Nicola in the fields of process algebras and distributed programming. Inspired by
Klaim, klaimographies exploit the notion of distributed tuple spaces to separate
the access to data on the basis of the interactions that are carried out.

A marketplace scenario We illustrate this with a motivating example that we
will formalise later on (cf. Example 5 on page 8). We consider a scenario where
sellers and buyers use a marketplace provided by a broker. Sellers can put on sale
(several) items and buyers can inspect them. When an item of interest is found,
the client can start a negotiation with the seller. The intended behaviour of this
choreography is informally represented by the BPMN diagram5 in Fig. 1. The
diagram does not specify the protocol in a precise way. In our scenario there is a
single broker but an arbitrary number of sellers or buyers. This is not reflected
in the diagram because the BMPN pools ‘Seller’ and ‘Buyer’ represent partici-
pants, not roles that maybe enacted by many participants. Taking into account
multiplicity of participants triggers interesting issues. For instance, the bargain-
ing subprocess should happen between two specific instances of participants: the
buyer interested in a particular item and the seller that advertised such item.
Moreover, the interactions among these specific instances must happen without
interference from other participants.

There are several distinguishing features of klaimographies w.r.t. the liter-
ature on global types that tackle the issues described above. First, klaimogra-
phies naturally support an arbitrary number of participants. This is uncommon
in standard behavioural types approaches where the number of participants in

4 http://www.w3.org/2002/ws/chor.
5 The diagram has been drawn with the BeePMN tool https://www.beepmn.com.

http://www.w3.org/2002/ws/chor.
https://www.beepmn.com

Data-driven choreographies à la Klaim 3

Fig. 1. A marketplace scenario

interactions is usually fixed a priori, even when the number of participants is a
parameter of the type, as done in [16] (see also Section 5). Second, interactions
of klaimographies are multiway because each tuple can be read many times.
Typically, session types specify point-to-point interactions where messages have
exactly one producer and one consumer: see for instance [4] and the discussions
on multiway interactions therein. Third, all interactions involve a tuple space
locality instead of a channel name. Fourth, klaimographies are data-driven in
the sense that they aim to check properties of data-flow. An example of use of
klaimographies is to control the access to pieces of data in a tuple space.

The main contribution of this paper is to set up the formal setting of klaimo-
graphies and to prepare the ground for several interesting research directions: we
fix the syntax of global and local types and define the projection from global to
local types, as typical of choreographic frameworks. Global types are equipped
with a partial order semantics of events and local types with an ordinary oper-
ational semantics. Then, the conditions under which the behaviour of projected
local types is faithful to the semantics of global types are spelled out.

Shifting the focus from control to data in choreographic framework has sev-
eral implications. Firstly, the emphasis is no longer on properties related to
computational actors. For instance, klaimographies admit computations where
some processes may not terminate and are left waiting for some data. In stan-
dard choreographic frameworks those would be undesired behaviours to rule out
with suitable typing disciplines. Nonetheless, we claim that in some application
domains computations with deadlocked processes have to be considered non-
erroneous. For instance, in reactive systems based on event-notification frame-
works some “listener” components must be kept waiting for events to occur. Our
work paves the way to the formal study of properties of data, like consumption,
persistence and availability, in a choreographic setting.

4 R. Bruni, A. Corradini, F. Gadducci, H. Melgratti, U. Montanari, E. Tuosto

Another main innovation of klaimographies is that they allow one to easily
represent protocols where a role can be enacted by an arbitrary number of com-
ponents. We give an example of such protocol in Section 2.3. Remarkably, those
protocols can be specified in some existing choreographic frameworks [16,5], but
in a less abstract way that requires the explicit quantification on components.

Structure of the paper. After some preliminaries in Section 2.1, we define klaimo-
graphies as global types in Section 2.2 and give some examples in Section 2.3.
In Section 3.1 we define the semantics of global types and give the adequacy
conditions for projecting global types to local types. In Section 3.2 we define
the syntax and operational semantics of local types and show how to project
global types over local types in Section 3.3. The semantic correspondence be-
tween global types and local types is accounted for in Section 4. Some concluding
remarks together with the discussion of related and future work are in Section 5.

2 Klaimographies

Our type system hinges on the basic notions of Klaim that are based on tuples,
localities, and operations to generate and access tuple spaces. We recall that
Klaim features two kinds of access to tuples located on a tuple space dubbed
input and read access and often denoted as in t@ l and read t@ l in Klaim’s
literature. An input access in t@ l instantiates the variables in t corresponding to
the fields in the matching tuple at locality l and then removes such tuple from l,
while a read access read t@ l does not remove the tuple from l after instantiating
the variables in t. Section 2.1 introduces tuple types that basically abstract away
from values in Klaim’s tuples. Section 2.2 introduces global types meant to specify
Klaim systems from a global point of view that, using roles, abstracts away
from the actual instances of processes executing a protocol. Clearly, the form
of interactions featured in the global types are inspired by Klaim operations.6

Section 2.3 gives a taste of the expressiveness of our global types.

2.1 Tuple types

We consider a set of variables V ranged over by x and a set of localities Loc
ranged over by l (and use ` to range over Loc ∪V) and we let s range over basic
sorts which include int, bool, str and the sort loc of localities. The set T of
tuple (types) consists of the terms derived from the following grammar:

t ::= s
∣∣ ?

∣∣ x : s
∣∣ νx : s

∣∣ t · t

Tuple types are trees t · t where leaves are either a sort s, any type ?, a sorted
variable x : s, or a fresh sorted variables νx : s (the difference between x : s and
νx : s is clarified in Section 2.3). Note that νx : s are binders that define x ∈ V.

6 Klaim allows code mobility, which for the sake of simplicity is disregarded here. See
however the discussion in Section 5

Data-driven choreographies à la Klaim 5

Hence, we talk about free and defined (sorted) names occurring in tuples. The
functions fn() and dn() return sets of pairs x 7→ s assigning sort s to x ∈ V
and are given according to the definition below

dn(s) = ∅
dn(x : s) = ∅
dn(νx : s) = {x 7→ s}
dn(t1 · t2) = dn(t1) ∪ dn(t2)
dn(?) = ∅

fn(s) = ∅
fn(x : s) = {x 7→ s}
fn(νx : s) = ∅
fn(t1 · t2) = fn(t1) ∪ fn(t2)
fn(?) = ∅

We write x y to denote the projection of a set of pairs over its first component.

We say a tuple t is well-sorted if the following two conditions hold:

– xfn(t)y ∩ xdn(t)y = ∅, i.e., free and defined names are disjoint; and
– t = t1 · t2 implies t1 and t2 are well-sorted and their names are disjoint,

namely, xdn(t1)y ∩ xdn(t2)y = ∅ and xfn(t1)y ∩ xfn(t2)y = ∅.

Hereafter, we assume all tuples to be well-sorted. Note that fn(t) and dn(t) are
partial functions (from names to sorts) for well-sorted tuples.

A substitution of the free occurrences of a variable x in a (well-sorted) tuple
t by a variable y 6∈ dn(t), written t{y/x}, is defined by

(x : s){y/x} = y : s and (t1 · t2){y/x} = (t1{y/x}) · (t2{y/x})

while it is the identity on the remaining cases. Let σ = {y1/x1, . . . , yn/xn} such
that xi 6= xj for all i 6= j (i.e., σ is a partial endo-function on V). We now write
tσ for the simultaneous substitution of each xi by yi. We use Σ for the set of
all substitutions. We write σ1σ2 for the composition of partial functions with
disjoint domain, and σ1[σ2] for the update of σ1 with σ2.

Tuple types t and t′ such that dn(t) ∩ dn(t′) = ∅ can match by producing
a substitution; this is realised by the partial function ./: T × T → Σ below

t ./ t′ =

∅ if t = ? ∨ t′ = ? ∨ t, t′ ∈ {s, x : s}
σ if t = t1 · t2 ∧ t′ = t′1 · t′2 ∧ t1 ./ t

′
1 = σ1 ∧ t2σ1 ./ t

′
2σ1 = σ

{y/x} if (t = νy : s ∧ t′ = x : s) ∨ (t′ = νy : s ∧ t = x : s)

undef otherwise

We write t ./ t′ when t ./ t′ = σ for a substitution σ ∈ Σ.

We say that t generates when in one of its fields there is a νx : loc type.

2.2 Global types

We fix two disjoint sets U = {p, q, . . .} andM = {P,Q, . . .}, respectively of unit
roles and multiple roles, and define the set of roles R = U ∪ M, ranged over by
ρ. We conventionally write multiple roles with initial uppercase letters and unit
roles with initial lowercase letters.

6 R. Bruni, A. Corradini, F. Gadducci, H. Melgratti, U. Montanari, E. Tuosto

Roles have to be thought of as types inhabited by instances of processes
enacting the behaviour specified in a choreography. Unit roles are unit types
while multiple roles account for multiple instances of processes all performing
actions according to their role.

Let us first define the grammar for prefixes used in global types:

π ::= ρ ! (t) @ ` (autonomous) output∣∣ ρ ! t@ ` (autonomous) read-only output∣∣ ρ ? (t) @ ` (autonomous) input∣∣ ρ ? t@ ` (autonomous) read∣∣ ρ→ ρ′ : (t) @ ` consuming interaction∣∣ ρ→ ρ′ : t@ ` read-only interaction

We syntactically distinguish two kinds of prefixes. The prefixes generated by the
first four productions in the grammar of π above are the autonomous prefixes,
that is those prefixes that processes can execute directly on a tuple space without
coordinating with other processes. They are analogous to Klaim primitives for
Linda-like interactions. The prefixes generated by the remaining two productions
are the interaction prefixes, namely those involving a role generating a tuple
and one accessing it. They are analogous to the usual prefixes of global types.
The set roles(π) ⊆ R of roles in π is defined in the obvious way; note that
roles(π) is a singleton if, and only if, π is an autonomous prefix. Inspired by
Klaim, processes can access tuple types according to two modalities syntactically
distinguished by the round brackets around the tuple in prefixes. More precisely,
when a prefix surrounds a tuple t with round brackets then t is meant to be
consumed, otherwise it is meant to be read-only.

We assume that tuple types used in read-only modalities do not generate.

Global types K have the following syntax

K ::=
∑
i∈I

πi.Ki
∣∣ K≺ K

∣∣ X ∣∣ µρ X.K
where I is a finite set of indexes; we write 0 for

∑
i∈I

πi.Ki when I = ∅ (we omit

trailing occurrences of 0) and πj .Kj instead of
∑
i∈I

πi.Ki when I = {j}. The set

roles(K) ⊆ R of roles of K is the set of roles that are mentioned in K and it is
defined in the obvious way.

The syntax of global types features prefix guarded choices, sequential compo-
sition, and recursion. The semantics in Section 3.1 will make clear that sequential
composition ≺ allows for some concurrency between actions in the absence of role
and communication dependencies. To handle recursive behaviour, the construct
µρ X.K singles out a role ρ ∈ roles(K) deciding whether to repeat the execution
of the body K or (if ever) to end it. To achieve this, ρ notifies the decision to stop
or to do a next iteration by generating tuple types for the other roles (this is
formally defined in Section 3.1). We omit the decoration ρ when roles(K) = {ρ}.

Data-driven choreographies à la Klaim 7

We extend the notions of defined and free names to global types as follows:

fn(ρ ! (t) @ `) = fn(t) ∪ {` 7→ loc} dn(ρ ! (t) @ `) = dn(t)

(omitted prefixes are defined analogously)

fn(
∑
i∈I

πi.Ki) =
⋃
i∈I

fn(πi) ∪ (fn(Ki) \ dn(πi))

fn(K1≺ K2) = fn(K1) ∪ fn(K2)
fn(X) = ∅
fn(µρ X.K) = fn(K)

dn(
∑
i∈I

πi.Ki) =
⋃
i∈I

dn(πi) ∪ dn(Ki)

dn(K1≺ K2) = dn(K1) ∪ dn(K2)
dn(X) = ∅
dn(µρ X.K) = dn(K)

We remark that in K1≺ K2 the scope of names defined in K1 does not include K2.
We write n() for the set of (sorted) defined and free names of a term. A set S
of sorted names is consistent if x 7→ s ∈ S and x 7→ s′ ∈ S implies s = s′.

The sets of well-sorted prefixes and terms are defined inductively as follows:

– π is well-sorted if fn(π) ∩ dn(π) = ∅ and n(π) is consistent, i.e., there are
no clashes/inconsistencies in the sorts of the names in the component t of π
and the locality ` mentioned in π;

– K =
∑
i∈I

πi.Ki is well-sorted if for all i ∈ I both πi and Ki are well-sorted and

n(K) is consistent;
– K1≺ K2 is well-sorted if K1 and K2 are well-sorted and n(K1≺ K2) is consistent;
– X is well-sorted and µρ X.K is well-sorted if K is well-sorted.

We consider terms up-to α-renaming of defined names and recursion vari-
ables. Correspondingly, substitutions are capture avoiding, in the sense that
defined names can be renamed to fresh names before any substitution is applied
to a term. As usual we say that a global type K is closed when it does not contain
free occurrences of recursion variables X or free occurrences of names.

2.3 Some examples

We give a few simple global types (Examples 1 to 4) to highlight some basic
features of klaimographies as well as a more complex example (Example 5) to
illustrate the kind of protocols our global types can capture.

Example 1. Consider the following global type that describes the interaction of
a client c with a simple service s that converts integers into strings.

K(1) = c→ s : (int) @ l . s→ c : (str) @ l

The client c produces an integer value on the locality l meant to be consumed by
the server s, which in turn produces back the converted string for the client. �

Elaborating on the previous example we discuss a few features of our setting.

8 R. Bruni, A. Corradini, F. Gadducci, H. Melgratti, U. Montanari, E. Tuosto

Example 2. Assume that we consider client and server in Example 1 as multiple
instead of unit roles, and write

K(2) = C→S : (int) @ l .S→C : (str) @ l

In this case, K(2) states that each integer produced by a client will be consumed
by a server, which will in turn produce a string for one of the clients. �

The type in Example 2 does not ensure that clients consume the string conversion
of the integer they produced, because all tuples are put at the same location l.
Name binders can be used to correlate tuples.

Example 3. Consider

K(3) = C→S : (νx : int) @ l .S→C : (x : int · str) @ l

The first interaction binds the occurrence of x in the second interaction. The
use of x in the second interaction constraints the instances of S and C to share a
tuple whose integer expression matches the integer shared in the first interaction.
Despite the identifier is known only to the communicating instances, this does
not forbid two clients to generate the same integer value. �

The klaimography in Example 3 does not establishes a one-to-one association
between instances of C and S. In fact, an instance of C not necessarily interacts
with the same instance of S in the two communications when two instances of C
generate the same integer in the first interaction.

Example 4. A one-to-one correspondence can be achieved by using defined names
for localities. Consider

K(4) = C→S : (int · νx : loc) @ l .S→C : (str) @x

As in Example 3, client and server instances establish a common fresh identity x
in the first interaction; this time the identity is a locality meant to share tuples in
subsequent communications: the second interaction can only take place between
the two instances sharing x, because such locality is known only to them. �

The following example focuses on a more realistic scenario, allowing us to
combine together most of the features of our framework. For readability, we use
the notation µ1

ρ X.K for a recursive protocol where the body K is repeated at
least once. Formally,7

µ1
ρ X.K = K{µρ X.K/X}.

7 The reader should not be confused by the meaning of µρ X.K being different from
that of K{µρ X.K/X}: this is because iteration and termination require some implicit
interactions driven by ρ towards the other roles in K, as discussed in Section 3.1.

Data-driven choreographies à la Klaim 9

Example 5. The marketplace scenario described in Section 1 can be formalised
by the following global type.

broker→Seller : start@ m .
µ1 X.Seller ! (str · int · νl : loc) @ m . X ≺

µ1
Buyer Y .

µ Z.Buyer ? str · int · loc@ m . Z ≺
Buyer ? (i : str · p : int · νl : loc) @ m .

µ1
Seller W.

Buyer→Seller : (i : str · o : int) @ l .
Seller→Buyer : (quit) @ l .
Seller ! (i : str · p : int · νl : loc) @ m .
Y
+
Seller→Buyer : (sold) @ l . Y
+
Seller→Buyer : (more) @ l .W

+
Buyer→Seller : (noway) @ l .

Seller ! (i : str · p : int · νl : loc) @ m .
Y

The broker is a unit role that triggers sellers to start advertising their items on
the marketplace location m. Sellers and buyers are modelled as multiple roles.
Each seller advertises one or more items at m (see recursion at line 2). Each
buyer can inspect the advertised items (line 3) and eventually start bargaining
on a selected item of interest. Note that the consumption at line 4 instantiates
a private location l between the instance of Seller advertising the item and the
instance of Buyer interested in buying it. Location l is used to perform the
bargaining phase. See Section 3.1 and Section 3.2 for the exact semantics.

The seller instance controls the recursion µ1
Seller W. · · ·; the body of the recur-

sive type lets the buyer sharing location l decide whether to stop the bargaining
(by exchanging a noway tuple, in which case the seller re-advertises the unsold
item at m) or to make an offer to the seller (which can then decide either to stop
the bargaining, or to struck a deal, or to ask for an higher offer). �

3 Semantics

We equip global types with a semantics based on pomsets, define projections
from global to local types (that is abstractions of Klaim processes enacting the
roles of global types), and define the operational semantics of local types.

3.1 Pomsets for klaimographies

We give semantics to global types using partially-ordered multi-sets (pomsets
for short). Following [9], a pomset is an isomorphism class of labelled partially-
ordered sets (lposet) where, fixed a set of labels L, an lposet is a triple (E ,≤, λ),
with E a set of events,≤ is a partial order on E , and λ : E → L a labelling function

10 R. Bruni, A. Corradini, F. Gadducci, H. Melgratti, U. Montanari, E. Tuosto

mapping events in E to labels in L. Two lposets (E ,≤, λ) and (E ′,≤′, λ′) are
isomorphic if there is a bijection φ : E → E ′ such that e ≤ e′ ⇐⇒ φ(e) ≤′ φ(e′)
and λ = λ′ ◦ φ. Intuitively, the partial order ≤ yields a causality relation among
events; for e 6= e′, if e ≤ e′ then e′ is caused by e or, in other words, the
occurrence of e′ must be preceded by the one of e in any execution respecting the
order ≤. Note that λ is not required to be injective: for e 6= e′ ∈ E , λ(e) = λ(e′)
means that e and e′ model different occurrences of the same action. In the
following, [E ,≤, λ] denotes the isomorphism class of (E ,≤, λ), symbols r, r′, . . .
(resp. R,R′, . . .) range over (resp. sets of) pomsets, and we assume that pomset
r contains at least one lposet which will possibly be referred to as (Er, ≤r, λr).
The empty pomset is denoted as ε.

An event e is an immediate predecessor of an event e′ (or equivalently e′ is an
immediate successor of e) in a pomset r if e 6= e′, e ≤r e′, and for all e′′ ∈ Er such
that e ≤r e′′ ≤r e′ either e = e′′ or e′ = e′′. We draw pomsets as (a variant8 of)
Hasse diagrams of the immediate predecessor relation; for instance, the pomset

[{e1, e2, e3, e4, e5}, {(e1, e2), (e1, e3), (e1, e4), (e1, e5), (e4, e5)}, λ]

is more conveniently written as e1

e2 e3

e4

e5

λ

or

 λ(e1)

λ(e2) λ(e3)

λ(e4)

λ(e5)

In the definition of our semantics we follow a principle that distinguishes the
nature of autonomous and interaction prefixes.

– A tuple type t generated by an autonomous output can be accessed by any
instance of any other role. However, there is no obligation to access the tuple
t, hence our semantics has to contemplate the cases where no read or input
of t happens.

– Interactions are slightly more subtle. Firstly, a tuple type t in a read-only
interaction is meant to be eventually accessed by (an instance of) the re-
ceiving role. Secondly, the tuple type t of a consuming interaction must be
eventually consumed by an instance of the receiving role. Thirdly, if t is in a
consuming interaction, any instance of the receiving role is allowed to read
t prior to its consumption.

To capture this semantics we label events with autonomous prefixes π, pos-
sibly decorated as [i]π. Intuitively, e.g., a label [i]ρ ? t@ ` (resp. [i]ρ ! t@ `) rep-
resents the fact that the ith instance of ρ reads (resp. produces) a tuple of type
t. Labels π not prefixed with [] specify that the event can be performed by any
instance of the role in π. Hereafter, we only deal with pomsets labelled as above.

8 Edges of Hasse diagrams are usually not oriented; here we use arrows so to draw
order relations between events also horizontally.

Data-driven choreographies à la Klaim 11

Also, we assign basic pomsets bp(i, π) to prefixes π. A basic pomset yields the
causal relations of π imposed by the above design principle. For an autonomous

prefix π we define bp(i, π) =
{[

[i]π

]}
. For interaction prefixes we define

bp(i, ρ→ ρ′ : t@ `) =
⋃
h≥1

[i]ρ ! ρ′ · t@ `

e1 eh

λ

bp(i, ρ→ ρ′ : (t) @ `) =
⋃
h≥1

[i]ρ ! (ρ′ · t) @ `

e1 eh

[i]ρ′ ? (ρ′· ↓t) @ `

λ

∪

[i]ρ ! (ρ′ · t′) @ `

[i]ρ′ ? (ρ′· ↓t) @ `

where each read-only event ej (with 1 ≤ j ≤ h) is labelled as λ(ej) = ρ′ ? ρ′· ↓t@ `
with ↓t the binder-free version of t. Formally, ↓ is defined such that ↓(νx : s) =
x : s, it is the identity on s, ? and x : s and it behaves homomorphically over
· . Note that the tuples in the labels of the events are “prefixed” by the role ρ′

meant to access them; this requires to extend s so to include R.
We can now give the semantics of prefixes as follows

JπK =

{
bp(1, π) if π autonomous ∧ roles(π) ⊆ U⋃
i≥1 bp(i, π) if π autonomous ∧ roles(π) 6⊆ U

Jρ→ ρ′ : t@ `K =

{
bp(1, ρ→ ρ′ : t@ `) if ρ ∈ U⋃
i≥1 bp(i, ρ→ ρ′ : t@ `) otherwise

Jρ→ ρ′ : (t) @ `K =

{
bp(1, ρ→ ρ′ : (t) @ `) if ρ ∈ U⋃
i≥1 bp(i, ρ→ ρ′ : (t) @ `) otherwise

As customary in other choreographic approaches (see [15,8,12] and references
therein), the semantics of (closed) global types considers only well-formed global
types, namely those enjoying well-sequencedness and well-branchedness. With
respect to standard notions, however, these concepts have some peculiarities
which we now discuss.

The key points of well-sequencedness are highlighted in the following type

ρ1→ ρ2 : (str · ?) @ l≺ ρ2→ ρ3 : (str · int) @ l (1)

where an instance of ρ2 transforms a pair generated by ρ1 into a pair for ρ3. The
choreography (1) may be violated when ρ1 generates a tuple of type str · int.
In fact, such a tuple could match the type consumed by ρ3 and therefore ρ3

12 R. Bruni, A. Corradini, F. Gadducci, H. Melgratti, U. Montanari, E. Tuosto

could “steal” the tuple from ρ2. The problem is due to the fact that the tuples
are generated on the same location and they match each other. More generally,
the problem arises when different interactions introduce races on tuple types.
Formally, write (t, l) ∈ K when there is a prefix in K whose tuple type is t and
whose location is l; we say that (t, l) is local to K if either of the following holds:

– K =
∑
i∈I

πi.Ki and there is i ∈ I such that either (t, l) is local to Ki or πi

outputs t at l for consumption and there is t′ in an input from l in Ki such
that t ./ t′

– K = K1≺ K2 and either (t, l) is local to K1 or (t, l) is local to K2

– K = µρ X.K
′ and (t, l) is local to K′.

Our notion of well-sequencedness requires absence of races on tuple types: we say
that K1 and K2 are well-sequenced (ws(K1, K2) in symbols) if, for i 6= j ∈ {1, 2},

– for all (t, l) local to Ki and for all (t′, l) ∈ Kj , t ./ t
′ implies (t′, l) is in a

read-only prefix in Kj
– for all (t, l) in an autonomous input prefix of Ki and for all (t′, l) generated

in Kj , t ./ t′ implies (t′, l) is in an autonomous output prefix in Kj for
consumption.

Finally, the semantics of the sequential composition K1≺ K2 is as follows:

JK1≺ K2K =

{{
seq(JK1K, JK2K) if ws(K1, K2)

}
undef otherwise

where the auxiliary operation seq(,) sequentially composes pomsets r and r′

so to make the actions of a role in r to precede its actions in r′:

seq(r, r′) = [Er ∪ Er′ ,≤, λr ∪ λr′]

where we assume that Er ∩ Er′ = ∅ and ≤ is the reflexive and transitive closure
of ≤r ∪ ≤r′ ∪{(e, e′) ∈ Er × Er′

∣∣ roles(e) = roles(e′)} (recall that the labels of
events are autonomous prefixes for which roles is a singleton).

We now consider well-branchedness, the other condition of well-formedness.
As usual [12], well-branchedness requires two conditions: single selector and
knowledge of choices. This can be formalised by requiring that one process in the
choice is active, namely it selects the branch to take, while the others are passive,
namely they are informed of the chosen branch by inputting some information
that unambiguously identifies each branch of the choice. We syntactically9 en-
force uniqueness of selectors; a choice with several branches, takes the form∑

i∈I
ρ→ ρi : (ti) @ `i.Ki (2)

9 This is just for simplicity as we could adopt definitions similar to the ones in [11,12]
at the cost of higher technical complexity.

Data-driven choreographies à la Klaim 13

namely the instance of ρ acts as unique selectors. Intuitively, a passive instance
(for example one enacting role ρi) in (2) has to be able to ascertain which branch
the selector decided when the choice was taken. A simple way to ensure this is
to require that the first input actions of each passive role are pairwise “disjoint”
(i.e. non matching tuples or different locations) among branches.

The conditions on active and passive processes alone are not enough: in
our framework, the notion of well-branchedness is slightly complicated by the
presence of multiple roles. For instance, even assuming unique selectors, many
instances of a selector role could exercise choices concurrently. This may create
confusion if different branches generate matching tuples on a locality as illus-
trated by next example.

Example 6. Let Kbad = A→B : (int) @ l.K1 +A→B : (str) @ l.K2 where

K1 = B→C : (str) @ l.C→B : (bool) @ l and K2 = B→C : (bool) @ l

In Kbad confusion may arise that may alter the intended data flow. In fact, if two
groups of participants execute the choice taking different branches, the instance
of C executing K2 in the second branch may receive the boolean that the instance
of C in K1 executing the first branch generates for B. �
Therefore we require that tuple types in different branches of a choice do not
match when they are at the same locality and that if a branch of a choice involves
a unit role then none of the branches of the choice involves multiple roles. This
condition, dubbed confusion-free branching ensures that different “groups” of
instances involved in concurrent resolutions of a choice do not “interfere” with
each other. If a unit role is involved, only one group can resolve the choice. We
remark that the above condition is not a limitation; in fact, we can pre-process
branches of choices by adding an extra field in all tuples of the branch so to
unequivocally identify on which branch the tuple type is used.

To sum up, a choice as in (2) is well-branched, written wb(
{⋃

i∈I πi.Ki
}

),
when it is confusion-free, there is a unique active role, all other roles are passive.
So we define

J
∑
i∈I

πi.KiK =

{ε} if I = ∅⋃
r∈JπiK,r′∈JKiK seq(r, r′) if wb(

{⋃
i∈I πi.Ki

}
)

undef otherwise

Finally, the semantic equation for µρ X.K requires some auxiliary functions:

STOP(ρ, K, ỹ) =ρ→ ρ1 : (stop) @ y1≺ . . .≺ ρ→ ρn : (stop) @ yn

LOOP(ρ, K, ỹ, ỹ′) =ρ→ ρ1 : (νy′1 : loc) @ y1)≺ . . .≺ ρ→ ρn : (νy′n : loc) @ yn

where roles(K) = {ρ, ρ1, . . . , ρn} with ρ 6∈ {ρ1, . . . , ρn} and ỹ = y1 · · · yn and
ỹ′ = y′1 · · · y′n. Then, we define

Jµρ X.KK =

⋃
h≥0Junfoldh(µρ X.K, fn(K), ỹ, ỹ′)K if ws(K{0/X}, K{0/X})

and ỹ ∩ fn(K) = ∅
undef otherwise

14 R. Bruni, A. Corradini, F. Gadducci, H. Melgratti, U. Montanari, E. Tuosto

where

unfoldh(µρ X.K, L, ỹ, ỹ
′) =

{
STOP(ρ, ỹ) if h = 0

LOOP(ρ, K, ỹ, ỹ′)≺ K{K′/X} otherwise

where K′ = unfoldh−1(µρ X.K, L ∪ ỹ ∪ ỹ′, ỹ′, ỹ′′) with ỹ′′ fresh.

3.2 Local types

A local type L, which describes the interaction from the perspective of a single
role, is a term generated by the following grammar.

κ ::= t ! `
∣∣ (t) ? `

∣∣ t ? `

L ::=
∑
i∈I

κi.Li
∣∣ L # L

∣∣ (µX(x̃) . L
)
〈̃`〉

∣∣ X 〈̃`〉
Prefixes t ! `, (t) ? ` and t ? ` respectively stand for the production, consump-

tion and read of a tuple t at the locality `. Differently from global types, local
types do not distinguish the generation of read-only tuples from the ones that
can be consumed. Also, we use the symbol # instead of ≺ to remark the fact
that, on local types, the sequential operator # serialises all activities.

Formation rules for branching and sequential local types L are exactly the
same as for global types; analogously we write 0 for an empty sum. The syntax
of recursive local types deviates from global types to make explicit the localities
used for coordinating the execution; consequently, process variables are paramet-
ric (the syntax for recursive types is borrowed from [2]). The term

(
µX(x̃) . L

)
〈̃`〉

defines a process variable X with parameters x̃ to be used in L; the initial values
of x̃ are given by ˜̀. Accordingly, the usage of a process variable is parameterised,
i.e., X 〈̃`〉. For any

(
µX(x̃) . L

)
〈̃`〉, we assume that |x̃| = |̃`| and |x̃| = |˜̀′| for any

bound occurrence of X〈`′〉 in L.
The notions of free and defined names, well-sorted and closed terms are

straightforwardly extended to local types; in
(
µX(x̃) . L

)
〈̃`〉, X and x̃ act as

binders for the occurrence in L. Substitution on local types is defined as follows.

(t ! `){y/x} = t{y/x} !(`{y/x}) if x 6∈ dn(t)
((t) ? `){y/x} = (t{y/x}) ?(`{y/x}) if x 6∈ dn(t)

(t ? `){y/x} = t{y/x} ?(`{y/x}) if x 6∈ dn(t)

(
∑
i∈I

κi.Li){y/x} =
∑
i∈I

(κi{y/x}).(Li{y/x}) if ∀i.x 6∈ dn(κi)

(L1 # L2){y/x} = L1{y/x} # L2{y/x}
X 〈̃`〉{y/x} = X 〈̃`{y/x}〉

(
(
µX(z̃) . L

)
〈̃`〉){y/x} =

(
µX(z̃) . L{y/x}

)
〈̃`{y/x}〉 if {x, y} ∩ z̃ = ∅

As for global types, we consider terms up-to α-renaming.
We consider the following syntax for the run-time semantics of a set of local

types running on a tuple space, dubbed specification.

∆ ::= ∅
∣∣ ∆, ρ : L

∣∣ ∆, t@ l

Data-driven choreographies à la Klaim 15

[LOut]
dn(t) fresh

∆, ρ : t ! l.L
ρ:↓t ! l−−−−→ ∆, ρ : L, ↓t@ l

[LIn]
t ./ t′ = σ

∆, ρ : (t) ? l.L, t′ @ l
ρ:(t′) ? l−−−−−→ ∆, ρ : Lσ

[LRd]
t ./ t′ = σ

∆, ρ : t ? l.L, t′ @ l
ρ:t′ ? l−−−−→ ∆, ρ : Lσ, t′ @ l

[LSum]

Γ , ρ : κj .Lj
α−−→ ∆′

∆,Γ , ρ :
∑
i∈I

κi.Li
α−−→ ∆,∆′

j ∈ I

[LSeq1]

∆, ρ : L1
α−−→ ∆′, ρ : L′1

∆, ρ : L1 # L2
α−−→ ∆′, ρ : L′1 # L2

[LSeq2]

∆, ρ : L1
α−−→ ∆′, ρ : 0

∆, ρ : L1 # L2
α−−→ ∆′, ρ : L2

[LRec]

∆, ρ : L{
(
µX(x̃) . L

)
/X}{l̃/x̃}

α−−→ ∆′

∆, ρ :
(
µX(x̃) . L

)
〈l̃〉 α−−→ ∆′

Fig. 2. Semantics of local types

A specification is a multiset containing two kinds of pairs: ρ : L associates a
role with a local type; while t@ l indicates that a tuple of type t is available at
locality l. We assume that when ρ ∈ U then there is at most one pair ρ : L in ∆.
We write Γ to denote a specification containing only terms of the form t@ l.

The definition of fn() is straightforwardly extended to specifications.

We give an operational semantics to local types defined inductively by the
rules in Fig. 2, where labels α are of the form ρ : κ. Rule [LOut] accounts
for the behaviour of a role ρ that generates a tuple type t at the locality l.
The operational semantics for the generation of a tuple t that contains binders
ensures that each defined name is substituted by a fresh free variable (i.e., a
variable that does not occur free in ∆, ρ : t ! l.L). This is achieved by requiring
(i) all bound names in t to be fresh by α-renaming them if necessary (i.e., dn(t)
fresh) and (ii) the generated tuple ↓t is the binder-free version of t. Rule [LIn]
handles the case in which a role ρ consumes a tuple specified as t from locality l.
In order for the consumption to take place, the requested tuple t should match
a tuple t′ available at the locality l. Note that the substitution σ generated
from the match is applied to the continuation L associated with the role ρ; the
consumed tuple is eliminated from the locality l. Rule [LRd] is analogous to [LIn],
but the read tuple is not removed from the tuple space. Rule [LSum] accounts
for a role that follows by choosing one of its enabled branches. The semantics
of a recursive term

(
µX(x̃) . L

)
〈l̃〉 is given by the rule [LRec], which unfolds the

definition, i.e., L{
(
µX(x̃) . L

)
/X} and substitutes the formal parameters x̃ of the

recursive definition by the actual parameters l̃ via the substitution {l̃/x̃}.

16 R. Bruni, A. Corradini, F. Gadducci, H. Melgratti, U. Montanari, E. Tuosto

K �ηρ=

0 if ρ 6∈ roles(K)

K′ �ηρ if K = π.K′ and ρ 6∈ roles(π)

t ! `.(K′ �ηρ) if K = ρ ! t@ `.K′ or K = ρ→ ρ′ : t@ `.K′

or K = ρ ! (t) @ `.K′ or K = ρ→ ρ′ : (t) @ `.K′

(t) ? `.(K′ �ηρ) if K = ρ ? (t) @ `.K′ or K = ρ′→ ρ : (t) @ `.K′

t ? `.(K′ �ηρ) if K = ρ ? t@ `.K′ or K = ρ′→ ρ : t@ `.K′∑
i∈I

(πi.Ki) �
η
ρ if K =

∑
i∈I

πi.Ki

K1 �ηρ # K2 �ηρ if K = K1≺ K2(
µX(x) .(stop) ?x.0 + ((νy : loc) ?x.K′ �η,X 7→y

ρ)
)
〈φρ〉

if K = µφρ′ X.K
′, ρ 6= ρ′, and {x, y} ∩ (fn(K′) ∪ cod(η)) = ∅(

µX(x̃) . stop !x1 . . . stop !xn.0 + νy1 : loc !x . . . νyn : loc !x.K′ �η,X 7→ỹ
ρ

)
〈φρ1 . . . φρn〉

if K = µφρ X.K
′, dom(φ) = {ρ1, . . . , ρn}, x̃ = x1 . . . xn,

ỹ = y1 . . . yn, and (x̃ ∪ ỹ) ∩ (fn(K′) ∪ cod(η)) = ∅

X〈ηX〉 if K = X

Fig. 3. Projection

3.3 Obtaining local types out of global types

The projection of a global type K over a role ρ, written K �ρ, denotes the local
type that specifies the behaviour of ρ in K. Our projection operation is fairly
standard but for the case of recursive types, which coordinate their execution by
communicating over dedicated locations. Note that the semantics of recursive
global types µρ X.K introduces auxiliary interactions to coordinate their exe-
cution (see STOP(ρ, K, ỹ) and LOOP(ρ, K, ỹ, ỹ′) in Section 3.1). However, there
is not such an implicit mechanism in the execution of local types, where recur-
sion is standard. Consequently, those auxiliary interactions need to be defined
explicitly in local types; and consequently, they are introduced by projection
(similarly to the approach in [3]). Another subtle aspect of the semantics of a
recursive global type is that each iteration is parametric with respect to the set
of localities used for coordination. In fact, LOOP(ρ, K, ỹ, ỹ′) generates a set of
fresh localities that are used by the next iteration. Such behaviour is mimicked
by local types by relying on parameterised process variables. As a consequence,
projection depends on the locations that are chosen as parameters of process
variables. Hence, K �ρ is defined in terms of K �ηρ, where η is a partial func-

tion that maps process variables into sequences of locations, i.e., ηX = ˜̀; and
K �ρ= K �∅ρ. We now comment on the definition of K �ηρ in Fig. 3. As usual, the

Data-driven choreographies à la Klaim 17

local type corresponding to a role ρ that is not part of K is 0. The projection of
a prefix π depends on the role played by ρ in π: it is omitted when ρ does not
participate on π; it is the production of a tuple when π is an interaction or an
autonomous output and ρ is the producer; it is the consumption of a tuple when
π is an autonomous input or a consuming interaction and ρ is the consumer; or
else it is the read of a tuple. Projection is homomorphic with respect to choices
and sequential composition.

A global type µρ X.K is projected as a recursive local type
(
µX(x̃) . L

)
〈̃`〉

where the formal parameters x̃ stand for the locations used for coordination
and ˜̀ are the initial values. Note that µρ X.K does not make explicit the set
of initial locations but they are so in local types. For this reason, we define
projection for a decorated version of global types, where each recursive sub-term
µρ X.K is annotated by a function φ : R 7→ Loc defined such that dom(φ) =
roles(K) \ {ρ} and for all ρ ∈ dom(φ), φ(ρ) is globally fresh. Such annotations
can be automatically added by pre-processing global types so to associate a
fresh set of locations to each recursive process. Then, the projection of µφρ′ X.K

′

onto ρ depends on whether ρ coordinates the recursion (i.e., ρ = ρ′) or not.
When ρ is not the coordinator, the recursive process needs just one location
x to await for either stop or a new location y for the next iteration. Note
that the body of the recursion K′ is then projecting by considering an extended
version of η where process variable X is parameterised with the received location
y. The initial value of x is fixed according to φ (i.e., φρ). Differently, when
ρ coordinates the recursion, the projection generates a process variable that
has several parameters, i.e., one location xi for each passive role. In this case
the body of the recursion consists of two branches: one that communicates the
termination of the recursion to each participant, and the other one executes
the body of the recursion after distributing fresh localities to each participants.
Recursion parameters are initialised analogously. Finally, a process variable X
is projected as its parameterised version X〈ηX〉, where the value of parameters
are established according to η.

4 Semantic Correspondence

This section establishes the correspondence between the denotational semantics
of global types and the operational semantics of local types. The partial order on
the events of a pomset yields an interpretation of linear executions in terms of
linearisations similar to interleaved semantics of concurrent systems. Intuitively
a linearisation of a pomset r is a sequence of the events Er that preserves the
pomset’s order≤r. We show that traces of projections of a global type correspond
to linearisations of its pomset semantics and that for each linearisation in the
pomset semantics there is a system executing a corresponding trace. We first
formalise the notion of linearisation.

Given a pomset r and a set of its events E ⊆ Er, a permutation e1 · · · en of
the events in E is a linearisation of r if

– E ⊆ Er preserves ≤r namely ∀1 ≤ i < j ≤ n : ¬(ej ≤r ei)

18 R. Bruni, A. Corradini, F. Gadducci, H. Melgratti, U. Montanari, E. Tuosto

– each event in Er corresponding to an access of an interaction is in E, namely
if e ∈ Er and the tuple type in λr(e) is of the form ρ · t then e ∈ E

– each output event in Er is in E and, letting I(e) be the set of events in
Er which are labelled by inputs of a tuple type matching the one in λr(e),
I(e) ∩ E = ∅ ⇐⇒ I(e) = ∅

– accesses in e1 · · · en are preceded by a matching output, namely (i) for each
1 ≤ i ≤ n if ei accesses t at l then there is some j with 1 ≤ j < i such that
ej outputs t′ at l with t′ ./ t and (ii) for all h such that j < h < i if eh
inputs t′′ at l then ¬(t′ ./ t′′).

Fix a sequence

[]π1 · · ·[] πn (3)

of labels of events (decorations are immaterial hence omitted in the following).
We say that (3) is in normal form if the defined names of any two generating
labels are disjoint; formally, for all 1 ≤ i 6= j ≤ n

πi generates ti at l ∧ πj generates tj at l =⇒ dn(ti) ∩ dn(tj) = ∅

Also, for 1 ≤ i < j ≤ n, we say that πj is in the scope of πi if πi generates ti at l
and πj generates tj at l with ti ./ tj and ∀i < h < j : πh generates th at l =⇒
¬(th ./ tj). Without loss of generality we can assume that each sequence like
(3) is in normal form (since we can rename all defined names generated by some
πi and the names of the labels πj in their scope).

Let π ` α hold iff
(π = ρ ! (t) @ l ∨ π = ρ ! t@ l) ∧ α = ρ : t′ ! l

π = ρ ? (t) @ l ∧ α = ρ : (t′) ? l

π = ρ ? t@ l ∧ α = ρ : t′ ? l

and ∃σ : dn(t)→ fn(t′) : ↓tσ = t′

This definition extends to sequences (3) with n ≥ 1 as follows: []π1 · · ·[] πn `
α1 · · ·αn if n = 1 and π1 ` α1 or n > 1 and

π1 ` α1 ∧ ∀σ : dn(t)→ fn(t′) : ↓tσ = t′ =⇒ ([]π2 · · ·[] πn)σ ` α2 · · ·αn

where t is the tuple in π and t′ is the one in α1.
The K-specification of a given a global type K is a specification ∆ made of

the projections of K only; formally

(ii) ρ : L ∈ ∆ iff ρ ∈ roles(K) and L = K �ρ, and
(i) ∆ has no tuple.

Our main results give a correspondence between the pomset semantics of a global
type K and its K-specification.

Theorem 1. Given a well-formed global type K, for all r ∈ JKK there is K-

specification ∆ such that for all linearisations e1 · · · en of r there is ∆
α1−−→

· · · αn−−→ such that λr(e1) · · ·λr(en) ` α1 · · ·αn.

Data-driven choreographies à la Klaim 19

Proof (Sketch). The proof shows that the specification ∆ =
(
ρ : K �ρ

)
ρ∈roles(K)

satisfies the property in the conclusion of the statement above. By induction on
the structure of K, one shows that

– each output event is matched by an application on ∆ of the [LOut] rule in
Fig. 2, which adds a tuple type to the specification

– each input or read event has a correspondent transition in ∆ from the receiv-
ing role according to rules [LIn] and [LRd] respectively; note that (cf. Fig. 2)
in the former case the tuple type is removed from the specification.

For input and read events, the existence of the substitution required by the ` re-
lation is guaranteed by the hypothesis of rules [LIn] and [LRd]. The above follows
immediately in the cases of prefixes. And, in the case of sum the thesis follows
by induction because the semantics of a choice is the union of the semantics of
each branch. ut

Theorem 2. Let ∆ be a K-specification with K a well-formed global type. For all
∆

α1−−→ · · · αn−−→ there is a linearisation e1 · · · en of a pomset r ∈ JKK such that
λr(e1) · · ·λr(en) ` α1 · · ·αn.

Proof (Sketch). As for Theorem 1, the proof goes by induction on the structure
of K. Guided by the structure of K, we can relate the application of the rules of
Fig. 2 with the pomset semantics of the projections. ut

5 Conclusions

This paper, a modest attempt to thank Rocco for his work and friendship, ad-
dresses the following question:

What notion of behavioural types corresponds to Linda-based coordina-
tion mechanisms?

To answer such question we advocate Klaim-based global and local types, dubbed
klaimographies. Klaim has been designed to program distributed systems con-
sisting of processes interacting via multiple distributed tuple spaces.

For simplicity, we have neglected code mobility, a distinctive feature of Klaim.
Accommodating the mobility mechanism of Klaim would require to control the
multiplicity of running instances and to generalise the well-formedness conditions
to dynamically spawned processes. A further challenge, would be to include mo-
bility of processes-as-values featured by Klaim, which shares many similarities
with session delegation. However, this can be associated to control-driven prob-
lems. These challenges are scope for future work.

We have also not considered parallel types. A simple way to compose klaimo-
graphies in parallel would be to follow standard approaches restricting roles on
single threads and disjoint tuple spaces. We consider this not very interesting,
and plan to explore more expressive settings for parallel types such as the one
in [11,12]. In particular, we conjecture that to add parallel composition K | K′ of

20 R. Bruni, A. Corradini, F. Gadducci, H. Melgratti, U. Montanari, E. Tuosto

klaimographies it is enough to require that ¬(t ./ t′) for all (t, l) ∈ K, (t′, l) ∈ K′.
This condition is the counterpart of the well-forkedness condition of [11,12], that
requires that different threads of a choregraphy have disjoing input actions.

Klaim has been extended with several features designed on theoretical foun-
dations and implemented in a suite of prototypes [1]. On the one hand, klaimo-
graphies share similarities with standard behavioural types centred on point-to-
point channel based communications, on the other hand they also have some
peculiarities, some of which we highlighted here.

The closest work to our is [5], which develops the initial proposal on parame-
terised choreographies in [16,7]. Notably, [5] is the first work to support indexed
roles and to statically infer the participants inhabiting them. The main differ-
ence with the approach in [5] is that klaimographies do not focus on processes,
but rather on data. We envisage behavioural types as specifications of how to
guarantee general properties of tuple spaces. For instance, take the marketplace
example (cf. Example 5), one would like to check properties such as

for each tuple type t = i : str · p : int · νl : loc consumed from locality
m either a tuple type sold is eventually generated at locality l or t is
eventually generated at m.

Such property does not concern typical properties controlled by behavioural
types (e.g., progress of processes, message orphanage, or unspecified reception).

As scope for future work, we aim to characterise the (classes of) properties
of interest that klaimographies enforce. We conjecture that the well-formedness
conditions defined here are strong enough to guarantee the property above. An-
other interesting line of research is to identify typing principles for Klaim pro-
cesses. We believe that klaimographies can enable the possibility that a same
process enacts different roles. For instance, considering again the marketplace
example, a process can act both as seller and as buyer.

We have adopted a few simplifying assumptions. Other variants seem rather
interesting. For instance, guards of sums could be autonomous inputs and not
just consuming interactions, or even read-only access prefixes. Relaxing the con-
straint that read-only tuples cannot generate, would lead to a sort of multi-cast
mechanism of fresh localities. We plan to study those variants in future work.

References

1. L. Bettini, V. Bono, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi,
R. Pugliese, E. Tuosto, and B. Venneri. The Klaim project: Theory and practice.
In C. Priami, editor, Global Computing, volume 2874 of LNCS, pages 88–150.
Springer, 2003.

2. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract
for distributed multiparty interactions. In P. Gastin and F. Laroussinie, editors,
CONCUR 2010, volume 6269 of LNCS, pages 162–176. Springer, 2010.

3. L. Bocchi, H. C. Melgratti, and E. Tuosto. Resolving non-determinism in chore-
ographies. In Z. Shao, editor, ESOP 2014, volume 8410 of LNCS, pages 493–512.
Springer, 2014.

Data-driven choreographies à la Klaim 21

4. G. Castagna, M. Dezani-Ciancaglini, and L. Padovani. On global types and multi-
party session. Logical Methods in Computer Science, 8(1), 2012.

5. D. Castro, R. Hu, S. Jongmans, N. Ng, and N. Yoshida. Distributed program-
ming using role-parametric session types in go: Statically-typed endpoint APIs for
dynamically-instantiated communication structures. In POPL 2019, volume 3 of
PACMPL, pages 29:1–29:30. ACM, 2019.

6. R. De Nicola, G. L. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering, 24(5):315–
330, 1998.

7. P.-M. Denielou, N. Yoshida, A. Bejleri, and R. Hu. Parameterised multiparty
session types. Logical Methods in Computer Science, 8(4), 2012.

8. M. Dezani-Ciancaglini and U. de’ Liguoro. Sessions and session types: An overview.
In C. Laneve and J. Su, editors, WS-FM 2009, volume 6194 of LNCS, pages 1–28.
Springer, 2010.

9. H. Gaifman and V. R. Pratt. Partial order models of concurrency and the compu-
tation of functions. In LICS 1987, pages 72–85. IEEE Computer Society, 1987.

10. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, 1985.

11. R. Guanciale and E. Tuosto. An abstract semantics of the global view of chore-
ographies. In M. Bartoletti, L. Henrio, S. Knight, and H. T. Vieira, editors, ICE
2016, volume 223 of EPTCS, pages 67–82, 2016.

12. R. Guanciale and E. Tuosto. Semantics of global views of choreographies. Logic
and Algebraic Methods in Programming, 95:17–40, 2018.

13. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type dis-
cipline for structured communication-based programming. In C. Hankin, editor,
ESOP 1998, volume 1381 of LNCS, pages 122–138. Springer, 1998.

14. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In G. C. Necula and P. Wadler, editors, POPL 2008, pages 273–284, 2008.

15. H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P. Deniélou,
D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, and G. Zavat-
taro. Foundations of session types and behavioural contracts. ACM Computing
Survey, 49(1):3:1–3:36, 2016.

16. N. Yoshida, P. Deniélou, A. Bejleri, and R. Hu. Parameterised multiparty session
types. In C. L. Ong, editor, FoSSaCS 2010, volume 6014 of LNCS, pages 128–145.
Springer, 2010.

	 Data-driven choreographies à la Klaim

