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Abstract

We propose an interpretation of multiparty sessions as Flow Event Structures, which
allows concurrency within sessions to be explicitly represented. We show that
this interpretation is equivalent, when the multiparty sessions can be described by
global types, to an interpretation of such global types as Prime Event Structures.
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1. Introduction

Session types were proposed in the mid-nineties [53, 37], as a tool for speci-
fying and analysing web services and communication protocols. They were first
introduced in a variant of the π-calculus to describe binary interactions between
processes. Such binary interactions may often be viewed as client-server protocols.
Subsequently, session types were extended to multiparty sessions [38, 39], where
several participants may interact with each other. A multiparty session is an inter-
action among peers, and there is no need to distinguish one of the participants as
representing the server. All one needs is an abstract specification of the protocol
that guides the interaction. This is called the global type of the session. The global
type describes the behaviour of the whole session, as opposed to the local types that
describe the behaviours of single participants. In a multiparty session, local types
may be retrieved as projections from the global type.

Typical safety properties ensured by session types are communication safety (ab-
sence of communication errors), session fidelity (agreement with the protocol) and
deadlock-freedom [39]. When dealing with multiparty sessions, the type system is
often enhanced so as to guarantee also the liveness property known as progress (no
participant gets stuck) [40].
Some simple examples of sessions not satisfying the above properties are: 1) a
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sender emitting a message while the receiver expects a different message (commu-
nication error); 2) two participants both waiting to receive a message from the other
one (deadlock due to a protocol violation); 3) a three-party session where the first
participant waits to receive a message from the second participant, which keeps
interacting forever with the third participant (starvation, although the session is not
deadlocked).

What makes session types particularly attractive is that they offer several ad-
vantages at once: 1) static safety guarantees, 2) automatic check of protocol imple-
mentation correctness, based on local types, and 3) a strong connection with linear
logics [13, 54, 58, 51, 14], and with concurrency models such as communicating
automata [32], graphical choreographies [43, 55] and message-sequence charts [39].

In this paper we further investigate the relationship between multiparty session
types and concurrency models, by focussing on Event Structures [62]. We consider
a standard multiparty session calculus where sessions are described as networks of
sequential processes [32]. Each process implements a participant in the session. We
propose an interpretation of such networks as Flow Event Structures (FESs) [8, 10]
(a subclass of Winskel’s Stable Event Structures [62]), which allows concurrency
between session communications to be explicitly represented. We then introduce
global types for these networks, and define an interpretation of them as Prime Event
Structures (PESs) [59, 48]. Since the syntax of global types does not allow all the
concurrency among communications to be expressed, the events of the associated
PES need to be defined as equivalence classes of communication sequences up
to permutation equivalence. We show that when a network is typable by a global
type, the FES semantics of the former is equivalent, in a precise technical sense,
to the PES semantics of the latter. In a companion paper [16], we investigated a
similar Event Structure semantics for a session calculus with asynchronous com-
munication, which led to a quite different treatment as it made use of a new notion
of asynchronous global type. A detailed comparison with [16] will be given in
Section 9.

This paper is an expanded and amended version of [15]. The main novelty is
that we use a coinductive definition for processes and global types, which simplifies
several definitions and proofs, and a more stringent definition for network events.
This definition relies on the new notion of causal set, which is crucial for the
correctness of our ES semantics. Finally, the present paper includes all proofs of
results, some of which require ingenuity.

The paper is organised as follows. Section 2 introduces our multiparty session
calculus. In Section 3 we recall the definitions of PESs and FESs, which will be used
to interpret processes (Section 4) and networks (Section 5), respectively. PESs are
also used to interpret global types (Section 7), which are defined in Section 6. In
Section 8 we prove the equivalence between the FES semantics of a network and
the PES semantics of its global type. Section 9 discusses related work and sketches
directions for future work. The Appendix contains some technical proofs.
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2. A Core Calculus for Multiparty Sessions

We now formally introduce our calculus, where multiparty sessions are rep-
resented as networks of processes. We assume the following base sets: session
participants, ranged over by p, q, r, . . . and forming the set Part, and messages, ranged
over by λ, λ′, . . . and forming the set Msg.

Let π ∈ {p!λ, p?λ | p ∈ Part, λ ∈ Msg} denote an action. The action p!λ represents
an output of message λ to participant p, while the action p?λ represents an input
of message λ from participant p. The participant of an action, pt(π), is defined by
pt(p!λ) = pt(p?λ) = p.

Definition 2.1 (Processes). Processes are defined by:

P ::=coind
⊕

i∈I p!λi; Pi | Σi∈Ip?λi; Pi | 0

where I is non-empty and λh , λk for all h, k ∈ I, h , k, i.e. messages in choices are all
different.
Processes of the shape

⊕
i∈I p!λi; Pi andΣi∈Ip?λi; Pi are called output and input processes,

respectively.

The symbol ::=coind, in the definition above and in later definitions, indicates that
the productions should be interpreted coinductively. Namely, they define possibly
infinite processes. However, we assume such processes to be regular, that is, with
finitely many distinct subprocesses. In this way, we only obtain processes which
are solutions of finite sets of equations, see [20]. So, when writing processes, we
shall use (mutually) recursive equations.

Sequential composition (;) has higher precedence than choices (
⊕

,Σ). When I is
a singleton,

⊕
i∈I p!λi; Pi will be rendered as p!λ; P andΣi∈Ip?λi; Pi will be rendered

as p?λ; P. Trailing 0 processes will be omitted.
In a full-fledged calculus, messages would carry values, namely they would be

of the form λ(v). For simplicity, we consider only pure messages here. This will
allow us to project global types directly to processes, without having to explicitly
introduce local types, see Section 6.

Networks are comprised of pairs of the form p[[ P ]] composed in parallel, each
with a different participant p.

Definition 2.2 (Networks). Networks are defined by:

N = p1[[ P1 ]] ‖ · · · ‖ pn[[ Pn ]] n ≥ 1, ph , pk for any h, k (1 ≤ h, k ≤ n).

We assume the standard structural congruence ≡ on networks, stating that parallel
composition is associative and commutative and has neutral element p[[ 0 ]] for any
fresh p.

If P , 0 we write p[[ P ]] ∈ N as short for N ≡ p[[ P ]] ‖ N′ for some N′.
To express the operational semantics of networks, we use an LTS whose labels

record the message exchanged during a communication together with its sender
and receiver. The set of communications, ranged over by α, α′, is defined to be

3



p[[
⊕

i∈I
q!λi; Pi ]] ‖ q[[Σ j∈Jp?λ j; Q j ]] ‖ N

pqλk
−−−→ p[[ Pk ]] ‖ q[[ Qk ]] ‖ N where k ∈ I∩J [Com]

Figure 1: LTS for networks.

{pqλ | p, q ∈ Part, λ ∈ Msg}, where pqλ represents the emission of a message λ from
participant p to participant q.

The LTS semantics of networks is specified by the unique rule [Com] given in
Figure 1. Notice that rule [Com] is symmetric with respect to input and output
choices. In a well-typed network (see Section 6) it will always be the case that I ⊆ J,
ensuring that participant p can freely choose an output, since participant q offers
all corresponding inputs.

In the following we will make an extensive use of finite (and possibly empty)
sequences of communications. As usual we define them as traces.

Definition 2.3 (Traces). (Finite) traces σ ∈ Traces are defined by:

σ ::= ǫ | α · σ

We use |σ | to denote the length of the trace σ.
The set of participants of a trace, notation part(σ), is defined by part(ǫ) = ∅ and
part(pqλ ·σ) = {p, q} ∪ part(σ).

When σ = α1 · . . . ·αn (n ≥ 1) we write N
σ
−→ N′ as short for N

α1
−→ N1 · · ·

αn
−−→ Nn = N′.

3. Event Structures

We recall now the definitions of Prime Event Structure (PES) from [59, 48] and
Flow Event Structure (FES) from [8]. The class of FESs is more general than that
of PESs: for a precise comparison of various classes of event structures, we refer
the reader to [9]. As we shall see in Sections 4 and 5, while PESs are sufficient to
interpret processes, the greater generality of FESs is needed to interpret networks.

Definition 3.1 (Prime Event Structure). A prime event structure (PES) is a tuple S =
(E,≤, # ) where:

1. E is a denumerable set of events;

2. ≤⊆ (E × E) is a partial order relation, called the causality relation;

3. # ⊆ (E×E) is an irreflexive symmetric relation, called the conflict relation, satisfying
the property: ∀e, e′, e′′ ∈ E : e # e′ ≤ e′′ ⇒ e # e′′ (conflict hereditariness).

Definition 3.2 (Flow Event Structure). A flow event structure (FES) is a tuple S =
(E,≺, # ) where:

1. E is a denumerable set of events;
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2. ≺⊆ (E × E) is an irreflexive relation, called the flow relation;

3. # ⊆ (E × E) is a symmetric relation, called the conflict relation.

Note that the flow relation is not required to be transitive, nor acyclic (its reflexive
and transitive closure is just a preorder, not necessarily a partial order). Intuitively,
the flow relation represents a possible direct causality between two events. More-
over, in a FES the conflict relation is not required to be irreflexive nor hereditary;
indeed, FESs may exhibit self-conflicting events, as well as disjunctive causality (an
event may have conflicting causes).

Any PES S = (E,≤, # ) may be regarded as a FES, with ≺ given by < (the strict
ordering) or by the covering relation of ≤.

We now recall the definition of configuration for event structures. Intuitively, a
configuration is a set of events having occurred at some stage of the computation.
Thus, the semantics of an event structure S is given by its poset of configurations
ordered by set inclusion, where X1 ⊂ X2 means that S may evolve from X1 to X2.

Definition 3.3 (PES configuration). Let S = (E,≤, # ) be a prime event structure. A
configuration of S is a finite subset X of E such that:

1. X is downward-closed: e′ ≤ e ∈ X ⇒ e′ ∈ X;

2. X is conflict-free: ∀e, e′ ∈ X,¬(e # e′).

The definition of configuration for FESs is slightly more elaborated. For a subset X
of E, let ≺X be the restriction of the flow relation to X and ≺∗

X
be its transitive and

reflexive closure.

Definition 3.4 (FES configuration). Let S = (E,≺, # ) be a flow event structure. A
configuration of S is a finite subset X of E such that:

1. X is downward-closed up to conflicts: e′ ≺ e ∈ X, e′ < X ⇒ ∃ e′′ ∈ X. e′ # e′′ ≺ e;

2. X is conflict-free: ∀e, e′ ∈ X,¬(e # e′);

3. X has no causality cycles: the relation ≺∗
X

is a partial order.

Condition (2) is the same as for prime event structures. Condition (1) is adapted
to account for the more general – non-hereditary – conflict relation. It states that
any event appears in a configuration with a “complete set of causes”. Condition (3)
ensures that any event in a configuration is actually reachable at some stage of the
computation.

If S is a prime or flow event structure, we denote byC(S) its set of configurations.
Then, the domain of configurations of S is defined as follows:

Definition 3.5 (ES configuration domain). Let S be a prime or flow event structure
with set of configurations C(S). The domain of configurations of S is the partially ordered
setD(S)=def(C(S),⊆).
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We recall from [9] a useful characterisation for configurations of FESs, which is
based on the notion of proving sequence, defined as follows:

Definition 3.6 (Proving sequence). Given a flow event structure S = (E,≺, # ), a
proving sequence in S is a sequence e1; · · · ; en of distinct non-conflicting events (i.e.
i , j ⇒ ei , e j and ¬(ei # e j) for all i, j) satisfying:

∀i ≤ n∀e ∈ E : e ≺ ei ⇒ ∃ j < i . either e = e j or e # e j ≺ ei

Note that any prefix of a proving sequence is itself a proving sequence.

We have the following characterisation of configurations of FESs in terms of
proving sequences.

Proposition 3.7 (Representation of FES configurations as proving sequences [9]).

Given a flow event structure S = (E,≺, # ), a subset X of E is a configuration of S if and
only if it can be enumerated as a proving sequence e1; · · · ; en.

Since PESs may be viewed as particular FESs, we may use Definition 3.6 and
Proposition 3.7 both for the FESs associated with networks (see Sections 5) and
for the PESs associated with global types (see Section 7). Note that for a PES the
condition of Definition 3.6 simplifies to

∀i ≤ n∀e ∈ E : e < ei ⇒ ∃ j < i . e = e j

To conclude this section, we recall from [17] the definition of downward surjectiv-
ity (or downward-onto, as it was called there), a property that is required for partial
functions between two FESs in order to ensure that they preserve configurations.
We will make use of this property in Section 5.

Definition 3.8 (Downward surjectivity). Let Si = (Ei,≺i, # i), be a flow event struc-
ture, i = 0, 1. Let ei, e

′
i

range over Ei, i = 0, 1. A partial function f : E0 →∗ E1 is
downward surjective if it satisfies the condition:

e1 ≺1 f (e0) =⇒ ∃e′0 ∈ E0 . e1 = f (e′0)

4. Event Structure Semantics of Processes

In this section, we define an event structure semantics for processes, and show
that the obtained event structures are PESs. This semantics will be the basis for
defining the ES semantics for networks in Section 5. We start by introducing process
events, which are non-empty sequences of actions.

Definition 4.1 (Process event). Process events η, η′, also called p-events, are defined
by:

η ::= π | π · η π ∈{p!λ, p?λ | p ∈ Part, λ ∈ Msg}

We denote by PE the set of p-events, and by |η | the length of the sequence of actions in the
p-event η.

6



Let ζ denote a (possibly empty) sequence of actions, and ⊑ denote the prefix
ordering on such sequences. Each p-event η may be written either in the form
η = π · ζ or in the form η = ζ ·π. We shall feel free to use any of these forms. When
a p-event is written as η = ζ ·π, then ζ may be viewed as the causal history of η,
namely the sequence of past actions that must have happened in the process for η
to be able to happen.

We define the action of a p-event to be its last action:

act(ζ ·π) = π

Definition 4.2 (Causality and conflict relations on process events). The causality re-
lation ≤ and the conflict relation # on the set of p-events PE are defined by:

1. η ⊑ η′ ⇒ η ≤ η′;

2. π , π′ ⇒ ζ ·π · ζ′ # ζ ·π′ · ζ′′.

Definition 4.3 (Event structure of a process). The event structure of process P is the
triple

SP(P) = (PE(P),≤P, # P)

where:

1. PE(P) ⊆ PE is the set of non-empty sequences of labels along the nodes and edges of
a path from the root to an edge in the tree of P;

2. ≤P is the restriction of ≤ to the set PE(P);

3. # P is the restriction of # to the set PE(P).

It is easy to see that # P = (PE(P) ×PE(P)) \ (≤P ∪ ≥P). In the following we shall
feel free to drop the subscript in ≤P and # P.

Note that the setPE(P) may be denumerable, as shown by the following example.

Example 4.4. If P = q!λ; P ⊕ q!λ′, then PE(P) = {q!λ · . . . · q!λ
︸         ︷︷         ︸

n

| n ≥ 1} ∪

{q!λ · . . . · q!λ
︸         ︷︷         ︸

n

·q!λ′ | n ≥ 0}

Proposition 4.5. Let P be a process. Then SP(P) is a prime event structure.

Proof We show that≤ and # satisfy Properties 2 and 3 of Definition 3.1. Reflexivity,
transitivity and antisymmetry of ≤ follow from the corresponding properties of ⊑.
As for irreflexivity and symmetry of # , they follow from Clause 2 of Definition
4.2 and the corresponding properties of inequality. To show conflict hereditariness,
suppose that η # η′ ≤ η′′. From Clause 2 of Definition 4.2 there are π, π′, ζ, ζ′ and ζ
such that π , π′ and η = ζ ·π · ζ′ and η′ = ζ ·π′ · ζ′′. From η′ ≤ η′′ we derive that
η′′ = ζ ·π′ · ζ′′ · ζ1 for some ζ1. Therefore η # η′′, again from Clause 2.
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5. Event Structure Semantics of Networks

In this section we define the ES semantics of networks and show that the result-
ing ESs, which we call network ESs, are FESs. We also show that when the network
is binary, namely when it has only two participants, then the obtained FES is a PES.
The formal treatment involves defining the set of potential events of network ESs,
which we call network events, as well as introducing the notion of causal set of a
network event and the notion of narrowing of a set of network events. This will be
the subject of Section 5.1.

In Section 5.2, we first prove some properties of the conflict relation in network
ESs. Then, we come back to causal sets and we show that they are always finite
and that each configuration includes a unique causal set for each of its n-events.
We also discuss the relationship between causal sets and prime configurations,
which are specific configurations that are in 1-1 correspondence with events in ESs.
Finally, we define a notion of projection from n-events to p-events, and prove that
this projection (extended to sets of n-events) is downward surjective and preserves
configurations.

5.1. Definitions and Main Properties

We start by defining network events, the potential events of network ESs. Since
these events represent communications between two network participants p and q,
they should be pairs of dual p-events, namely, of p-events emanating respectively
from p and q, which have both dual actions and dual causal histories.

Formally, to define network events we need to specify the location of p-events,
namely the participant to which they belong:

Definition 5.1 (Located event). We call located event a p-event η pertaining to a par-
ticipant p, written p :: η.

As hinted above, network events should be pairs of dual located events p :: ζ · π
and q :: ζ′ · π′ with matching actions π and π′ and matching histories ζ and ζ′. To
formalise the matching condition, we first define the projections of process events
on participants, which yield sequences of undirected actions of the form !λ and ?λ,
or the empty sequence ǫ. Then we introduce a notion of duality between located
events, based on a notion of duality between undirected actions.

Let ϑ range over !λ and ?λ, andΘ range over (possibly empty) sequences of ϑ’s.

Definition 5.2 (Projection of p-events). The projection of a p-event η on a participant
p, written η�p , is defined by:

q!λ�p =


!λ if p = q

ǫ otherwise
q?λ�p =


?λ if p = q

ǫ otherwise

(π · η)�p = π�p · η�p

Definition 5.3 (Duality of undirected action sequences). The duality of undirected
action sequences, written Θ Z Θ′, is the symmetric relation induced by:

ǫ Z ǫ Θ Z Θ′ ⇒ !λ ·Θ Z ?λ ·Θ′

8



Definition 5.4 (Duality of located events). Two located events p :: η, q :: η′ are dual,
written p :: η Ẑ q :: η′, if η�q Z η′ �p and pt(act(η)) = q and pt(act(η′)) = p.

Dual located events may be sequences of actions of different length. For instance
p :: q!λ · r!λ′ Ẑ r :: p?λ′ and p :: q!λ Ẑ q :: r!λ′ · p?λ.

Definition 5.5 (Network event). Network events ν, ν′, also called n-events, are un-
ordered pairs of dual located events, namely:

ν ::= {p :: η, q :: η′} where p :: η Ẑ q :: η′

We denote byDE the set of n-events.

We define the communication of the event ν, notation cm(ν), by cm(ν) = pqλ if ν =
{p :: ζ · q!λ, q :: ζ′ · p?λ} and we say that the n-event ν represents the communication
pqλ. We also define the set of locations of an n-event to be loc({p :: η, q :: η′}) = {p, q}.

It is handy to have a notion of occurrence of a located event in a set of network
events:

Definition 5.6. A located event p :: η occurs in a set E of n-events, notation p :: η∈∈E,
if p :: η ∈ ν and ν ∈ E for some ν.

We define now the flow and conflict relations on network events. While the
flow relation is the expected one (a network event inherits the causality from its
constituent processes), the conflict relation is more subtle, as it can arise also between
network events with disjoint sets of locations.

In the following definition we use |Θ| to denote the length of the sequence Θ.

Definition 5.7 (Flow and conflict relations on n-events). The flow relation ≺ and the
conflict relation # on the set of n-eventsDE are defined by:

1. ν ≺ ν′ if p :: η ∈ ν & p :: η′ ∈ ν′ & η < η′;

2. ν # ν′ if

(a) either p :: η ∈ ν & p :: η′ ∈ ν′ & η # η′;

(b) or p :: η ∈ ν & q :: η′ ∈ ν′ & p , q & |η�q | = |η′ �p | & ¬(η�q Z η′�p ).

Two n-events are in conflict if they share a participant with conflicting p-events
(Clause (2a)) or if some of their participants have communicated with each other
in the past in incompatible ways (Clause (2b)). Note that the two clauses are not
exclusive, as shown in the following example.

Example 5.8. This example illustrates the use of Definition 5.7 in various cases. It also
shows that the flow and conflict relations may be overlapping on n-events.

1. Let ν = {p :: q!λ1 · r!λ, r :: p?λ} and ν′ = {p :: q!λ2, q :: p?λ2}. Then ν # ν′ by Clause
(2a) since q!λ1 · r!λ # q!λ2. Note that ν # ν′ can be also deduced by Clause (2b), since
(q!λ1 · r!λ)�q = !λ1 and p?λ2 �p = ?λ2 and | !λ1 | = |?λ2 | and ¬(!λ1 Z?λ2).

9



2. Let ν be as in (1) and ν′ = {p :: q!λ2 · q!λ, q :: p?λ2 · p?λ}. Again, we can deduce
ν # ν′ using Clause (2a) since q!λ1 · r!λ # q!λ2 · q!λ. On the other hand, Clause (2b)
does not apply in this case since (q!λ1 · r!λ)�q = !λ1 and (p?λ2 · p?λ)�p = ?λ2·?λ
and thus | !λ1 | , |?λ2·?λ | .

3. Let ν be as in (1) and ν′ = {q :: p?λ2 · s!λ, s :: q?λ}. Here loc(ν) ∩ loc(ν′) = ∅,
so clearly Clause (2a) does not apply. On the other hand, ν # ν′ can be deduced by
Clause (2b) since (q!λ1 · r!λ)�q = !λ1 and (p?λ2 · s!λ)�p = ?λ2 and | !λ1 | = |?λ2 |

and ¬(!λ1 Z?λ2).

4. Let ν be as in (1) and ν′ = {p :: q!λ2 · r!λ · r!λ
′, r :: p?λ · p?λ′}. In this case we have

both ν ≺ ν′ by Clause (1) and ν # ν′ by Clause (2a), namely, causality is inherited
from participant r and conflict from participant p.

We introduce now the notion of causal set of an n-event ν in a given set of events
Ev. Intuitively, a causal set of ν in Ev is a complete set of non-conflicting direct causes
of νwhich is included in Ev.

Definition 5.9 (Causal set). Let ν ∈ Ev ⊆ DE. A set of n-events E is a causal set of ν in
Ev if E is a minimal subset of Ev such that

1. E ∪ {ν} is conflict-free and

2. p :: η ∈ ν and η′ < η imply p :: η′∈∈E.

Note that in the above definition, the conjunction of minimality and Clause (2)
implies that, if ν′ ∈ E, then ν′ ≺ ν. Thus E is a set of direct causes of ν. Moreover,
a causal set of an n-event cannot be included in another causal set of the same n-
event, as this would contradict the minimality of the larger set. Hence, Definition 5.9
indeed formalises the idea that causal sets should be complete sets of compatible
direct causes of a given n-event.

Example 5.10. Let ν1 = {p :: q!λ1 · r!λ, r :: p?λ} and ν2 = {p :: q!λ2 · r!λ, r :: p?λ}. Then
both {ν1} and {ν2} are causal sets of ν = {r :: p?λ · s!λ′, s :: r?λ′} in Ev = {ν1, ν2, ν}. Note
that ν1 # ν2 and that neither ν1 nor ν2 has a causal set in Ev.

Let us now consider also ν′
1
= {p :: q!λ1, q :: p?λ1} and ν′

2
= {p :: q!λ2, q :: p?λ2}.

Then ν still has the same causal sets {ν1} and {ν2} in Ev′ = {ν′
1
, ν′

2
, ν1, ν2, ν}, while each νi,

i = 1, 2, has the unique causal set {ν′
i
} in Ev′, and each ν′

i
, i = 1, 2, has the empty causal set

in Ev′.
Finally, ν has infinitely many causal sets in DE. For instance, if for every natural

number n we let νn = {p :: q!λn · r!λ, r :: p?λ}, then each {νn} is a causal set of ν in
DE. Symmetrically, a causal set may cause infinitely many events in DE. For instance,
the above causal sets {ν1} and {ν2} of ν could also act as causal sets for any n-event
ν′′n = {r :: p?λ · s!λn, s :: r?λn} or, assuming the set of participants to be denumerable, for
any event ν′′′n = {r :: p?λ · sn!λ′, sn :: r?λ′}.

When defining the set of events of a network ES, we want to prune out all the n-
events that do not have a causal set in the set itself. The reason is that such n-events
cannot happen. This pruning is achieved by means of the following narrowing
function.
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Definition 5.11 (Narrowing of a set of n-events). The narrowing of a set E of n-events,
denoted by n(E), is the greatest fixpoint of the function fE on sets of n-events defined by:

fE(X) = {ν ∈ E | ∃E′ ⊆ X.E′is a causal set of ν in X }

Note that we could not have taken n(E) to be the least fixpoint of fE rather than
its greatest fixpoint. Indeed, the least fixpoint of fE would be the empty set.

Example 5.12. The following two examples illustrate the notions of causal set and narrow-
ing.

Let ν1 = {r :: s?λ1, s :: r!λ1}, ν2 = {r :: s?λ2, s :: r!λ2}, ν3 = {p :: r?λ1, r :: s?λ1 · p!λ1},
ν4 = {q :: s?λ2, s :: r!λ2 ·q!λ2}, ν5 = {p :: r?λ1 ·q!λ, q :: s?λ2 ·p?λ}. Then n({ν1, . . . , ν5}) =
{ν1, . . . , ν4}, because a causal set for ν5 would need to contain both ν3 and ν4, but this is not
possible since ν3 # ν4 by Clause (2b) of Definition 5.7. In fact (s?λ1 · p!λ1) � s = ?λ1 and
(r!λ2 · q!λ2)� r = !λ2 and |?λ1 | = | !λ2 | and ¬(?λ1 Z!λ2).

Let ν1 = {r :: s?λ1, s :: r!λ1}, ν2 = {r :: s?λ2, s :: r!λ2}, ν3 = {p :: r?λ1, r :: s?λ1 · p!λ1},
ν4 = {p :: r?λ1 · s?λ2, s :: r!λ2 · p!λ2}, ν5 = {p :: r?λ1 · s?λ2 · q!λ, q :: p?λ}. Here
n({ν1, . . . , ν5}) = {ν1, ν2, ν3}. Indeed, a causal set for ν4 would need to contain both ν2

and ν3, but this is not possible since ν2 # ν3 by Clause (2a) of Definition 5.7. In fact
s?λ2 # s?λ1 · p!λ1. Then, ν5 will also be pruned by the narrowing since any causal set for
ν5 should contain ν4.

We can now finally define the event structure associated with a network:

Definition 5.13 (Event structure of a network). The event structure of network N is
the triple

SN (N) = (NE(N),≺N, # N)

where:

1. NE(N) = n(DE(N)) with
DE(N) = {{p :: η, q :: η′}p[[ P ]]∈N, q[[ Q ]]∈N, η∈PE(P), η′∈PE(Q), p :: η Ẑ q :: η′}

2. ≺N is the restriction of ≺ to the set NE(N);

3. # N is the restriction of # to the set NE(N).

The set of n-events of a network ES can be infinite, as shown by the following
example.

Example 5.14. Let P be as in Example 4.4, Q = p?λ; Q + p?λ′ and N = p[[ P ]] ‖ q[[ Q ]].
Then

NE(N) = {{p :: q!λ · . . . · q!λ
︸         ︷︷         ︸

n

, q :: p?λ · . . . · p?λ
︸          ︷︷          ︸

n

} | n ≥ 1} ∪

{{p :: q!λ · . . . · q!λ
︸         ︷︷         ︸

n

·q!λ′, q :: p?λ · . . . · p?λ
︸          ︷︷          ︸

n

·p?λ′} | n ≥ 0}
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A simple variation of this example shows that even within the events of a network ES, an
n-event ν may have an infinite number of causal sets. Let ν = {r :: p?λ · s!λ′, s :: r?λ′} be
as in Example 5.10. Consider the network N′ = p[[ P′ ]] ‖ q[[ Q ]] ‖ r[[ R ]] ‖ s[[ S ]], where
P′ = q!λ; P′ ⊕ q!λ′; r!λ, Q is as above, R = p?λ; s!λ′ and S = r?λ′.

Then ν has an infinite number of causal sets En = {νn} inNE(N′), where

νn = {p :: q!λ · . . . · q!λ
︸         ︷︷         ︸

n

· q!λ′ · r!λ, r :: p?λ}

On the other hand, a causal set may only cause a finite number of events in a network ES,
since the number of branches in any choice is finite, as well as the number of participants in
the network.

Theorem 5.15. Let N be a network. Then SN (N) is a flow event structure with an
irreflexive conflict relation.

Proof The relation ≺N is irreflexive since η < η′ implies ν , ν′, where η, η′, ν, ν′ are
as in Definition 5.7(1). As for the conflict relation, note first that a conflict between
an n-event and itself could not be derived by Clause (2b) of Definition 5.7, since
the two located events of an n-event are dual by construction. Then, symmetry
and irreflexivity of the conflict relation follow from the corresponding properties of
conflict between p-events.

Notably, n-events with disjoint sets of locations may be related by the transitive
closure of the flow relation, as illustrated by the following example, which also
shows how n-events inherit the flow relation from the causality relation of their
p-events.

Example 5.16. Let N be the network

p[[ q!λ1 ]] ‖ q[[ p?λ1; r!λ2 ]] ‖ r[[ q?λ2; s!λ3 ]] ‖ s[[ r?λ3 ]]

Then SN (N) has three network events

ν1={p :: q!λ1, q :: p?λ1} ν2={q :: p?λ1 · r!λ2, r :: q?λ2} ν3={r :: q?λ2 · s!λ3, s :: r?λ3}

The flow relation obtained by Definition 5.13 is: ν1 ≺ ν2 and ν2 ≺ ν3. Note that each time
the flow relation is inherited from the causality within a different participant, q in the first
case and r in the second case. The nonempty configurations are {ν1}, {ν1, ν2} and {ν1, ν2, ν3}.
Note that SN (N) has only one proving sequence per configuration (which is the one given
by the numbering of events).

If a network is binary, then its FES may be turned into a PES by replacing ≺with
≺∗. To prove this result, we first show a property of n-events of binary networks.
We say that an n-event ν is binary if the participants occurring in the p-events of ν
are contained in loc(ν).

Lemma 5.17. Let ν and ν′ be binary n-events with loc(ν) = loc(ν′). Then ν # ν′ iff
p :: η ∈ ν and p :: η′ ∈ ν′ imply η # η′.

12



Proof The “if” direction holds by Definition 5.7(2a). We show the “only-if” di-
rection. First observe that for any n-event ν = {p :: η1, q :: η2} the condition
p :: η1 Ẑ q :: η2 of Definition 5.5 implies η1 �q Z η2 �p by Definition 5.4, which in
turn implies |η1 �q | = |η2 �p | by Definition 5.3. If ν is a binary event, we also have
|η1 | = |η1 �q | and |η2 | = |η2 �p | by Definition 5.2, since all the actions of η1 involve
q and all the actions of η2 involve p, and thus the projections do not erase actions.
Assume now ν′ = {p :: η′

1
, q :: η′

2
}. We consider two cases (the others being symmet-

ric):

– ν # ν′ because η1 # η′
1
. Then η1 �q Z η2 �p and η′

1
�q Z η′

2
�p imply η2 # η′

2
;

– ν # ν′ because |η1 �q | = |η′
2
�p | and ¬(η1 �q Z η′

2
�p ). As argued before, we

have |η2 �p | = |η1 �q | and |η′
2
�p | = |η′

1
�q | . Then, from |η1 �q | = |η′

2
�p | and

the above remark about binary events, we get |η2 | = |η1 | = |η
′
2
| = |η′

1
| . From

¬(η1 �q Z η′
2
�p ) it follows that η1 , η

′
1

and η2 , η
′
2
. Then we may conclude,

since |ηi | = |η
′
i
| and ηi , η

′
i

imply ηi # η′
i

for i = 1, 2.

Theorem 5.18. Let N = p1[[ P1 ]] ‖ p2[[ P2 ]] and SN (N) = (NE(N),≺N, # ). Then
n(DE(N)) = DE(N) and the structure SN∗ (N)=def(NE(N),≺∗

N
, # ) is a prime event struc-

ture.

Proof We first show that n(DE(N)) = DE(N). By Definition 5.13(1)

DE(N) = {{p1 :: η1, p2 :: η2}η1 ∈ PE(P1), η2 ∈ PE(P2), p1 :: η1 Ẑ p2 :: η2}

Let {p1 :: η1, p2 :: η2} ∈ DE(N). Since p1 :: η1 Ẑ p2 :: η2 and all the actions in η1

involve p2 and all the actions in η2 involve p1, we know that η1 and η2 have the
same length n ≥ 1 and for each i, 1 ≤ i ≤ n, the prefixes of length i of η1 and η2,
written ηi

1
and ηi

2
, must themselves be dual. Then {p1 :: ηi

1
, p2 :: ηi

2
} ∈ DE(N) for each

i, 1 ≤ i ≤ n, hence {p1 :: η1, p2 :: η2} has a causal set inDE(N).
We prove now that the reflexive and transitive closure ≺∗

N
of ≺N is a partial order.

Since by definition ≺∗
N

is a preorder, we only need to show that it is antisymmetric.
Define the length of an n-event ν = {p1 :: η1, p2 :: η2} to be length(ν)=def |η1 | + |η2 |

(where |η| is the length of η, as given by Definition 4.1). Let now ν, ν′ ∈ NE(N), with
ν = {p1 :: η1, p2 :: η2} and ν′ = {p1 :: η′

1
, p2 :: η′

2
}. By definition ν ≺N ν

′ implies ηi < η
′
i

for some i = 1, 2, which in turn implies |ηi | < |η
′
i
| . As observed above, η1 and η2

must have the same length, and so must η′
1

and η′
2

. This means that if ν ≺N ν
′ then

length(ν) = |η1 | + |η2 | < |η
′
1
| + |η′

2
| = length(ν′). From this we can conclude that if

ν ≺∗
N
ν′ and ν′ ≺∗

N
ν, then necessarily ν = ν′.

Finally we show that the relation # satisfies the required properties. By Theo-
rem 5.15 we only need to prove that # is hereditary. Let ν and ν′ be as above. If
ν # ν′, then by Lemma 5.17 η1 # η′

1
and η2 # η′

2
. Let now ν′′ = {p1 :: η′′

1
, p2 :: η′′

2
}. If

ν′ ≺∗
N
ν′′, this means that there exist ν1, . . . , νn such that ν′ ≺N ν1 . . . ≺N νn = ν

′′. We
prove by induction on n that ν # ν′′. For n = 1 we have ν′ ≺N ν

′′. Then by Clause
(1) of Definition 5.13 we have η′

j
< η′′

j
for some j ∈ {1, 2}. Since ηi # η′

i
for all i ∈ {1, 2}

and # is hereditary on p-events, we deduce η j # η′′
j

, which implies ν # ν′′. Suppose

now n > 1. By induction ν # νn−1. Since νn−1 ≺N νn = ν
′′ we then obtain ν # ν′′ by the

same argument as in the base case.
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If a network has more than two participants, then the duality requirement on
its n-events is not sufficient to ensure the absence of circular dependencies3. For
instance, in the following ternary network (which may be viewed as representing
the 3-philosopher deadlock) the relation ≺∗ is not a partial order.

Example 5.19. Let N be the network

p[[ r?λ; q!λ′ ]] ‖ q[[ p?λ′; r!λ′′ ]] ‖ r[[ q?λ′′; p!λ ]]

Then SN (N) has three n-events

ν1 = {p :: r?λ, r :: q?λ′′ ·p!λ} ν2 = {p :: r?λ · q!λ′, q :: p?λ′}
ν3 = {q :: p?λ′ · r!λ′′, r :: q?λ′′}

By Definition 5.13(1) we have ν1 ≺ ν2 ≺ ν3 and ν3 ≺ ν1. The only configuration of SN (N)
is the empty configuration, because the only set of n-events that satisfies downward-closure
up to conflicts is X = {ν1, ν2, ν3}, but this is not a configuration because ≺∗

X
is not a partial

order (recall that ≺X is the restriction of≺ to X) and hence the condition (3) of Definition 3.4
is not satisfied.

5.2. Further Properties

In this subsection, we first prove two properties of the conflict relation in network
ESs: non disjoint n-events are always in conflict, and conflict induced by Clause (2b)
of Definition 5.7 is semantically inherited. We then discuss the relationship between
causal sets and prime configurations and prove two further properties of causal
sets, which are shared with prime configurations: finiteness, and the existence of
a causal set for each event in a configuration. Finally, observing that the FES of a
network may be viewed as the product of the PESs of its processes, we proceed to
prove a classical property for ES products, namely that their projections on their
components preserve configurations. To this end, we define a projection function
from n-events to participants, yielding p-events, and we show that configurations
of a network ES project down to configurations of the PESs of its processes.

Let us start with the conflict properties. By definition, two n-events intersect
each other if and only if they share a located event p :: η. Otherwise, the two
n-events are disjoint. Note that if p :: η ∈ (ν ∩ ν′), then loc(ν) = loc(ν′) = {p, q},
where q = pt(act(η)). The next proposition establishes that two distinct intersecting
n-events inDE are in conflict.

Proposition 5.20 (Sharing of located events implies conflict). If ν, ν′ ∈ DE and ν ,
ν′ and (ν ∩ ν′) , ∅, then ν # ν′.

Proof Let p :: η ∈ (ν ∩ ν′) and loc(ν) = loc(ν′) = {p, q}. Then there must exist η0, η
′
0

such that q :: η0 ∈ ν and q :: η′
0
∈ ν′. From p :: η Ẑ q :: η0 and p :: η Ẑ q :: η′

0
it follows that η0 � p = η′

0
� p . This, in conjunction with the fact that pt(act(η0)) =

pt(act(η′
0
)) = p, implies that neither η0 < η

′
0

nor η′
0
< η0. Thus η0 # η′

0
and therefore

ν # ν′ by Definition 5.7.

3This is a well-known issue in multiparty session types, which motivated the introduction of global
types in [38], see Section 6.
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Although conflict is not hereditary in FESs, we prove that a conflict due to incom-
patible mutual projections (i.e., a conflict derived by Clause (2b) of Definition 5.7)
is semantically inherited. Let ϑցn denote the prefix of length n of ϑ.

Proposition 5.21 (Semantic conflict hereditariness). Let p :: η ∈ ν and q :: η′ ∈ ν′

with p , q. Let n = min{|η�q |, |η′ �p |}. If ¬((η�q )ցn Z (η′ �p )ցn), then there exists
no configuration X such that ν, ν′ ∈ X.

Proof Suppose ad absurdum that X is a configuration such that ν, ν′ ∈ X. If
| η � q | = | η′ � p | then ν # ν′ by Definition 5.7(2b) and we reach immediately a
contradiction. So, assume |η �q | > |η′ �p | = n. This means that |η | > 1 and thus
there exists a non-empty causal set Eν of ν such that Eν ⊆ X. Let η0 < η be such that
|η0 � q | = |η′ � p | = n. By definition of causal set, there exists ν0 ∈ Eν such that
p :: η0 ∈ ν0. By Definition 5.7(2b) we have then ν0 # ν′, contradicting the fact that X
is conflict-free.

We prove now two further properties of causal sets. For the reader familiar with
ESs, the notion of causal set may be reminiscent of that of prime configuration [60],
which similarly consists of a complete set of causes for a given event4. However,
there are some important differences: the first is that a causal set does not include
the event it causes, unlike a prime configuration. The second is that a causal set
only contains direct causes of an event, and thus it is not downward-closed up to
conflicts, as opposed to a prime configuration. The last difference is that, while
a prime configuration uniquely identifies its caused event, a causal set may cause
different events, as shown in Example 5.10.

A common feature of prime configurations and causal sets is that they are both
finite. For causal sets, this is implied by minimality together with Clause (2) of
Definition 5.9, as shown by the following lemma.

Lemma 5.22. Let ν ∈ Ev ⊆ DE. If E is a causal set of ν in Ev, then E is finite.

Proof Suppose ν = {p :: η, q :: η′}. We show that |E | ≤ |η | + |η′ | − 2, where |E | is
the cardinality of E. By Condition (2) of Definition 5.9, for each η0 < η and η′

0
< η′

there must be ν0, ν
′
0
∈ E such that p :: η0 ∈ ν0 and q :: η′

0
∈ ν′

0
. Note that ν0 and ν′

0
could possibly coincide. Moreover, there cannot be ν′ ∈ E such that p :: η0 ∈ ν

′ , ν0

or q :: η′
0
∈ ν′ , ν′

0
, since this would contradict the minimality of E (and also

its conflict-freeness, since by Proposition 5.20 we would have ν′ # ν0). Hence the
number of events in E is at most (|η | − 1) + (|η′ | − 1).

A key property of causal sets, which is again shared with prime configurations,
is that each configuration includes a unique causal set for each n-event in the
configuration.

4In PESs, the prime configuration associated with an event is unique, while it is not unique in FESs
and more generally in Stable ESs, just like a causal set.
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Lemma 5.23. If X is a configuration of SN (N) and ν ∈ X, then there is a unique causal
set E of ν such that E ⊆ X.

Proof By Definition 5.11, if ν ∈ NE(N), then ν has at least one causal set included in
NE(N). Let E′ = {ν′ ∈ X | ν′ ≺ ν}. By Definition 3.4, E′∪{ν} is conflict-free. Moreover,
if p :: η ∈ ν and η′ < η, then by Proposition 5.20 there is at most one ν′′ ∈ E′ such
that p :: η′ ∈ ν′′. Therefore, E′ ⊆ E for some causal set E of ν by Definition 5.9. We
show that E ⊆ E′. Assume ad absurdum that ν0 ∈ E\E′. By definition of causal set,
ν0 ≺ ν. By definition of E′, ν0 < E′ implies ν0 < X. By Definition 3.4 this implies
ν0 # ν1 ≺ ν for some ν1 ∈ X. Then ν1 ∈ E′ by definition of E′, and thus ν1 ∈ E. Hence
ν0, ν1 ∈ E and ν0 # ν1, contradicting Definition 5.9.

In the remainder of this section we show that projections of n-event configura-
tions give p-event configurations. We start by formalising the projection function
of n-events to p-events and showing that it is downward surjective.

Definition 5.24 (Projection of n-events to p-events).

projp(ν) =


η if p :: η ∈ ν,

unde f ined otherwise.

The projection function projp(·) is extended to sets of n-events in the obvious way:

projp(X) = {η | ∃ν ∈ X . projp(ν) = η}

Example 5.25. Let {ν1, ν2, ν3} be the configuration defined in Example 5.16. We get

projq({ν1, ν2, ν3}) = {p?λ1, p?λ1 · r!λ2}

Example 5.26. Let N = p[[ r?λ; q?λ′ ]] ‖ q[[ p!λ′ ]]. Then

NE(N) = n({{p :: r?λ · q?λ′, q :: p!λ′}}) = ∅

Note that if we did not apply narrowing the set of events of SN (N) would be the singleton
{p :: r?λ · q?λ′, q :: p!λ′}, which would also be a configuration X of SN (N). However,
projp(ν) = {r?λ · q?λ′} would not be configuration in PE(P), since it would contain the
event r?λ · q?λ′ without its cause r?λ.

Narrowing ensures that each projection of the set of n-events of a network FES
on one of its participants is downward surjective (according to Definition 3.8):

Lemma 5.27 (Downward surjectivity of projections). LetSN (N) = (NE(N),≺N, # N)
andSP(P) = (PE(P),≤P, # P) and p[[ P ]] ∈ N. Then the partial function projp : NE(N)→∗
PE(P) is downward surjective.

Proof As mentioned already in Section 3, any PES S = (E,≤, # ) may be viewed
as a FES, with ≺ given by < (the strict ordering underlying ≤). Let η ∈ PE(P) and
ν ∈ NE(N). Then the property we need to show is:

η <P projp(ν) =⇒ ∃ν′ ∈ NE(N) . η = projp(ν′)
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Note that η <P projp(ν) implies projp(ν) = η · η′ for some η′. Recall that NE(N) =
n(DE(N)), where n(·) is the narrowing function (Definition 5.11).
By definition of narrowing, p :: η · η′ ∈∈NE(N) implies that there is E ⊆ NE(N) such
that E is a causal set of ν in NE(N). Therefore p :: η · η′ ∈ ν implies p :: η∈∈E and so
p :: η∈∈NE(N), which is what we wanted to show.

Theorem 5.28 (Projection preserves configurations). If p[[ P ]] ∈ N, thenX ∈ C(SN (N))
implies projp(X) ∈ C(SP(P)).

Proof Clearly, projp(X) is conflict-free. We show that it is also downward-closed.
If ν ∈ X, by Lemma 5.23 there is a causal set E of ν such that E ⊆ X. If p :: η ∈ ν
and η′ < η, by Definition 5.9 there is ν′ ∈ E such that p :: η′ ∈ ν′. We conclude that
ν′ ∈ X, and therefore η′ ∈ projp(X).

The reader may wonder why our ES semantics for sessions is not cast in cate-
gorical terms, like classical ES semantics for process calculi [59, 17], where process
constructions arise as categorical constructions (e.g., parallel composition arises as
a categorical product). In fact, a categorical formulation of our semantics would not
be possible, due to our two-level syntax for processes and networks, which does
not allow networks to be further composed in parallel. However, it should be clear
that our construction of a network FES from the process PESs of its components
is a form of parallel composition, and the properties expressed by Lemma 5.27
and Theorem 5.28 give some evidence that this construction enjoys the properties
usually required for a categorical product of ESs.

6. Global Types

This section is devoted to our type system for multiparty sessions. Global types
describe the communication protocols involving all session participants. Usually,
global types are projected into local types and typing rules are used to derive local
types for processes [38, 19, 39]. The simplicity of our calculus allows us to project
directly global types into processes and to have exactly one typing rule, see Figure 3.
This section is split in two subsections.
The first subsection presents the projection of global types onto processes, together
with the proof of its soundness. Moreover it introduces a boundedness condition on
global types, which is crucial for our type system to ensure progress.
The second subsection presents the type system, as well as an LTS for global types.
Lastly, the properties of Subject Reduction, Session Fidelity and Progress are shown.

6.1. Well-formed Global Types

Global types are built from choices among communications.

Definition 6.1 (Global types). Global types G are defined by:

G ::=coind p→ q :⊞i∈Iλi; Gi | End

where I is not empty, λh , λk for all h, k ∈ I, h , k, i.e. messages in choices are all different.
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G↾ r = 0 if r < part(G)

(p→ q :⊞i∈Iλi; Gi)↾ r =



Σi∈Ip?λi; Gi ↾ r if r = q,⊕
i∈I q!λi; Gi↾ r if r = p,

G1↾ r if r < {p, q} and r ∈ part(G1) and

Gi ↾ r = G1↾ r for all i ∈ I

Figure 2: Projection of global types onto participants.

As for processes, ::=coind indicates that global types are defined coinductively.
Again, we focus on regular terms.

Sequential composition (;) has higher precedence than choice (⊞). When I is a

singleton, a choice p → q : ⊞i∈Iλi; Gi will be rendered simply as p
λ
→ q ; G. In

writing global types, we omit the final End.
Given a global type, the sequences of decorations of nodes and edges on the

path from the root to an edge in the tree of the global type are traces, in the sense of
Definition 2.3. We denote by Tr+(G) the set of traces of G. By definition, Tr+(End) = ∅
and each trace in Tr+(G) is non-empty.

The set of participants of a global type G, part(G), is defined to be the union of the
sets of participants of all its traces, namely

part(G) =
⋃
σ∈Tr+(G) part(σ)

Note that the regularity assumption ensures that the set of participants is finite.

The projection of a global type onto participants is given in Figure 2. As usual,
projection is defined only when it is defined on all participants. Because of the
simplicity of our calculus, the projection of a global type, when defined, is simply a
process. The definition is coinductive, so a global type with an infinite (regular) tree
produces a process with a regular tree. The projection of a choice type on the sender
produces an output choice, i.e. a process sending one of its possible messages to the
receiver and then acting according to the projection of the corresponding branch.
Similarly for the projection on the receiver, which produces a process which is an
input choice. Projection of a choice type on the other participants is defined only if
it produces the same process for all the branches of the choice. This is a standard
condition for multiparty session types [38].

Our coinductive definition of global types is more permissive than that based
on the standard µ-notation used in [38], because it allows more global types to be
projected, as shown by the following example.

Example 6.2. The global type G = p→ q : (λ1; q
λ3
→ r⊞ λ2; G) is projectable and

• G↾p = P = q!λ1 ⊕ q!λ2; P

• G↾q = Q = p?λ1; r!λ3 + p?λ2; Q
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• G↾ r = q?λ3

On the other hand, the corresponding global type based on the µ-notation

G′ = µt. p→ q : (λ1; q
λ3
→ r⊞ λ2; t)

is not projectable because G′↾ r is not defined.

To achieve progress, we need to ensure that each network participant occurs in
every computation, whether finite or infinite. This means that each type participant
must occur in every path of the tree of the type. Projectability already ensures that
each participant of a choice type occurs in all its branches. This implies that if one
branch of the choice gives rise to an infinite path, either the participant occurs at
some finite depth in this path, or this path crosses infinitely many branching points
in which the participant occurs in all branches. In the latter case, since the depth of
the participant increases when crossing each branching point, there is no bound on
the depth of the participant over all paths of the type. Hence, to ensure that all type
participants occur in all paths, it is enough to require the existence of such bounds.
This motivates the following definition of depth and boundedness.

Definition 6.3 (Depth and boundedness).

Let the two functions depth(σ, p) and depth(G, p) be defined by:

depth(σ, p) =


n if σ = σ1 ·α · σ2 and |σ1 | = n − 1 and p < part(σ1) and p ∈ part(α)

0 otherwise

Then
depth(G, p) = sup{depth(σ, p) | σ ∈ Tr+(G)}

We say that a global type G is bounded if depth(G′, p) is finite for all subtrees G′ of
G and for all participants p.

If depth(G, p) is finite, then there are no paths in the tree of G in which p is delayed
indefinitely. Note that if depth(G, p) is finite, G may have subtrees G′ for which
depth(G′, p) is infinite as the following example shows.

Example 6.4. Consider G′ = q
λ
→ r; G where G is as defined in Example 6.2. Then we

have:
depth(G′, p) = 2 depth(G′, q) = 1 depth(G′, r) = 1

whereas
depth(G, p) = 1 depth(G, q) = 1 depth(G, r) = ∞

since
Tr+(G) = {pqλ2 · · · pqλ2︸          ︷︷          ︸

n

·pqλ1 · qrλ3 | n ≥ 0} ∪ {pqλ2 · · ·pqλ2 · · · }

and sup{2, 3, . . .} = ∞.
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The depths of the participants in G which are not participants of its root com-
munication decrease in the immediate subtrees of G.

Proposition 6.5. If G = p → q : ⊞i∈Iλi; Gi and r ∈ part(G)\{p, q}, then depth(G, r) >
depth(Gi, r) for all i ∈ I.

Proof Each trace σ ∈ Tr+(G) is of the shape pqλi · σ
′ where i ∈ I and σ′ ∈ Tr+(Gi).

We can now show that the definition of projection given in Figure 2 is sound for
bounded global types.

Lemma 6.6. If G is bounded, then G↾ r is a partial function for all r.

Boundedness and projectability single out the global types we want to use in
our type system.

Definition 6.7 (Well-formed global types). We say that the global type G is well
formed if G is bounded and G↾p is defined for all p.

Clearly it is sufficient to check that G ↾ p is defined for all p ∈ part(G), since
otherwise G↾p = 0.

6.2. Type System

0 ≤ 0 [ ≤ -0]
Pi ≤ Qi i ∈ I

Σi∈I∪Jp?λi; Pi ≤Σi∈Ip?λi; Qi

=====================================[ ≤-In]
Pi ≤ Qi i ∈ I

⊕
i∈Ip!λi; Pi ≤

⊕
i∈I p!λi; Qi

===================================[ ≤-Out]

Pi ≤ G↾pi i ∈ I part(G) ⊆ {pi | i ∈ I}

⊢Πi∈Ipi[[ Pi ]] : G
[Net]

Figure 3: Preorder on processes and network typing rule.

The definition of well-typed network is given in Figure 3. We first define a
preorder on processes, P ≤ Q, meaning that process P can be used where we expect
process Q. More precisely, P ≤ Q if either P is equal to Q, or we are in one of two
situations: either both P and Q are output processes with the same receiver and
choice of messages, and their continuations after the send are two processes P′ and
Q′ such that P′ ≤ Q′; or they are both input processes with the same sender and
choice of messages, and P may receive more messages than Q (and thus have more
behaviours) but whenever it receives the same message as Q their continuations are
two processes P′ and Q′ such that P′ ≤ Q′. The rules are interpreted coinductively,
since the processes may have infinite (regular) trees.
A network is well typed if all its participants have associated processes that behave
as specified by the projections of a global type. In Rule [Net], the condition part(G) ⊆
{pi | i ∈ I} ensures that all participants of the global type appear in the network.
Moreover it permits additional participants that do not appear in the global type,
allowing the typing of sessions containing p[[ 0 ]] for a fresh p — a property required
to guarantee invariance of types under structural congruence of networks.
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p→ q :⊞i∈Iλi; Gi

pqλ j
−−−→ G j j ∈ I [Ecomm]

Gi
α
−→ G′i for all i ∈ I part(α) ∩ {p, q} = ∅

[Icomm]
p→ q :⊞i∈Iλi; Gi

α
−→ p→ q :⊞i∈Iλi; G′i

Figure 4: LTS for global types.

Example 6.8. The first network of Example 5.14 and the network of Example 5.16 can be
typed respectively by

G = p→ q : (λ; G⊞ λ′)
G′ = p

λ1
→ q; q

λ2
→ r; r

λ3
→ s

It is handy to define the LTS for global types given in Figure 4. Rule [Icomm]
is justified by the fact that in a projectable global type p → q : ⊞i∈Iλi; Gi, the
behaviours of the participants different from p and q are the same in all branches,
and hence they are independent from the choice and may be executed before it.
This LTS respects well-formedness of global types, as shown in Proposition 6.10.

We start with a lemma relating the projections of a well-formed global type with
its transitions.

Lemma 6.9. Let G be a well-formed global type.

1. If G↾p =
⊕

i∈I q!λi; Pi and G↾q = Σ j∈Jp?λ′
j
; Q j, then I = J, λi = λ

′
i
, G

pqλi
−−−→ Gi,

Gi↾p = Pi and Gi↾q = Qi for all i ∈ I.

2. If G
pqλ
−−−→ G′, then G ↾ p =

⊕
i∈I q!λi; Pi, G ↾ q = Σi∈Ip?λi; Qi, where λi = λ for

some i ∈ I, and G′↾ r = G↾ r for all r < {p, q}.

Proposition 6.10. If G is a well-formed global type and G
pqλ
−−−→ G′, then G′ is a well-formed

global type.

Proof If G
pqλ
−−−→ G′, by Lemma 6.9(1) and (2) G′ ↾ r is defined for all r. The proof

that depth(G′′, r) for all r and G′′ subtree of G′ is easy by induction on the transition
rules of Figure 4.

Given the previous proposition, we will focus on well-formed global types from

now on.

We end this section with the expected proofs of Subject Reduction, Session
Fidelity [38, 39] and Progress [19, 50], which use Inversion and Canonical Form
lemmas.

Lemma 6.11 (Inversion). If ⊢ N : G, then P ≤ G↾p for all p[[ P ]] ∈ N.
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Lemma 6.12 (Canonical Form). If ⊢ N : G and p ∈ part(G), then p[[ P ]] ∈ N and
P ≤ G↾p .

Theorem 6.13 (Subject Reduction). If ⊢ N : G and N
α
−→ N′, then G

α
−→ G′ and

⊢ N′ : G′.

Proof Let α = pqλ. By Rule [Com] of Figure 1, N ≡ p[[ P ]] ‖ q[[ Q ]] ‖ N′′ where
P =
⊕

i∈I q!λi; Pi and Q = Σ j∈Jp?λ j; Q j and N′ ≡ p[[ Ph ]] ‖ q[[ Qh ]] ‖ N′′ and λ = λh

for some h ∈ I ∩ J. From Lemma 6.11 we get

1. G↾p =
⊕

i∈I q!λi; P′
i

with Pi ≤ P′
i

for all i ∈ I, from Rule [ ≤ -Out] of Figure 3,
and

2. G ↾ q = Σ j∈J′p?λ j; Q′
j

with Q j ≤ Q′
j

for all j ∈ J′ ⊆ J, from Rule [ ≤ -In] of

Figure 3, and

3. R ≤ G↾ r for all r[[ R ]] ∈ N′′.

By Lemma 6.9(1) G
pqλh
−−−→ Gh and Gh ↾ p = P′

h
and Gh ↾ q = Q′

h
. By Lemma 6.9(2)

Gh ↾ r = G↾ r for all r < {p, q}. We can then choose G′ = Gh.

Theorem 6.14 (Session Fidelity). If ⊢ N : G and G
α
−→ G′, then N

α
−→ N′ and ⊢ N′ : G′.

Proof Let α = pqλ. By Lemma 6.9(2) G↾p =
⊕

i∈I p!λi; Pi and G↾q = Σi∈Ip?λi; Qi

and λ = λi for some i ∈ I and G′ ↾ r = G ↾ r for all r < {p, q}. By Lemma 6.9(1)
G′ ↾ p = Pi and G′ ↾ q = Qi. From Lemma 6.12 and Lemma 6.11 we get
N ≡ p[[ P ]] ‖ q[[ Q ]] ‖ N′′ and

1. P =
⊕

i∈I q!λi; P′
i

with P′
i
≤ Pi for i ∈ I, from Rule [ ≤ -Out] of Figure 3, and

2. Q = Σ j∈Jp?λ j; Q′
j
with Q′

j
≤ Q j for j ∈ I ⊆ J, from Rule [ ≤ -In] of Figure 3, and

3. R ≤ G↾ r for all r[[ R ]] ∈ N′′.

We can then choose N′ = p[[ P′
i
]] ‖ q[[ Q′

i
]] ‖ N′′.

We are now able to prove that in a typable network, every participant whose
process is not terminated may eventually perform a communication. This property
is generally referred to as progress.

Theorem 6.15 (Progress). If ⊢ N : G and p[[ P ]] ∈ N, then N
σ·α
−−→ N′ and p ∈ part(α).

Proof We prove by induction on d = depth(G, p) that: if ⊢ N : G and p[[ P ]] ∈ N,

then G
σ ·α
−−−→ G′ with p ∈ part(α). This will imply N

σ ·α
−−−→ N′ by Session Fidelity

(Theorem 6.14).

Case d = 1. In this case G = q→ r :⊞i∈Iλi; Gi and p ∈ {q, r} and G
qrλh
−−−→ Gh for some

h ∈ I by Rule [Ecomm].
Case d > 1. In this case G = q → r : ⊞i∈Iλi; Gi and p < {q, r}. By Lemma 6.5 this

implies depth(Gi, p) < d for all i ∈ I. Using Rule [Ecomm] we get G
qrλi
−−−→ Gi for all
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i ∈ I. By Session Fidelity, N
qrλi
−−−→ Ni and ⊢ Ni : Gi for all i ∈ I. Moreover, since

p < {q, r} we also have p[[ P ]] ∈ Ni for all i ∈ I. By induction Gi
σi ·αi
−−−→ G′

i
with

p ∈ part(αi) for all i ∈ I. We conclude G
qrλi·σi ·αi
−−−−−−−→ G′

i
for all i ∈ I.

The proof of the progress theorem shows that the execution strategy which uses only
Rule [EComm] is fair, since there are no infinite transition sequences where some
participant is stuck. This is due to the boundedness condition on global types.

Example 6.16. The second network of Example 5.14 and the network of Example 5.19
cannot be typed because they do not enjoy progress. Notice that the candidate global type
for the second network of Example 5.14:

G′′ = p→ q : (λ; G′′⊞ λ′; p
λ
→ r; r

λ′
→ s)

is not bounded, given that depth(G′′, r) and depth(G′′, s) are not finite.
Moreover we cannot define a global type whose projections are greater than or equal to the
processes associated with the network of Example 5.19.

7. Event Structure Semantics of Global Types

We define now the event structure associated with a global type, which will be
a PES whose events are equivalence classes of particular traces.

We recall that a trace σ ∈ Traces is a finite sequence of communications (see
Definition 2.3). We will use the following notational conventions:

• We denote by σ[i] the i-th element of σ, i > 0.

• If i ≤ j, we define σ[i ... j] = σ[i] · · · σ[ j] to be the subtrace of σ consisting of the
( j − i + 1) elements starting from the i-th one and ending with the j-th one. If
i > j, we convene σ[i ... j] to be the empty trace ǫ.

If not otherwise stated we assume that σ has n elements, so σ = σ[1 ... n].

We start by defining an equivalence relation on Traces which allows swapping
of communications with disjoint participants.

Definition 7.1 (Permutation equivalence). The permutation equivalence on Traces is
the least equivalence ∼ such that

σ ·α ·α′ · σ′ ∼ σ ·α′ ·α · σ′ if part(α) ∩ part(α′) = ∅

We denote by [σ]∼ the equivalence class of the trace σ, and by Traces/∼ the set of equivalence
classes on Traces. Note that [ǫ]∼ = {ǫ} ∈ Traces/∼, and [α]∼ = {α} ∈ Traces/∼ for any α.
Moreover |σ′| = |σ| for all σ′ ∈ [σ]∼.

The events associated with a global type, called g-events and denoted by γ, γ′,
are equivalence classes of particular traces that we call pointed. Intuitively, in a
pointed trace all communications but the last one are causes of some subsequent
communication. Formally:
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Definition 7.2 (Pointed trace). A trace σ = σ[1 ... n] is said to be pointed if

for all i, 1 ≤ i < n, part(σ[i]) ∩ part(σ[(i + 1) ... n]) , ∅

Note that the condition of Definition 7.2 must be satisfied only by the σ[i] with i < n,
thus it is vacuously satisfied by any trace of length 1.

Example 7.3. Let α1 = pqλ1, α2 = rsλ2 and α3 = rpλ3. Then σ1 = α1 and σ3 =

α1 ·α2 ·α3 are pointed traces, while σ2 = α1 ·α2 is not a pointed trace.

We use last(σ) to denote the last communication of σ.

Lemma 7.4. Let σ be a pointed trace. If σ ∼ σ′, then σ′ is a pointed trace and last(σ) =
last(σ′).

Proof Let σ ∼ σ′. By Definition 7.1 σ′ is obtained from σ by m swaps of adjacent
communications. The proof is by induction on such a number m.
If m = 0 the result is obvious.
If m > 0, then there exists σ0 obtained from σ by m − 1 swaps of adjacent communi-
cations and there are σ1, σ2, α and α′ such that

σ0 = σ1 ·α ·α
′ · σ2 ∼ σ1 ·α

′ ·α · σ2 = σ
′ and part(α) ∩ part(α′) = ∅

By induction hypothesis σ0 is a pointed trace and last(σ) = last(σ0). Therefore
σ2 , ǫ since otherwise α′ would be the last communication of σ0 and it cannot be
part(α) ∩ part(α′) = ∅. This implies last(σ) = last(σ′).
To show that σ′ is pointed, since all the communications in σ1 and σ2 have the same
successors in σ0 and σ′, all we have to prove is that the required property holds for
the two swapped communications α′ and α in σ′, namely:

part(α′) ∩ (part(α) ∪ part(σ2)) , ∅

part(α) ∩ part(σ2) , ∅

Since part(α) ∩ part(α′) = ∅, these two statements are respectively equivalent to:

part(α′) ∩ part(σ2) , ∅

part(α) ∩ (part(α′) ∪ part(σ2)) , ∅

The last two statements are known to hold since σ0 is pointed by induction hypoth-
esis.

Definition 7.5 (Global event). Let σ = σ′ ·α be a pointed trace. Then γ = [σ]∼ is a
global event, also called g-event, with communication α, notation cm(γ) = α.
We denote by GE the set of g-events.

Notice that cm(·) is well defined due to Lemma 7.4.

We now introduce an operator called “retrieval”, which applied to a communi-
cation α and a g-event γ, yields the g-event corresponding to γ before the commu-
nication α is executed.
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Definition 7.6 (Retrieval of g-events before communications).

1. The retrieval operator ◦ applied to a communication and a g-event is defined by

α ◦ [σ]∼ =


[α · σ]∼ if part(α) ∩ part(σ) , ∅

[σ]∼ otherwise

2. The operator ◦ naturally extends to nonempty traces

(α · σ) ◦ γ = α ◦ (σ ◦ γ) σ , ǫ

Using the retrieval, we can define the mapping ev(·) which, applied to a trace
σ, gives the g-event representing the communication last(σ) prefixed by its causes
occurring in σ.

Definition 7.7. The g-event generated by a trace is defined by:

ev(σ · α) = σ ◦ [α]∼

Clearly cm(ev(σ)) = last(σ).

We proceed now to define the causality and conflict relations on g-events. To
define the conflict relation, it is handy to define the projection of a trace on a
participant, which gives the sequence of the participant’s actions in the trace.

Definition 7.8 (Projection). 1. The projection of α onto r, α@r , is defined by:

pqλ@r =



q!λ if r = p

p?λ if r = q

ǫ if r < {p, q}

2. The projection of a trace σ onto r, σ@r , is defined by:

ǫ@r = ǫ (α · σ)@r = α@r · σ@r

Definition 7.9 (Causality and conflict relations on g-events). The causality relation
≤ and the conflict relation # on the set of g-events GE are defined by:

1. γ ≤ γ′ if γ = [σ]∼ and γ′ = [σ · σ′]∼ for some σ, σ′;

2. [σ]∼ # [σ′]∼ if σ@p #σ′@p for some p.

If γ = [σ ·α · σ′ ·α′]∼, then the communication α must be done before the com-
munication α′. This is expressed by the causality [σ · α]∼ ≤ γ. An example is
[pqλ]∼ ≤ [rsλ′ · pqλ · sqλ′′]∼.
As regards conflict, note that if σ ∼ σ′ then σ@p = σ′@p for all p, because ∼ does
not swap communications which share some participant. Hence, conflict is well
defined, since it does not depend on the trace chosen in the equivalence class.
The condition σ@p # σ′@p states that participant p does the same actions in both
traces up to some point, after which it performs two different actions in σ and
σ′. For example [pqλ · rpλ1 · qpλ′]∼ # [pqλ · rpλ2]∼, since (pqλ · rpλ1 · qpλ′)@p =

q!λ · r?λ1 · q?λ′ # q!λ · r?λ2 = (pqλ · rpλ2)@p .
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Definition 7.10 (Event structure of a global type). The event structure of the global
type G is the triple

SG(G) = (GE(G),≤G, # G)

where:

1. GE(G) = {ev(σ) | σ ∈ Tr+(G)}

2. ≤G is the restriction of ≤ to the set GE(G);

3. # G is the restriction of # to the set GE(G).

Note that, in case the tree of G is infinite, the set GE(G) is denumerable.

Example 7.11. Let G1 = p
λ1
→ q; r

λ2
→ s; r

λ3
→ p and G2 = r

λ2
→ s; p

λ1
→ q; r

λ3
→ p. Then

GE(G1) = GE(G2) = {γ1, γ2, γ3} where

γ1 = {pqλ1} γ2 = {rsλ2} γ3 = {pqλ1 · rsλ2 · rpλ3, rsλ2 · pqλ1 · rpλ3}

with γ1 ≤ γ3 and γ2 ≤ γ3. The configurations are {γ1}, {γ2}, {γ1, γ2} and {γ1, γ2, γ3}, and
the proving sequences are

γ1 γ2 γ1;γ2 γ2;γ1 γ1;γ2;γ3 γ2;γ1;γ3

If G′ is as in Example 6.8, then GE(G′) = {γ1, γ2, γ3} where

γ1 = {pqλ1} γ2 = {pqλ1 ·qrλ2} γ3 = {pqλ1 · qrλ2 · rsλ3}

with γ1 ≤ γ2 ≤ γ3. The configurations are {γ1}, {γ1, γ2} and {γ1, γ2, γ3}, and there is a
unique proving sequence corresponding to each configuration.

Theorem 7.12. Let G be a global type. Then SG(G) is a prime event structure.

Proof We show that ≤ and # satisfy Properties (2) and (3) of Definition 3.1.
Reflexivity and transitivity of ≤ follow from the properties of concatenation and
of permutation equivalence. As for antisymmetry, by Definition 7.9(1) [σ]∼ ≤ [σ′]∼
implies σ′ ∼ σ · σ1 for some σ1 and [σ′]∼ ≤ [σ]∼ implies σ ∼ σ′ ·σ2 for some σ2.
Hence σ ∼ σ · σ1 · σ2, which implies σ1 = σ2 = ǫ. Irreflexivity and symmetry of #
follow from the corresponding properties of # on p-events.
As for conflict hereditariness, suppose that [σ]∼ # [σ′]∼ ≤ [σ′′]∼. By Definition 7.9(1)
and (2) we have respectively that σ′ · σ1 ∼ σ

′′ for some σ1 and σ@p #σ′@p for
some p. Hence also σ@p # (σ′ · σ1)@p , whence by Definition 7.9(2) we conclude that
[σ]∼ # [σ′′]∼.

Observe that while our interpretation of networks as FESs exactly reflects the
concurrency expressed by the syntax of networks, our interpretation of global types
as PESs exhibits more concurrency than that given by the syntax of global types.

We conclude this section with two pictures that summarise the features of our
ES semantics and illustrate the difference between the FES of a network and the
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N = p[[ q!λ1; r!λ ⊕ q!λ2; r!λ ]] ‖ q[[ p?λ1; s!λ′ + p?λ2; s!λ′ ]] ‖ r[[ p?λ; s!λ′′ ]] ‖
s[[ q?λ′; r?λ′′ ]]

ν1 = {p :: q!λ1, q :: p?λ1}

ν′′
1
= {q :: p?λ1 · s!λ′, s :: q?λ′}

ν = {r :: p?λ · s!λ′′, s :: q?λ′ · r?λ′′}

ν2 = {p :: q!λ2, q :: p?λ2}

ν′′
2
= {q :: p?λ2 · s!λ′, s :: q?λ′}

ν′
1
= {p :: q!λ1 · r!λ, r :: p?λ} ν′

2
= {p :: q!λ2·r!λ , r :: p?λ}

#

❄ ❄

·············

····························

❆
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❆
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❅
❅

❅
❅❅❘
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Figure 5: FES of the network N.

G = p→ q : (λ1; p
λ
→ r; q

λ′
→ s; r

λ′′
→ s⊞ λ2; p

λ
→ r; q

λ′
→ s; r

λ′′
→ s)

γ1 = [pqλ1]∼

γ′′
1
= [pqλ1 · qsλ′]∼

γ = [pqλ1 · prλ · qsλ′ · rsλ′′]∼ γ′ = [pqλ2 · prλ · qsλ′ · rsλ′′]∼

γ2 = [pqλ2]∼

γ′
1
= [pqλ1 · prλ]∼ γ′′2 = [pqλ2 · qsλ′]∼ γ′2 = [pqλ2 · prλ]∼

#

❅
❅
❅
❅❅❘

�
�

�
��✠

❅
❅
❅
❅❅❘

�
�

�
��✠

❅
❅
❅
❅❅❘

················ ················

�
�

�
��✠

❅
❅
❅
❅❅❘

�
�

�
��✠

Figure 6: PES of the type G.

PES of its type. In general these two ESs are not isomorphic, unless the FES of the
network is itself a PES.

Consider the network FES pictured in Figure 5, where the arrows represent the
flow relation and all the n-events on the left of the dotted line are in conflict with all
the n-events on the right of the line. In particular, notice that the conflicts between
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n-events with a common location are deduced by Clause (2a) of Definition 5.7, while
the conflicts between n-events with disjoint sets of locations, such as ν′

1
and ν′′

2
, are

deduced by Clause (2b) of Definition 5.7. Observe also that the n-event ν has two
different causal sets inNE(N), namely {ν′

1
, ν′′

1
} and {ν′

2
, ν′′

2
}. The reader familiar with

ESs will have noticed that there are also two prime configurations5 whose maximal
element is ν, namely {ν1, ν

′
1
, ν′′

1
, ν} and {ν2, ν

′
2
, ν′′

2
, ν}. It is easy to see that the network

N can be typed with the global type shown in Figure 6.
Consider now the PES of the type G pictured in Figure 6, where the arrows

represent the covering relation of the partial order of causality and inherited conflicts
are not shown. Note that while the FES of N has a unique maximal n-event ν, the
PES of its type G has two maximal g-events γ and γ′. This is because an n-event
only records the computations that occurred at its locations, while a g-event records
the global computation and keeps a record of each choice, including those involving
locations that are disjoint from those of its last communication. Indeed, g-events
correspond exactly to prime configurations.

Note that the FES of a network may be easily recovered from the PES of its
global type by using the following function gn(·) that maps g-events to n-events:

gn(γ) = {p :: σ@p , q :: σ@q } if γ = [σ]∼ with part(cm(γ)) = {p, q}

On the other hand, the inverse construction is not as direct. First of all, an
n-event in the network FES may give rise to several g-events in the type PES, as
shown by the n-event ν in Figure 5, which gives rise to the pair of g-events γ and γ′

in Figure 6. Moreover, the local information contained in an n-event is not sufficient
to reconstruct the corresponding g-events: for each n-event, we need to consider all
the prime configurations that culminate with that event, and then map each of these
configurations to a g-event. Hence, we need a function ng(·) that maps n-events to
sets of prime configurations of the FES, and then maps each such configuration to
a g-event. We will not explicitly define this function here, since we miss another
important ingredient to compare the FES of a network and the PES of its type,
namely a structural characterisation of the FESs that represent typable networks.
Indeed, if we started from the FES of a non typable network, this construction
would not be correct. Consider for instance the network N′ obtained from N by
omitting the output r!λ from the second branch of the process of p. Then the FES
of N′ would not contain the n-event ν′

2
and the event ν would have the unique

causal set {ν′
1
, ν′′

1
}, and the unique prime configuration culminating with ν would

be {ν1, ν
′
1
, ν′′

1
, ν}. Then our construction would give a PES that differs from that of

type G only for the absence of the g-events γ′
2

and γ′. However, the network N′

is not typable and thus we would expect the construction to fail. Note that in the
FES of N′, the n-event ν′′

2
is a cause of ν but does not belong to any causal set of

ν. Thus a possible well-formedness property to require for FESs to be images of a
typable network would be that each cause of each n-event belong to some causal
set of that event. However, this would still not be enough to exclude the FES of
the non typable network N′′ obtained from N′ by omitting the output s!λ′ from the

5A prime configuration is a configuration with a unique maximal element, its culminating event.
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second branch of the process of q.
To conclude, in the absence of a semantic counterpart for the well-formedness

properties of global types, which eludes us for the time being, we will follow another
approach here, namely we will compare the FESs of networks and the PESs of their
types at a more operational level, by looking at their configuration domains and by
relating their configurations to the transition sequences of the underlying networks
and types.

8. Equivalence of the two Event Structure Semantics

ν1; . . . ; νn = nec(σ)
Th.8.8

uu

N σ = cm(ν1) · . . . · cm(νn)

SR

��

//

Th.8.7jj

N′

G

Th.8.15 ))

σ = cm(γ1) · . . . · cm(γn) //

SF

OO

G′

gec(σ) = γ1; . . . ;γn

Th.8.16

55

Figure 7: Isomorphism proof in a nutshell.

In this section we establish our main result for typable networks, namely the
isomorphism between the domain of configurations of the FES of such a network
and the domain of configurations of the PES of its global type. To do so, we will first
relate the transition sequences of networks and global types to the configurations of
their respective ESs. Then, we will exploit our results of Subject Reduction (Theo-
rem 6.13) and Session Fidelity (Theorem 6.14), which relate the transition sequences
of networks and their global types, to derive a similar relation between the configu-
rations of their respective ESs. The schema of our proof is described by the diagram
in Figure 7. Here, SR stands for Subject Reduction and SF for Session Fidelity,
ν1; . . . ; νn and γ1; . . . ;γn are proving sequences of SN (N) and SG(G), respectively.
Finally nec(σ) and gec(σ) denote the proving sequence of n-events and the proving
sequence of g-events corresponding to the trace σ (as given in Definition 8.3 and
Definition 8.13). Theorem 8.8 says that, if ν1; · · · ; νn is a proving sequence of SN (N),

then N
σ
−→ N′, where σ = cm(ν1) · . . . · cm(νn). By Subject Reduction (Theorem 6.13)

G
σ
−→ G′. This implies that gec(σ) is a proving sequence of SG(G) by Theorem 8.15.

Dually, Theorem 8.16 says that, if γ1; · · · ;γn is a proving sequence of SG(G), then

G
σ
−→ G′, where σ = cm(γ1) · . . . · cm(γn). By Session Fidelity (Theorem 6.14) N

σ
−→ N′.

Lastly nec(σ) is a proving sequence of SN (N) by Theorem 8.7. The equalities in the
top and bottom lines are proved in Lemmas 8.4(1a) and 8.14(1).

This section is divided in two subsections: Section 8.1, which handles the upper
part of the above diagram, and Section 8.2, which handles the lower part of the
diagram and then connects the two parts using both SR and SF within Theorem 8.18,
our closing result.
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8.1. Relating Transition Sequences of Networks and Proving Sequences of their ESs

The aim of this subsection is to relate the traces that label the transition sequences
of networks with the configurations of their FESs. We start by showing how network
communications affect n-events in the associated ES. To this end we define two
partial operators ♦ and �, which applied to a communication α and an n-event ν
yield another n-event ν′ (when defined), which represents the event ν before the
communication α or after the communication α, respectively. We call “retrieval”
the ♦ operator (in agreement with Definition 7.6) and “residual” the � operator.

Formally, the operators ♦ and � are defined as follows.

Definition 8.1 (Retrieval and residual of n-events with respect to communications).

1. The retrieval operator ♦ applied to a communication and a located event returns
the located event obtained by prefixing the process event by the projection of the
communication:

α♦ (p :: η) = p :: (α@p ) · η

2. The residual operator � applied to a communication and a located event returns
the located event obtained by erasing from the process event the projection of the
communication (if possible):

α� (p :: η) = p :: η′ if η = (α@p ) · η′

3. The operators ♦ and � naturally extend to n-events and to traces:

α♦ ({p :: η, q :: η′}) = {α♦ (p :: η), α♦ (q :: η′)}
α� ({p :: η, q :: η′}) = {α� (p :: η), α� (q :: η′)}

ǫ♦ ν = ν (α · σ) ♦ ν = α♦ (σ♦ ν) (α · σ)� ν = σ� (α� ν) σ , ǫ

Note that the operator ♦ is always defined. Instead pqλ� r :: η is undefined if
r ∈ {p, q} and either η is just one atomic action or pqλ@r is not the first atomic action
of η.

The retrieval and residual operators are inverse of each other. Moreover they
preserve the flow and conflict relations.

Lemma 8.2 (Properties of retrieval and residual for n-events).

1. If α� ν is defined, then α♦ (α� ν) = ν;

2. α� (α♦ ν) = ν;

3. If ν ≺ ν′, then α♦ ν ≺ α♦ ν′;

4. If ν ≺ ν′ and both α� ν and α� ν′ are defined, then α� ν ≺ α� ν′;

5. If ν # ν′, then α♦ ν #α♦ ν′;
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6. If ν # ν′ and both α� ν and α� ν′ are defined, then α� ν #α� ν′;

7. If α♦ ν #α♦ ν′, then ν # ν′.

Starting from the trace σ , ǫ that labels a transition sequence in a network,
one can reconstruct the corresponding sequence of n-events in its FES. Recall that
σ[1 ... i] is the prefix of length i of σ and σ[i ... j] is the empty trace if i ≥ j.

Definition 8.3 (Building sequences of n-events from traces). Ifσ is a trace withσ[i] =
piqiλi, 1 ≤ i ≤ n, we define the sequence of n-events corresponding to σ by

nec(σ) = ν1; · · · ; νn

where νi = σ[1 ... i − 1] ♦ {pi :: qi!λi, qi :: pi?λi} for 1 ≤ i ≤ n.

It is immediate to see that, if σ = pqλ, then nec(σ) is the event {p :: q!λ, q :: p?λ}.

We show now that two n-events occurring in nec(σ) cannot be in conflict and
that from nec(σ) we can recover σ. Moreover we relate the retrieval and residual
operators with the mapping nec(·).

Lemma 8.4 (Properties of nec(·)).

1. Let nec(σ) = ν1; · · · ; νn. Then

(a) cm(νi) = σ[i] for all i, 1 ≤ i ≤ n;

(b) If 1 ≤ h, k ≤ n, then ¬(νh # νk).

2. ¬(nec(α) #α♦ ν) for all ν.

3. Let σ = α · σ′ and σ′ , ǫ. If nec(σ) = ν1; · · · ; νn and nec(σ′) = ν′
2
; · · · ; ν′n, then

α♦ ν′
i
= νi and α� νi = ν

′
i

for all i, 2 ≤ i ≤ n.

Proof (1a) Immediate from Definition 8.3, since cm(σ♦ ν) = cm(ν) for any event ν.
(1b) We show that neither Clause (2a) nor Clause (2b) of Definition 5.7 can be

used to derive νh # νk. Notice that νi = {pi :: σ[1 ... i]@pi , qi :: σ[1 ... i]@qi }. So if
p :: η ∈ νh and p :: η′ ∈ νk with h < k, then either η < η′ or η = η′. Therefore Clause
(2a) does not apply. If p :: η ∈ νh and q :: η′ ∈ νk and p , q and |η↾q | = |η′ ↾p |, then
it must be η ↾ q = (σ[1 ... h]@p ) ↾ q Z (σ[1 ... k]@q ) ↾ p = η′ ↾ p . Therefore Clause
(2b) cannot be used.

(2) We show that neither Clause (2a) nor Clause (2b) of Definition 5.7 can be used
to derive nec(α) #α♦ ν. Let part(α) = {p, q}. Then nec(α) = {p :: α@p , q :: α@q }.
Note that p :: η ∈ α♦ ν iff η = (α@p ) · η′ and p :: η′ ∈ ν. Since α@p < (α@p ) · η′,
Clause (2a) of Definition 5.7 cannot be used. Now suppose r :: η ∈ α♦ ν for some
r < {p, q}. In this case (α@p )↾ r = (α@q )↾ r = ǫ. Therefore, since ǫ Z ǫ, Clause (2b)
of Definition 5.7 does not apply.

(3) Notice that σ[i] = σ′[i − 1] for all i, 2 ≤ i ≤ n. Then, by Definition 8.3

νi = σ[1 ... i − 1]♦nec(σ[i]) = α♦ (σ[2 ... i − 1]♦nec(σ[i])) =
α♦ (σ′[1 ... i − 2] ♦nec(σ′[i − 1])) = α♦ ν′

i

for all i, 2 ≤ i ≤ n.
By Lemma 8.2(2) α♦ ν′

i
= νi implies α� νi = ν

′
i

for all i, 2 ≤ i ≤ n.
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It is handy to notice that if α� ν is undefined and ν is an event of a network with
communication α, then either ν = nec(α) or ν # nec(α).

Lemma 8.5. If N
α
−→ N′ and ν ∈ NE(N), then ν = nec(α) or ν # nec(α) or α� ν is defined.

Proof Let nec(α) = {p :: α@p , q :: α@q } and ν = {r :: η, s :: η′}. By Definition 8.1(3)
α� ν is defined iff η = (α@r ) · η0 and η′ = (α@s ) · η′

0
for some η0, η

′
0
.

There are 2 possibilities:

• {r, s} ∩ {p, q} = ∅. Then α@r = α@s = ǫ and α� ν = ν;

• {r, s} ∩ {p, q} , ∅. Suppose r = p. There are three possible subcases:

1. η = π · ζwith π , α@p . Then r :: η # p :: α@p and thus ν # nec(α);

2. η = α@p . Then either η′ = α@q and ν = nec(α), or η′ , α@q and
ν # nec(α) by Proposition 5.20;

3. η = (α@p ) · η0. Then α�p :: η = p :: η0. Now, if s , q we have α� s :: η′ =
s :: η′, and thus α� ν = {p :: η0, s :: η′}. Otherwise, ν = {p :: (α@p ) · η0, q ::
η′}. By Definition 5.5 p :: (α@p ) · η0 Ẑ q :: η′, which implies η′ =
(α@q ) · η′

0
for some η′

0
.

The following lemma, which is technically quite challenging, relates the n-events
of two networks which differ for one communication by means of the retrieval and
residual operators.

Lemma 8.6. Let N
α
−→ N′. Then

1. {nec(α)} ∪ {α♦ ν | ν ∈ NE(N′)} ⊆ NE(N);

2. {α� ν | ν ∈ NE(N) and α� ν defined} ⊆ NE(N′).

We may now prove the correspondence between the traces labelling the transi-
tion sequences of a network and the proving sequences of its FES.

Theorem 8.7. If N
σ
−→ N′, then nec(σ) is a proving sequence in SN (N).

Proof The proof is by induction on σ.

Base case. Let σ = α. From N
α
−→ N′ and Lemma 8.6(1) nec(α) ∈ NE(N). Since nec(α)

has no causes, by Definition 3.6 we conclude that nec(α) is a proving sequence in
SN (N).

Inductive case. Let σ = α · σ′. From N
σ
−→ N′ we get N

α
−→ N′′

σ′
−→ N′ for some N′′.

Let nec(σ) = ν1; · · · ; νn and nec(σ′) = ν′
2
; · · · ; ν′n. By induction nec(σ′) is a proving

sequence in SN (N′′).
We show that nec(σ) is a proving sequence in SN (N). By Lemma 8.4(1b) nec(σ′)
is conflict free. By Lemma 8.4(3) νi = α♦ ν

′
i

for all i, 2 ≤ i ≤ n. This implies
νi ∈ NE(N) for all i, 2 ≤ i ≤ n by Lemma 8.6(1) and ¬(ν1 # ν j) for all i, j, 2 ≤ i, j ≤ n
by Lemma 8.2(7). Finally, since ν1 = nec(α), by Lemma 8.4(2) we obtain ¬(ν1 # νi)
for all i, 2 ≤ i ≤ n. We conclude that nec(σ) is conflict-free and included in NE(N).
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Let ν ∈ NE(N) and ν ≺ νk for some k, 1 ≤ k ≤ n. This implies k > 1 since nec(α) has
no causes. Hence νk = α♦ ν

′
k
. By Lemma 8.5, we know that ν = nec(α) or ν # nec(α)

or α� ν is defined. We consider the three cases. Let part(α) = {p, q}.
Case ν = nec(α). In this case we conclude immediately since nec(α) = ν1 and 1 < k.
Case ν # nec(α). Since nec(α) = ν1, if ν1 ≺ νk we are done. If ν1 ⊀ νk, then
loc(νk)∩{p, q} = ∅ otherwise ν1 # νk. We get νk = α♦ ν

′
k
= ν′

k
. Since ν ≺ νk, there exists

r :: η ∈ ν and r :: η′ ∈ νk = ν
′
k

such that η < η′, where r < {p, q} because r ∈ loc(νk).

Since nec(σ′) is a proving sequence in SN (N′′), by Lemma 5.23 there is ν′
h
∈ NE(N′′)

such that r :: η ∈ ν′
h
. Since α♦ r :: η = r :: η we get r :: η ∈ νh. This implies νh ≺ νk,

where νh # ν by Proposition 5.20.
Case α� ν defined. We get α� ν ≺ ν′

k
by Lemma 8.2(4). Since nec(σ′) is a proving

sequence in SN (N′′), there is h < k such that either α� ν = ν′
h

or α� ν # ν′
h
≺ ν′

k
. In

the first case ν = α♦ (α� ν) = α♦ ν′
h
= νh by Lemma 8.2(1). In the second case:

• from α� ν # ν′
h

we get (α♦ (α� ν)) # (α♦ ν′
h
) by Lemma 8.2(5), which implies

ν # νh by Lemma 8.2(1), and

• from ν′
h
≺ ν′

k
we get (α♦ ν′

h
) ≺ (α♦ ν′

k
) by Lemma 8.2(3), namely νh ≺ νk.

Theorem 8.8. If ν1; · · · ; νn is a proving sequence in SN (N), then N
σ
−→ N′, where σ =

cm(ν1) · · · cm(νn).

Proof The proof is by induction on n.
Case n = 1. Let ν1 = {p :: ζ · q!λ, q :: ζ′ · p?λ}. Then cm(ν1) = pqλ. We first show that
ζ = ζ′ = ǫ. Assume ad absurdum that ζ , ǫ or ζ′ , ǫ. By narrowing, this implies
that there is ν ∈ NE(N) such that ν ≺ ν1, contradicting the fact that ν1 is a proving
sequence.
By Definition 5.13(1) we have N = p[[ P ]] ‖ q[[ Q ]] ‖ N0 with q!λ ∈ PE(P) and p?λ ∈
PE(Q). Whence by Definition 4.3(1) we get P =

⊕
i∈I q!λi; Pi and Q = Σ j∈Jp?λ j; Q j

where λ = λk for some k ∈ I ∩ J. Therefore

N
pqλ
−−−→ p[[ Pk ]] ‖ q[[ Qk ]] ‖ N0

Case n > 1. Let ν1 and N be as in the basic case, N′′ = p[[ Pk ]] ‖ q[[ Qk ]] ‖ N0 and
α = pqλ. Since ν1; · · · ; νn is a proving sequence, we have ¬(νl # νl′ ) for all l, l′ such
that 1 ≤ l, l′ ≤ n. Moreover, for all l, 2 ≤ l ≤ n we have νl , ν1 = nec(α), thus α� νl

is defined by Lemma 8.5. Let ν′
l
= α� νl for all l, 2 ≤ l ≤ n, then ν′

l
∈ NE(N′′) by

Lemma 8.6(2).
We show that ν′

2
; · · · ; ν′n is a proving sequence in SN (N′′). First notice that for all l,

2 ≤ l ≤ n, ¬(νl # νl′ ) implies ¬(ν′
l
# ν′

l′
) by Lemma 8.2(5) and (1). Let now ν ≺ ν′

h
for

some h, 2 ≤ h ≤ n. By Lemma 8.2(3) and (1) α♦ ν ≺ α♦ (α� νh) = νh. This implies
by Definition 3.6 that there is h′ < h such that either α♦ ν = νh′ or α♦ ν # νh′ ≺ νh.
Therefore, since ν′

l
is defined for all l, 2 ≤ l ≤ n, we get either ν = ν′

h′
by Lemma 8.2(2)

or ν # ν′
h′
≺ ν′

h
by Lemma 8.2(6) and (4).

By induction N′′
σ′
−→ N′ where σ′ = cm(ν′

2
) · · · cm(ν′n). Since cm(νl) = cm(ν′

l
) for all l,

2 ≤ l ≤ n we get σ = α ·σ′. Hence N
α
−→ N′′

σ′
−→ N′ is the required transition sequence.
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8.2. Relating Transition Sequences of Global Types and Proving Sequences of their ESs

In this subsection, we relate the traces that label the transition sequences of
global types with the configurations of their PESs. As for n-events, we need retrieval
and residual operators for g-events. The first operator was already introduced in
Definition 7.6, so we only need to define the second, which is given next.

Definition 8.9 (Residual of g-events after communications).

1. The residual operator • applied to a communication and a g-event is defined by:

α • [σ]∼ =


[σ′]∼ if σ ∼ α · σ′ and σ′ , ǫ

[σ]∼ if part(α) ∩ part(σ) = ∅

2. The operator • naturally extends to nonempty traces:

(α · σ) • γ = σ • (α • γ) σ , ǫ

The operator • gives the global event obtained by erasing the communication, if
it occurs in head position (modulo ∼) in the event and leaves the event unchanged
if the participants of the global event and of the communication are disjoint. Note
that the operator α • [σ]∼ is undefined whenever either [σ]∼ = {α} or one of the
participants of α occurs in σ but its first communication is different from α.

The following lemma gives some simple properties of the retrieval and residual
operators for g-events. The first five statements correspond to those of Lemma 8.2
for n-events. The last three statements give properties that are relevant only for the
operators ◦ and •.

Lemma 8.10 (Properties of retrieval and residual for g-events).

1. If α • γ is defined, then α ◦ (α • γ) = γ;

2. α • (α ◦ γ) = γ;

3. If γ1 < γ2, then α ◦ γ1 < α ◦ γ2;

4. If γ1 < γ2 and both α • γ1 and α • γ2 are defined, then α • γ1 < α • γ2;

5. If γ1 # γ2, then α ◦ γ1 # α ◦ γ2;

6. If γ < α ◦ γ′, then either γ = [α]∼ or α • γ < γ′;

7. If part(α1) ∩ part(α2) = ∅, then α1 ◦ (α2 ◦ γ) = α2 ◦ (α1 ◦ γ);

8. If part(α1)∩part(α2) = ∅ and bothα2•(α1 ◦ γ), α2•γ are defined, then α1◦(α2 • γ) =
α2 • (α1 ◦ γ).

The next lemma relates the retrieval and residual operator with the global types
which are branches of choices.
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Lemma 8.11. The following hold:

1. If γ ∈ GE(G), then pqλ ◦ γ ∈ GE(p → q : ⊞i∈Iλi; Gi), where λ = λk and G = Gk

for some k ∈ I;

2. If γ ∈ GE(p → q : ⊞i∈Iλi; Gi) and pqλk • γ is defined, then pqλk • γ ∈ GE(Gk),
where k ∈ I.

Proof (1) By Definition 7.10(1) γ ∈ GE(G) implies γ = ev(σ) for some σ ∈ Tr+(G).
Since pqλ ◦ γ = ev(pqλ ·σ) by Definition 7.6 and pqλ · σ ∈ Tr+(p → q : ⊞i∈Iλi; Gi)
we conclude pqλ ◦ γ ∈ GE(p→ q :⊞i∈Iλi; Gi) by Definition 7.10(1).

(2) By Definition 7.10(1) γ ∈ GE(p → q : ⊞i∈Iλi; Gi) implies γ = ev(σ) for some
σ ∈ Tr+(p → q : ⊞i∈Iλi; Gi). We get σ = pqλh · σ

′ with σ′ ∈ Tr+(Gh) or σ′ = ǫ for
some h ∈ I. The hypothesis pqλk • γ defined implies either h = k and σ′ , ǫ or
part(σ′) ∩ {p, q} = ∅ and pqλk • γ = ev(σ′) by Definition 8.9(1). In the first case
σ′ ∈ Tr+(Gk). In the second case σ′′ ∈ Tr+(Gk) for some σ′′ ∼ σ′ by definition of
projection, which prescribes the same behaviours to all participants different from
p, q, see Figure 2. We conclude pqλk • γ ∈ GE(Gk) by Definition 7.10(1).

The following lemma plays the role of Lemma 8.6 for n-events.

Lemma 8.12. Let G
α
−→ G′.

1. If γ ∈ GE(G′), then α ◦ γ ∈ GE(G);

2. If γ ∈ GE(G) and α • γ is defined, then α • γ ∈ GE(G′).

We show next that each trace gives rise to a sequence of g-events, compare with
Definition 8.3.

Definition 8.13 (Building sequences of g-events from traces). We define the sequence
of global events corresponding to a trace σ by

gec(σ) = γ1; · · · ;γn

where γi = ev(σ[1 ... i]) for all i, 1 ≤ i ≤ n.

We show that gec(·) has similar properties as nec(·), see Lemma 8.4(1). The
proof is straightforward.

Lemma 8.14. Let gec(σ) = γ1; · · · ;γn.

1. cm(γi) = σ[i] for all i, 1 ≤ i ≤ n.

2. If 1 ≤ h, k ≤ n, then ¬(γh # γk);

We may now prove the correspondence between the traces labelling the transi-
tion sequences of a global type and the proving sequences of its PES. Let us stress
the difference between the set of traces Tr+(G) of a global type G as defined at page
18 and the set of traces that label the transition sequences of G, which is a larger set
due to the internal Rule [Icomm] of the LTS for global types given in Figure 4.
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Theorem 8.15. If G
σ
−→ G′, then gec(σ) is a proving sequence in SG(G).

Proof By induction on σ.
Base case. Let σ = α, then gec(α) = [α]∼. We use a further induction on the inference

of the transition G
α
−→ G′.

Let G = p → q : ⊞i∈Iλi; Gi, G′ = Gh and α = pqλh for some h ∈ I. By Defini-
tion 7.10(1) [pqλh]∼ ∈ GE(G).

Let G = p → q : ⊞i∈Iλi; Gi and G′ = p → q : ⊞i∈Iλi; G′
i

and Gi
α
−→ G′

i
for all i ∈ I

and part(α) ∩ {p, q} = ∅. By induction [α]∼ ∈ GE(Gi) for all i ∈ I. By Lemma 8.11(1)
pqλi ◦ [α]∼ ∈ GE(G) for all i ∈ I. By Definition 7.10(1) pqλi ◦ [α]∼ = [α]∼, since
part(α)∩{p, q}=∅. We conclude [α]∼ ∈ GE(G).

Inductive case. Let σ = α · σ′ with σ′ , ǫ. From G
σ
−→ G′ we get G

α
−→ G0

σ′
−→ G′ for

some G0. Let gec(σ) = γ1; · · · ;γn and gec(σ′) = γ′
2
; · · · ;γ′n. By induction gec(σ′) is a

proving sequence in SG(G0). By Definitions 8.13 and 7.6 γi = α ◦ γ
′
i
, which implies

α • γi = γ
′
i

by Lemma 8.10(2) for all i, 2 ≤ i ≤ n.
We can show that γ1 = [α]∼ ∈ GE(G) as in the proof of the base case. By
Lemma 8.12(1) γi ∈ GE(G) since γ′

i
∈ GE(G0) and α • γi = γ

′
i

for all i, 2 ≤ i ≤ n.

We prove that gec(σ) is a proving sequence in SG(G). Let γ < γk for some k,
1 ≤ k ≤ n. Note that this implies k > 1. Since γk = α ◦ γ

′
k

by Lemma 8.10(6) either
γ = [α]∼ or α • γ < γ′

h
. If γ = [α]∼ = γ1 we are done. Otherwise α • γ ∈ GE(G0) by

Lemma 8.11(2). Since gec(σ′) is a proving sequence in SG(G0), there is h < k such
that α • γ = γ′

h
and this implies γ = α ◦ (α • γ) = α ◦ γ′

h
= γh by Lemma 8.10(1).

Theorem 8.16. If γ1; · · · ;γn is a proving sequence in SG(G), then G
σ
−→ G′, where σ =

cm(γ1) · · · · · cm(γn).

Proof The proof is by induction on the length n of the proving sequence. Let
cm(γ1) = α and {p, q} = part(α).
Case n = 1. Since γ1 is the first event of a proving sequence, we have γ1 = [α]∼. We
show this case by induction on d = depth(G, p) = depth(G, q).
Case d = 1. Let α = pqλ and G = p→ q :⊞i∈Iλi; Gi and λ = λh for some h ∈ I. Then

G
α
−→ Gh by rule [Ecomm].

Case d > 1. Let G = r → s : ⊞i∈Iλi; Gi and {r, s} ∩ {p, q} = ∅. By Definition 8.9(1)
rsλi • γ1 is defined for all i ∈ I since {r, s} ∩ {p, q} = ∅. This implies rsλi • γ1 ∈ GE(Gi)

for all i ∈ I by Lemma 8.11(2). By induction hypothesis Gi
α
−→ G′

i
for all i ∈ I. Then

we can apply rule [Icomm] to derive G
α
−→ r→ s :⊞i∈Iλi; G′

i
.

Case n > 1. Let G
α
−→ G′′ be the transition as obtained from the base case. We

show that α • γ j is defined for all j, 2 ≤ j ≤ n. If α • γk were undefined for some k,
2 ≤ k ≤ n, then by Definition 8.9(1) either γk = γ1 or γk = [σ]∼ with σ / α · σ′ and
part(α) ∩ part(σ) , ∅. In the second case α@ p #σ@ p or α@ q #σ@ q, which implies
γk #γ1. So both cases are impossible. If α • γ j is defined, by Lemma 8.12(2) we get
α • γ j ∈ GE(G′′) for all j, 2 ≤ j ≤ n.

We show that γ′
2
; · · · ;γ′n is a proving sequence in SG(G′′) where γ′

j
= α • γ j for all j,

2 ≤ j ≤ n. By Lemma 8.10(1) γ j = α ◦ γ
′
j

for all j, 2 ≤ j ≤ n. Then by Lemma 8.10(5)

no two events in the sequence γ′
2
; · · · ;γ′n can be in conflict. Let γ ∈ GE(G′′) and
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γ < γ′
h

for some h, 2 ≤ h ≤ n. By Lemma 8.12(1) α ◦γ and α ◦γ′
h

belong to GE(G). By
Lemma 8.10(3) α ◦ γ < α ◦ γ′

h
. By Lemma 8.10(1) α ◦ γ′

h
= γh. Let γ′ = α ◦ γ. Then

γ′ < γh implies, by Definition 3.6 and the fact that SG(G) is a PES, that there is k < h
such that γ′ = γk. By Lemma 8.10(1) we get γ = α • γ′ = α • γk = γ

′
k
.

Since γ′
2
; · · · ;γ′n is a proving sequence in SG(G′′), by induction G′′

σ′
−→ G′ where

σ′ = cm(γ′
2
) · . . . · cm(γ′n). Let σ = cm(γ1) · . . . · cm(γn). Since cm(γ′

j
) = cm(γ j) for

all j, 2 ≤ j ≤ n, we have σ = α · σ′. Hence G
α
−→ G′′

σ′
−→ G′ is the required transition

sequence.

The last ingredient required to prove our main theorem is the following separa-
tion result from [9] (Lemma 2.8 p. 12):

Lemma 8.17 (Separation [9]). Let S = (E,≺, # ) be a flow event structure and X,X′ ∈
C(S) be such that X ⊂ X′. Then there exist e ∈ X′\X such that X ∪ {e} ∈ C(S).

We may now finally show the correspondence between the configurations of the
FES of a network and the configurations of the PES of its global type. Let ≃ denote
isomorphism on domains of configurations.

Theorem 8.18 (Isomorphism). If ⊢ N : G, thenD(SN (N)) ≃ D(SG(G)).

Proof By Theorem 8.8 if ν1; · · · ; νn is a proving sequence of SN (N), then N
σ
−→ N′

where σ = cm(ν1) · · · cm(νn). By applying iteratively Subject Reduction (Theo-

rem 6.13) G
σ
−→ G′ and ⊢ N′ : G′. By Theorem 8.15 gec(σ) is a proving sequence of

SG(G).

By Theorem 8.16 if γ1; · · · ;γn is a proving sequence of SG(G), then G
σ
−→ G′

where σ = cm(γ1) · · · cm(γn). By applying iteratively Session Fidelity (Theorem 6.14)

N
σ
−→ N′ and ⊢ N′ : G′. By Theorem 8.7 nec(σ) is a proving sequence of SN (N).

Therefore we have a bijection between D(SN (N)) and D(SG(G)), given by
nec(σ)↔ gec(σ) for any σ generated by the (bisimilar) LTSs of N and G.

We show now that this bijection preserves inclusion of configurations. By
Lemma 8.17 it is enough to prove that if ν1; · · · ; νn ∈ C(SN (N)) is mapped to
γ1; · · · ;γn ∈ C(SG(G)), then ν1; · · · ; νn; ν ∈ C(SN (N)) iff γ1; · · · ;γn;γ ∈ C(SG(G)),
whereγ1; · · · ;γn;γ is the image of ν1; · · · ; νn; νunder the bijection. I.e. let nec(σ · α) =
ν1; · · · ; νn; ν and gec(σ · α) = γ1; · · · ;γn;γ. This implies σ = cm(ν1) · · · cm(νn) =
cm(γ1) · · · cm(γn) and α = cm(ν) = cm(γ) by Lemmas 8.4 and 8.14.

By Theorem 8.8, if ν1; · · · ; νn; ν is a proving sequence of SN (N), then N
σ
−→ N0

α
−→

N′. By applying iteratively Subject Reduction (Theorem 6.13) G
σ
−→ G0

α
−→ G′ and

⊢ N′ : G′. By Theorem 8.15 gec(σ · α) is a proving sequence of SG(G).

By Theorem 8.16, if γ1; · · · ;γn;γ is a proving sequence of SG(G), then G
σ
−→

G0
α
−→ G′. By applying iteratively Session Fidelity (Theorem 6.14) N

σ
−→ N0

α
−→ N′

and ⊢ N′ : G′. By Theorem 8.7 nec(σ · α) is a proving sequence of SN (N).
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9. Related Work and Conclusions

Event Structures (ESs) were introduced in Winskel’s PhD Thesis [59] and in the
seminal paper by Nielsen, Plotkin and Winskel [48], roughly in the same frame of
time as Milner’s calculus CCS [46]. It is therefore not surprising that the relationship
between these two approaches for modelling concurrent computations started to
be investigated very soon afterwards. The first interpretation of CCS into ESs was
proposed by Winskel in [61]. This interpretation made use of Stable ESs, because
PESs, the simplest form of ESs, appeared not to be flexible enough to account for
CCS parallel composition. Indeed, since CCS parallel composition allows for two
concurrent complementary actions to either synchronise or occur independently
in any order, each pair of such actions gives rise to two forking computations:
this requires duplication of the same continuation process for these forking com-
putations in PESs, while the continuation process may be shared by the forking
computations in Stable ESs, which allow for disjunctive causality. Subsequently,
ESs (as well as other nonsequential “denotational models” for concurrency such as
Petri Nets) have been used as the touchstone for assessing noninterleaving oper-
ational semantics for CCS: for instance, the pomset semantics for CCS by Boudol
and Castellani [7, 8] and the semantics based on “concurrent histories” proposed
by Degano, De Nicola and Montanari [29, 27, 28], were both shown to agree with an
interpretation of CCS processes into some class of ESs (PESs for [27, 28], PESs with
non-hereditary conflict for [7], and FESs for [8]). Among the early interpretations
of process calculi into ESs, we should also mention the PES semantics for TCSP
(Theoretical CSP [11, 49]), proposed by Goltz and Loogen [45] and later generalised
by Baier and Majster-Cederbaum [2], and the Bundle ES semantics for LOTOS, pro-
posed by Langerak [44] and extended by Katoen [42]. Like FESs, Bundle ESs are a
subclass of Stable ESs. We recall the relationships between the above classes of ESs
(the reader is referred to [10] for separating examples):

Prime ESs ⊂ Bundle ESs ⊂ Flow ESs ⊂ Stable ESs ⊂ General ESs

More sophisticated ES semantics for CCS, based on FESs and designed to be
robust under action refinement [1, 26, 33], were subsequently proposed by Goltz
and van Glabbeek [56]. Importantly, all the above-mentioned classes of ESs, except
General ESs, give rise to the same prime algebraic domains of configurations, from
which one can recover a PES by selecting the complete prime elements.

More recently, ES semantics have been investigated for the π-calculus by Crafa,
Varacca and Yoshida [21, 57, 22] and by Cristescu, Krivine and Varacca [23, 24, 25].
Previously, other causal models for the π-calculus had already been put forward
by Jategaonkar and Jagadeesan [41], by Montanari and Pistore [47], by Cattani and
Sewell [18] and by Bruni, Melgratti and Montanari [12]. The main new issue, when
addressing causality-based semantics for the π-calculus, is the implicit causality
induced by scope extrusion. Two alternative views of such implicit causality had
been proposed in early work on noninterleaving operational semantics for the π-
calculus, respectively by Boreale and Sangiorgi [6] and by Degano and Priami [30].
Essentially, in [6] an extruder (that is, an output of a private name) is considered to
cause any action that uses the extruded name, whether in subject or object position,
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while in [30] it is considered to cause only the actions that use the extruded name

in subject position. Thus, for instance, in the process P = νa (b〈a〉 | c〈a〉 | a), the two
parallel extruders are considered to be causally dependent in the former approach,
and independent in the latter. All the causal models for the π-calculus mentioned
above, including the ES-based ones, take one or the other of these two stands. Note
that opting for the second one leads necessarily to a non-stable ES model, where
there may be causal ambiguity within the configurations themselves: for instance,
in the above example the maximal configuration contains three events, the extruders

b〈a〉, c〈a〉 and the input on a, and one does not know which of the two extruders
enabled the input. Indeed, the paper [22] uses non-stable ESs. The use of non-stable
ESs (General ESs) to express situations where a computational step can merge parts
of the state is advocated for instance by Baldan, Corradini and Gadducci in [3].
These ESs give rise to configuration domains that are not prime algebraic, hence
the classical representation theorems have to be adjusted.

In our simple setting, where we deal only with single sessions and do not con-
sider session interleaving nor delegation, we can dispense with channels altogether,
and therefore the question of parallel extrusion does not arise. In this sense, our
notion of causality is closer to that of CCS than to the more complex one of the
π-calculus. However, even in a more general setting, where participants would be
paired with the channel name of the session they pertain to, the issue of parallel
extrusion would not arise: indeed, in the above example b and c should be equal,
because participants can only delegate their own channel, but then they could not
be in parallel because of linearity, one of the distinguishing features enforced by
session types. Hence we believe that in a session-based framework the two above
views of implicit causality should collapse into just one.

We now briefly discuss our design choices.

• The calculus considered in the present paper uses synchronous communi-
cation - rather than asynchronous, buffered communication - because this
is how communication is classically modelled in ESs, when they are used
to give semantics to process calculi. We should mention however that after
first proposing the present study in [15], we also considered a calculus with
asynchronous communication in the companion paper [16]. In that work too,
networks are interpreted as FESs, and their associated global types, which
we called asynchronous types as they split communications into outputs and
inputs, are interpreted as PESs. The key result is again an isomorphism be-
tween the configuration domain of the FES of a typed network and that of the
PES of its type.

• Concerning the choice operator, we adopted here the basic (and most restric-
tive) variant for it, as it was originally proposed for multiparty session calculi
in [38]. This is essentially a simplifying assumption, and we do not foresee any
difficulty in extending our results to a more general choice operator, where the
projection is rendered more flexible through the use of a merge operator [31].

• As regards the preorder on processes, which is akin to a subtyping relation,
we envisaged to use the standard subtyping, in which a process with fewer
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outputs can be used in place of a process with more outputs. However, in that
case Session Fidelity would become weaker, since a transition in the LTS of
a global type would only ensure a transition in the LTS of the corresponding
network, but not necessarily with the same labelling communication. The
main drawback would be that Theorem 8.18 would no longer hold: more
precisely, the domains of network configurations would only be embedded
in (and not isomorphic to) the domains of their global type configurations.
Notably, typability is independent from the use of our preorder or of the
standard one, as proved in [4].

As regards future work, we plan to define an asynchronous transition system
(ATS) [5] for our calculus, along the lines of [10], and show that it provides a
noninterleaving operational semantics for networks that is equivalent to their FES
semantics. This would enable us also to investigate the issue of reversibility, jointly
on our networks and on their FES representations, since the ATS semantics would
give us the handle to unwind networks, while the corresponding FESs could be
unrolled following one of the methods proposed in existing work on reversible
event structures [52, 25, 35, 36, 34].

As mentioned at the end of Section 7, the quest for a semantic counterpart
of our well-formedness conditions on global types – namely, for properties that
characterise the FESs obtained from typable networks – is still open. By way
of comparison, such semantic well-formedness conditions have been proposed
in [55] for graphical choreographies, a truly concurrent graphical model for global
specifications with two kinds of forking nodes, representing respectively choice
and parallel composition. In [55], those well-formedness conditions, called well-
sequencing and well-branchedness, were shown to be sufficient to ensure projectability
on local specifications. In our case, the property corresponding to well-sequencing
is automatically ensured by our ES semantics, and we conjecture that the well-
branchedness condition for choice nodes (corresponding to projectability) could
amount in our simpler setting6 to the following semantic condition:

Let ν1, ν2 ∈ NE(N) and p :: ζ · π ∈ ν1 and p :: ζ · π′ ∈ ν2 with π , π′ and
q = pt(π) = pt(π′). If ν1 ≺

∗ ν′
1

for some ν′
1
∈ NE(N) such that r ∈ loc(ν′

1
) with

r < {p, q}, then ν2 ≺
∗ ν′

2
for some ν′

2
∈ NE(N) such that r ∈ loc(ν′

2
).

This condition would allow us to rule out the FESs of both networks N′ and
N′′ discussed at page 29. However, it should be completed with a condition corre-
sponding to boundedness, and the conjunction of these two conditions might still
not be sufficient in general to ensure typability. We plan to further investigate this
question in the near future.
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Appendix A.

This Appendix contains the proofs of Lemmas 6.6, 6.9, 8.2, 8.6, 8.10, and 8.12.

Lemma 6.6 If G is bounded, then G↾ r is a partial function for all r.

Proof We redefine the projection ↓r as the largest relation between global types and
processes such that (G,P) ∈↓r implies:

i) if r < part(G), then P = 0;

ii) if G = r→ p :⊞i∈Iλi; Gi, then P =
⊕

i∈I q!λi; Pi and (Gi,Pi) ∈↓r for all i ∈ I;

iii) if G = p→ r :⊞i∈Iλi; Gi, then P = Σi∈Ip?λi; Pi and (Gi,Pi) ∈↓r for all i ∈ I;

iv) if G = p→ q :⊞i∈Iλi; Gi and r < {p, q} and r ∈ part(Gi), then (Gi,P) ∈↓r for all
i ∈ I.

The equality E of processes is the largest symmetric binary relation R on processes
such that (P,Q) ∈ R implies:

(a) if P =
⊕

i∈I p!λi; Pi , then Q =
⊕

i∈I p!λi; Qi and (Pi,Qi) ∈ R for all i ∈ I;

(b) if P = Σi∈Ip?λi; Pi , then Q = Σi∈Ip?λi; Qi and (Pi,Qi) ∈ R for all i ∈ I.

It is then enough to show that the relationRr = {(P,Q) | ∃G . (G,P) ∈↓r and (G,Q) ∈↓r

} satisfies Clauses (a) and (b) (with R replaced by Rr), since this will imply Rr ⊆ E.
Note first that (0, 0) ∈ Rr because (End, 0) ∈↓r, and that (0, 0) ∈ E because Clauses (a)
and (b) are vacuously satisfied by the pair (0, 0). The proof is by induction on
d = depth(G, r). We only consider Clause (b), the proof for Clause (a) being similar.
So, assume (P,Q) ∈ Rr and P = Σi∈Ip?λi; Pi.

Case d = 1. In this case G = p → r : ⊞i∈Iλi; Gi and P = Σi∈Ip?λi; Pi and (Gi,Pi) ∈↓r

for all i ∈ I. From (G,Q) ∈↓r we get Q = Σi∈Ip?λi; Qi and (Gi,Qi) ∈↓r for all i ∈ I.
Hence Q has the required form and (Pi,Qi) ∈ Rr for all i ∈ I.
Case d > 1. In this case G = p → q : ⊞ j∈Jλ

′
j
; G j and r < {p, q} and (G j,P) ∈↓r for all

j ∈ J. From (G,Q) ∈↓r we get (G j,Q) ∈↓r for all j ∈ J. Then (P,Q) ∈ Rr.

Lemma 6.9 Let G be a well-formed global type.

1. If G↾p =
⊕

i∈I q!λi; Pi and G↾q = Σ j∈Jp?λ′
j
; Q j, then I = J, λi = λ

′
i
, G

pqλi
−−−→ Gi,

Gi↾p = Pi and Gi ↾q = Qi for all i ∈ I.

2. If G
pqλ
−−−→ G′, then G↾p =

⊕
i∈I q!λi; Pi, G↾q = Σi∈Ip?λi; Qi, where λi = λ for

some i ∈ I, and G′↾ r = G↾ r for all r < {p, q}.

Proof (1). The proof is by induction on d = depth(G, p).
If d = 1, then by definition of projection (see Figure 2) G↾p =

⊕
i∈I q!λi; Pi implies

G = p→ q :⊞i∈Iλi; Gi with Gi ↾p = Pi. By the same definition it follows that J = I

and λ′
j
= λ j and Q j = G j ↾q for all j ∈ J. Moreover G

pqλi
−−−→ Gi by Rule [Ecomm] for
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all i ∈ I.
If d > 1, then G = r → s : ⊞h∈Hλ

′′
h

; G′
h

with {p, q} ∩ {r, s} = ∅. By definition
of projection G ↾ p = G′

h
↾ p and G ↾ q = G′

h
↾ q for all h ∈ H. By Propo-

sition 6.5 depth(G, p) > depth(G′
h
, p) for all h ∈ H. Then by induction I = J,

λi = λ
′
i
, G′

h

pqλi
−−−→ Gi

h
, Gi

h
↾ p = Pi and Gi

h
↾ q = Qi for all i ∈ I and all h ∈ H.

Let Gi = r→ s :⊞h∈Hλ
′′
h

; Gi
h
. By Rule [Icomm] G

pqλi
−−−→ Gi for all i ∈ I. By definition

of projection Gi↾p = Pi and Gi↾q = Qi for all i ∈ I.
(2). The proof is by induction on the transition rules of Figure 4.

The interesting case is:
Gh

pqλ
−−−→ G′h h ∈ H {p, q} ∩ {s, t} = ∅

[Icomm]

s→ t :⊞h∈Hλ
′
h; Gh

pqλ
−−−→ s→ t :⊞h∈Hλ

′
h; G′h

with G = s → t : ⊞h∈Hλ
′
h
; Gh and G′ = s → t : ⊞h∈Hλ

′
h
; G′

h
. By induction

Gh ↾p =
⊕

i∈I q!λi; Pi, Gh↾q = Σi∈Ip?λi; Qi, λ = λi for some i ∈ I and G′
h
↾ r = Gh ↾ r

for all r < {p, q} and all h ∈ H. By definition of projection G ↾ p = Gh ↾ p and
G↾q = Gh ↾q for all h ∈ H. For r < {p, q, s, t} we get G′ ↾ r = G′

h
↾ r = Gh ↾ r = G↾ r .

Moreover G′ ↾ s =
⊕

h∈H t!λ′
h
; G′

h
↾ s =

⊕
h∈H t!λ′

h
; Gh ↾ s = G ↾ s and G′ ↾ t =

Σh∈Ht?λ′
h
; G′

h
↾ t = Σh∈Hs?λ′

h
; Gh↾s = G↾ t .

Lemma 8.2 1. If α� ν is defined, then α♦ (α� ν) = ν;

2. α� (α♦ ν) = ν;

3. If ν ≺ ν′, then α♦ ν ≺ α♦ ν′;

4. If ν ≺ ν′ and both α� ν and α� ν′ are defined, then α� ν ≺ α� ν′;

5. If ν # ν′, then α♦ ν #α♦ ν′;

6. If ν # ν′ and both α� ν and α� ν′ are defined, then α� ν #α� ν′;

7. If α♦ ν #α♦ ν′, then ν # ν′.

Proof For (1) and (2) it is enough to show the corresponding properties for located
events.

(1) Since α� (p :: η) is defined, we have η = (α@p ) · η′ and α� (p :: η) = p :: η′ for
some η′. Then α♦ (α� (p :: η)) = α♦ (p :: η′) = p :: (α@p ) · η′ = p :: η.

(2) Since α♦ (p :: η) = p :: (α@p ) · η is always defined, we immediately get
α� (α♦ (p :: η)) = α� (p :: (α@p ) · η) = p :: η.

(3) Let ν ≺ ν′. By Definition 5.7(1), there are p :: η ∈ ν and p :: η′ ∈ ν′ such that
η < η′. Then α♦ (p :: η) = p :: (α@p ) · η ∈ α♦ ν and α♦ (p :: η′) = p :: (α@p ) · η′ ∈
α♦ ν′. Since η < η′ implies (α@p ) · η < (α@p ) · η′, we conclude that α♦ ν ≺ α♦ ν′.

(4) As in the previous case, there are p :: η ∈ ν and p :: η′ ∈ ν′ such that η < η′.
Since both α� ν and α� ν′ are defined, there exist η0 and η′

0
such that η = (α@p ) · η0

and η′ = (α@p ) · η′
0

and α� (p :: η) = p :: η0 and α� (p :: η′) = p :: η′
0
. Since η < η′

implies η0 < η
′
0
, we conclude that α� ν ≺ α� ν′.

(5) Let ν # ν′. If Clause (2a) of Definition 5.7 applies, then there are p :: η ∈ ν
and p :: η′ ∈ ν′ such that η # η′. From α♦ (p :: η) = p :: (α@p ) · η and α♦ (p :: η′) =
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p :: (α@p ) · η′ we get (α@p ) · η # (α@p ) · η′. If Clause (2b) of Definition 5.7 applies,
then there are p :: η ∈ ν and q :: η′ ∈ ν′ with p , q such that | η ↾ q | = | η′ ↾ p |

and ¬(η ↾ q Z η′ ↾ p ). Let η0 = (α@p ) · η and η′
0
= (α@q ) · η′. If part(α) , {p, q},

then (α@p ) ↾ q = ǫ = (α@q ) ↾ p and thus η0 ↾ q = η ↾ q and η′
0
↾ p = η′ ↾ p . If

part(α) = {p, q}, say α = pqλ, then η0 = q!λ · η and η′
0
= p?λ · η′, which implies

|η0 ↾q | = |η↾q | + 1 = |η′ ↾p | + 1 = |η′
0
↾p | and ¬(η0 ↾q Z η′

0
↾p ). In both cases we

conclude that α♦ ν #α♦ ν′.
(6) The proof is similar to that of Point (5), considering that α� ν and α� ν′ are

defined.
(7) Letα♦ ν #α♦ ν′. If Clause (2a) of Definition 5.7 applies, then there are p :: η ∈ ν

and p :: η′ ∈ ν′ such that (α@p ) · η # (α@p ) · η′. Therefore η # η′ and thus ν # ν′. If
Clause (2b) of Definition 5.7 applies, then there are p :: η0 = α♦ (p :: η) ∈ α♦ ν
and q :: η′

0
= α♦ (q :: η′) ∈ α♦ ν′ with p , q such that | η0 ↾ q | = | η′

0
↾ p | and

¬(η0 ↾ q Z η′
0
↾ p ). It follows that η0 = (α@p ) · η and η′

0
= (α@q ) · η′ and p :: η ∈ ν

and q :: η′ ∈ ν′. If part(α) , {p, q}, then (α@p ) ↾ q = ǫ = (α@q ) ↾ p and thus
η ↾ q = η0 ↾ q and η′ ↾ p = η′

0
↾ p . If part(α) = {p, q}, say α = pqλ, then η0 = q!λ · η

and η′
0
= p?λ · η′, and thus | η ↾ q | = | η0 ↾ q | − 1 = | η′

0
↾ p | − 1 = | η′ ↾ p | and

¬(η↾q Z η′ ↾p ). In both cases we conclude that ν # ν′.

Lemma 8.6 Let N
α
−→ N′. Then

1. {nec(α)} ∪ {α♦ ν | ν ∈ NE(N′)} ⊆ NE(N);

2. {α� ν | ν ∈ NE(N) and α� ν defined} ⊆ NE(N′).

Proof Let α = pqλ. From N
α
−→ N′ we get

N = p[[
⊕

i∈I q!λi; P ]] ‖ q[[Σ j∈Jp?λ j; Q j ]] ‖ N0

where for some k ∈ (I ∩ J) we have λk = λ and

N′ = p[[ Pk ]] ‖ q[[ Qk ]] ‖ N0

(1) Let RT = {nec(α)} ∪ {α♦ ν | ν ∈ NE(N′)}. We first show that RT ⊆ DE(N).
By Definition 5.13(1) nec(α) ∈ DE(N). Let ν = {r :: η, s :: η′} ∈ NE(N′). We want to
prove that α♦ ν ∈ DE(N). By Definition 5.13(1) there are R, S such that r[[ R ]] ∈ N′

and s[[ S ]] ∈ N′ and η ∈ PE(R) and η′ ∈ PE(S). There are two possible cases:

• {r, s} ∩ {p, q} = ∅. Then r[[ R ]] ∈ N and s[[ S ]] ∈ N and thus α♦ ν = ν ∈ DE(N);

• {r, s} ∩ {p, q} , ∅. Suppose r = p. Then η ∈ PE(Pk) and p :: q!λk · η ∈ α♦ ν and
q!λk · η ∈ PE(

⊕
i∈I q!λi; Pi). There are two subcases:

– s = q. Then η′ ∈ PE(Qk) and q :: p?λk · η
′ ∈ α♦ ν and q!λk · η

′ ∈

PE(Σ j∈Jp?λ j; Q j). In this case we have α♦ ν = {p :: q!λk · η, q :: p?λk · η
′} ∈

DE(N);

– s , q. Then α♦ s :: η′ = s :: η′, and thus α♦ ν = {p :: q!λk · η, s :: η′} ∈
DE(N).
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Therefore, α♦ ν ∈ DE(N). Hence RT ⊆ DE(N). We want now to show that RT ⊆
NE(N).

Recall from Section 5 thatNE(N) is the greatest fixed point of the function

fDE(N)(X) = {ν0 ∈ DE(N) | ∃E0 ⊆ X.E0 is a causal set of ν0 in X}

ThenNE(N) is also the greatest post-fixed point of fDE(N)(X), namely the greatest X
such that X ⊆ fDE(N)(X). Therefore, to show that RT ⊆ NE(N), it is enough to show
that RT is also a post-fixed point of fDE(N)(X), namely that RT ⊆ fDE(N)(RT).

Consider first the event nec(α). Since the only causal set of nec(α) in any set is ∅,
it is immediate that nec(α) ∈ fRT(RT). Consider nowα♦ ν ∈ RT for some ν ∈ NE(N′)
with loc(ν) = {r, s}. Define

pre(α,E, ν) =


Ξ if {r, s} ∩ {p, q} = ∅

{nec(α)} ∪ Ξ otherwise

where Ξ = {α♦ ν′ | ν′ ∈ E and E is a causal set of ν inNE(N′)}.
We show that pre(α,E, ν) is a causal set of α♦ ν in RT, namely that it is a minimal

subset of RT satisfying Conditions (1) and (2) of Definition 5.9.
Condition (1) If nec(α) ∈ pre(α,E, ν), then {r, s}∩{p, q} , ∅. A conflict between nec(α)
and any other event of pre(α,E, ν) ∪ {α♦ ν} can only be derived by Clause (2a) of
Definition 5.7, since nec(α) = {p :: q!λ, q :: p?λ} and (α@p ) ↾ t = (α@q ) ↾ t = ǫ for
all t < {p, q}. Suppose r = p. Then p :: q!λ · η ∈ α♦ ν. Since q!λ < q!λ · η, Clause (2a)
cannot be used to derive a conflict nec(α) #α♦ ν. Similarly, if α♦ ν1 ∈ pre(α,E, ν)
and p :: η1 ∈ ν1, then p :: q!λ · η1 ∈ ν1. Then q!λ < q!λ · η1, hence Clause (2a) cannot
be used to derive nec(α) #α♦ ν1.
Suppose now α♦ ν1 ∈ pre(α,E, ν) and α♦ ν2 ∈ pre(α,E, ν). Since E is a causal set, we
have ¬(ν1 # ν2). Thus ¬(α♦ ν1 #α♦ ν2) by Lemma 8.2(7).
Condition (2) Let ν = {r :: η, s :: η′}, we have α♦ ν = {r :: (α@r ) · η, s :: (α@s ) · η′}.
We show that if η0 < (α@r ) · η, then r :: η0 ∈ ν0 for some ν0 ∈ pre(α,E, ν). From
η0 < (α@r ) · η we derive η0 = (α@r ) · ζ for some ζ such that ζ < η. If ζ , ǫ,
then ζ = η′

0
< η. Since E is a causal set, η′

0
< η0 implies r :: η′

0
∈∈ E. Hence

r :: η0∈∈pre(α,E, ν). If instead ζ = ǫ, then it must be η0 = α@r , ǫ and thus r ∈ {p, q}.
In this case {nec(α)} ∈ pre(α,E, ν) and thus r :: η0∈∈pre(α,E, ν).
As for minimality , we first show that ν′ ≺ α♦ ν for all ν′ ∈ pre(α,E, ν). If nec(α) ∈
pre(α,E, ν), then {r, s} ∩ {p, q} , ∅. Then nec(α) ≺ α♦ ν. If ν1 ∈ pre(α,E, ν) and
ν1 , nec(α), then there exists ν′

1
∈ E such that ν1 = α♦ ν

′
1
. Since E is a causal set for

ν, we have ν′
1
≺ ν. Therefore ν1 = α♦ ν

′
1
≺ α♦ ν by Lemma 8.2(3). Assume now that

pre(α,E, ν) is not minimal. Then there is E′ ⊂ pre(α,E, ν) that verifies Condition (2)
of Definition 5.9 for α♦ ν. Let ν′ ∈ pre(α,E, ν) \ E′. Then ν′ ≺ α♦ ν = {r :: ηr, s :: ηs}.
Assume that r :: η′r ∈ ν

′ with η′r < ηr (the proof is similar for s). By Condition
(2), there is ν′′ ∈ E′ such that r :: η′r ∈ ν

′′. But then ν′ # ν′′ by Proposition 5.20,
contradicting the fact that pre(α,E, ν) verifies Condition (1). Therefore pre(α,E, ν) is
minimal.

(2) Let RS = {α� ν | ν ∈ NE(N) and α� ν defined}. We first show that RS ⊆
DE(N′). Let ν = {r :: η, s :: η′} ∈ NE(N) be such that α� ν is defined. We want to
prove that α� ν ∈ DE(N′). By Definition 5.13(1) there are R, S such that r[[ R ]] ∈ N

and s[[ S ]] ∈ N and η ∈ PE(R) and η′ ∈ PE(S). There are two possible cases:
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• {r, s} ∩ {p, q} = ∅. Then r[[ R ]] ∈ N′ and s[[ S ]] ∈ N′ and thus α� ν = ν ∈ DE(N′);

• {r, s} ∩ {p, q} , ∅. Suppose r = p. Then η ∈ PE(
⊕

i∈I q!λi; Pi) and since α� ν is
defined we have that η = q!λk · ηk where ηk ∈ PE(Pk). There are two subcases:

– s = q. Then η′ ∈ PE(Σ j∈Jp?λ j; Q j) and since α� ν is defined η′ = p?λk · η
′
k

where η′
k
∈ PE(Qk). In this case we have α� ν = {p :: ηk, q :: η′

k
} ∈ DE(N′);

– s , q. Then α� s :: η′ = s :: η′, and thus α� ν = {p :: ηk, s :: η′} ∈ DE(N′).

Therefore RS ⊆ DE(N′). We want now to show that RS ⊆ NE(N′).
We proceed as in the proof of Statement (1). We know thatNE(N′) is the greatest

post-fixed point of the function

fDE(N′)(X) = {ν0 ∈ DE(N′) | ∃E0 ⊆ X.E0 is a causal set of ν0 in X}

Then, in order to obtain RS ⊆ NE(N′) it is enough to show that RS is a post-fixed
point of fDE(N′)(X), namely that RS ⊆ fDE(N′)(RS).

Let α� ν ∈ RS for some ν ∈ NE(N). Define

post(α,E, ν) = {α� ν′ | ν′ ∈ E and E is a causal set of ν inNE(N)}

We show that post(α,E, ν) is a causal set of α� ν in RS, namely that it is a minimal
subset of RS satisfying Conditions (1) and (2) of Definition 5.9.
Condition (1) Suppose α� ν1 ∈ post(α,E, ν) and α� ν2 ∈ post(α,E, ν). Since E is a
causal set and ν1, ν2 ∈ E, we have ¬(ν1 # ν2). Thus ¬(α� ν1 #α� ν2) by Lemma 8.2(5)
and (1).
Condition (2) Since ν = {r :: η, s :: η′} and α� ν is defined, we have η = (α@r ) · ηr and
η′ = (α@s ) · ηs and α� ν = {r :: ηr, s :: ηs}. Let η0 < ηr. Then (α@r ) · η0 < (α@r ) · ηr =

η. Since E is a causal set for ν in NE(N), this implies r :: (α@r ) · η0 ∈∈ E. Hence
r :: η0∈∈post(α,E, ν).
As for minimality, we first show that ν′ ≺ α� ν for all ν′ ∈ post(α,E, ν). If ν1 ∈

post(α,E, ν), then there exists ν′
1
∈ E such that ν1 = α� ν

′
1
. Since E is a causal set for

ν, we have ν′
1
≺ ν. Therefore ν1 = α♦ ν

′
1
≺ α♦ ν by Lemma 8.2(3). Assume now that

post(α,E, ν) is not minimal. Then there is E′ ⊂ post(α,E, ν) that verifies Condition (2)
of Definition 5.9 for α� ν. Let ν′ ∈ post(α,E, ν) \ E′. Then ν′ ≺ α� ν = {r :: ηr, s :: ηs}.
Assume that r :: η′r ∈ ν

′ with η′r < ηr (the proof is similar for s). By Condition
(2), there is ν′′ ∈ E′ such that r :: η′r ∈ ν

′′. But then ν′ # ν′′ by Proposition 5.20,
contradicting the fact that post(α,E, ν) verifies Condition (1). Therefore post(α,E, ν)
is minimal.

Lemma 8.10 1. If α • γ is defined, then α ◦ (α • γ) = γ;

2. α • (α ◦ γ) = γ;

3. If γ1 < γ2, then α ◦ γ1 < α ◦ γ2;

4. If γ1 < γ2 and both α • γ1 and α • γ2 are defined, then α • γ1 < α • γ2;

5. If γ1 # γ2, then α ◦ γ1 # α ◦ γ2;
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6. If γ < α ◦ γ′, then either γ = [α]∼ or α • γ < γ′;

7. If part(α1) ∩ part(α2) = ∅, then α1 ◦ (α2 ◦ γ) = α2 ◦ (α1 ◦ γ);

8. If part(α1) ∩ part(α2) = ∅ and both α2 • (α1 ◦ γ), α2 • γ are defined, then
α1 ◦ (α2 • γ) = α2 • (α1 ◦ γ).

Proof (1) If α• [σ]∼ is defined, then in case part(α)∩part(σ) = ∅we get α• [σ]∼ = [σ]∼
and also α ◦ [σ]∼ = [σ]∼, so α ◦ (α • [σ]∼) = [σ]∼. Instead if part(α) ∩ part(σ) , ∅,
then α • [σ]∼ = [σ′]∼ where σ ∼ α · σ′ and σ′ , ǫ. From part(α) ∩ part(σ) , ∅ we get
α ◦ [σ′]∼ = [α · σ′]∼ by Definition 7.6. This implies α ◦ (α • [σ]∼) = [σ]∼.

(2) By Definition 7.6 eitherα◦[σ]∼ = [α · σ]∼ if part(α)∩part(σ) , ∅, orα◦σ = [σ]∼.
In the first case α • [α · σ]∼ = [σ]∼ and in the second α • [σ]∼ = [σ]∼, which proves
the result.

(3) Let γ1 = [σ]∼ and γ2 = [σ · σ′]∼. If part(α) ∩ part(σ) , ∅, then part(α) ∩
part(σ · σ′) , ∅, and we have α ◦ γ1 = [α · σ]∼ and α ◦ γ2 = [α · σ · σ′]∼. Whence
α ◦ γ1 ≤ α ◦ γ2. Suppose now part(α) ∩ part(σ) = ∅. Then α ◦ γ1 = [σ]∼ = γ1. Now,
if also part(α) ∩ part(σ′) = ∅, then α ◦ γ2 = [σ · σ]∼ = γ2 and we are done. If instead
part(α) ∩ part(σ′) , ∅, then α ◦ γ2 = [α · σ · σ′]∼ = [σ ·α · σ′]∼, whence γ1 ≤ α ◦ γ2.

(4) Let γ1 = [σ]∼ and γ2 = [σ · σ′]∼. If part(α)∩ part(σ) = part(α)∩ part(σ · σ′) = ∅,
thenα•γ1 = γ1 and α•γ2 = γ2. If part(α)∩part(σ) , ∅, then σ ∼ α · σ0, which implies
α•γ1 = [σ0]∼ andα•γ2 = [σ0 · σ

′]∼. If part(α)∩part(σ) = ∅and part(α)∩part(σ · σ′) , ∅,
then α • γ1 = [σ]∼ and σ′ ∼ α · σ0, which implies α • γ2 = [σ · σ0]∼.

(5) Letγ1 = [σ]∼ and γ2 = [σ′]∼ and σ@ p # σ′@ p for some p. The only interesting
case is part(α) ∩ part(σ) = ∅ and part(α) ∩ part(σ′) , ∅. This implies α ◦ γ1 = [σ]∼
and α ◦ γ2 = [α · σ′]∼. We get (α · σ′) @ p = σ′@ p since part(α) ∩ part(σ) = ∅ implies
p < part(α). We conclude α ◦ γ1 # α ◦ γ2.

(6) Letγ = [σ]∼ and α◦γ′ = [σ · σ′]∼. Ifα•γ is defined by Point 4 α•γ < α•(α ◦ γ′)
and by Point 2α•(α ◦ γ′) = γ′. Otherwise eitherγ = [α]∼, in which case we are done,
or part(α) ∩ part(σ) , ∅ and σ / α · σ0. This last case is impossible, since part(α) ∩
part(σ · σ′) , ∅ and σ · σ′ / α · σ1 contradict the definition of ◦ (Definition 7.6(1)).

(7) Let γ = [σ]∼. By Definition 7.6(1) we have four cases:

(a) α1◦(α2 ◦ σ) = [α1 · (α2 · σ)]∼ = [α2 · (α1 ·σ)]∼ = α2◦(α1 ◦ σ) if part(α1)∩part(σ) ,
∅ and part(α2) ∩ part(σ) , ∅, since part(α1) ∩ part(α2) = ∅;

(b) α1 ◦ (α2 ◦ σ) = [α1 · σ]∼ = α2 ◦ (α1 ◦ σ) if part(α1) ∩ part(σ) , ∅ and part(α2) ∩
part(σ) = ∅;

(c) α1 ◦ (α2 ◦ σ) = [α2 · σ]∼ = α2 ◦ (α1 ◦ σ) if part(α1) ∩ part(σ) = ∅ and part(α2) ∩
part(σ) , ∅;

(d) α1◦(α2 ◦ σ) = [σ]∼ = α2◦(α1 ◦ σ) if part(α1)∩part(σ) = ∅ and part(α2)∩part(σ) =
∅.

(8) Let γ = [σ]∼. By Definitions 7.6(1) and 8.9(1) we have four cases:

(a) α1 ◦ (α2 • σ) = [α1 · σ
′]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ) , ∅ and σ ∼ α2 · σ

′,
which implies α1 · σ = α1 · (α2 · σ

′) ∼ α2 · (α1 · σ
′), since part(α1) ∩ part(α2) = ∅;
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(b) α1 ◦ (α2 • σ) = [α1 · σ]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ) , ∅ and part(α2) ∩
part(σ) = ∅;

(c) α1 ◦ (α2 • σ) = [σ′]∼ = α2 • (α1 ◦ σ) if part(α1) ∩ part(σ) = ∅ and σ ∼ α2 · σ
′;

(d) α1◦(α2 • σ) = [σ]∼ = α2•(α1 ◦ σ) if part(α1)∩part(σ) = ∅ and part(α2)∩part(σ) =
∅.

Lemma 8.12 Let G
α
−→ G′.

1. If γ ∈ GE(G′), then α ◦ γ ∈ GE(G);

2. If γ ∈ GE(G) and α • γ is defined, then α • γ ∈ GE(G′).

Proof Both proofs are by induction on the inference of the transition G
α
−→ G′, see

Figure 4.
(1) For rule [Ecomm] we get G = p → q : ⊞i∈Iλi; Gi and G′ = Gk and α = pqλk

for some k ∈ I. We conclude α ◦ γ ∈ GE(G) by Lemma 8.11(1).
For rule [Icomm] we get G = p → q : ⊞i∈Iλi; Gi and G′ = p → q : ⊞i∈Iλi; G′

i
and

Gi
α
−→ G′

i
for all i ∈ I and part(α)∩{p, q} = ∅. By Definition 7.10(1) γ ∈ GE(G′) implies

γ = ev(σ) for some σ ∈ Tr+(G′). This implies σ = pqλk · σ
′ and γ = [σ0]∼ with either

σ0 ∼ pqλk · σ
′
0

for some k ∈ I or part(σ0) ∩ {p, q} = ∅ by Definition 7.6. Then pqλk • γ
is defined unless σ0 = pqλk by Definition 8.9(1). We consider two cases.
If σ0 = pqλk, thenα◦γ = [pqλk]∼ since part(α)∩{p, q} = ∅. We conclude α◦γ ∈ GE(G)
by Definition 7.10(1). Otherwise let γ′ = pqλk • γ. By Lemma 8.11(2) γ′ ∈ GE(G′

k
).

By induction α ◦ γ′ ∈ GE(Gk). By Lemma 8.11(1) pqλk ◦ (α ◦ γ′) ∈ GE(G). We now
show that pqλk ◦ (α ◦ γ′) = α ◦ γ. By Lemma 8.10(7) and part(α) ∩ {p, q} = ∅ we
get pqλk ◦ (α ◦ γ′) = α ◦ (pqλk ◦ γ

′) and by Lemma 8.10(1) we have pqλk ◦ γ
′ =

pqλk ◦ (pqλk • γ) = γ. Therefore pqλk ◦ (α ◦ γ′) = α ◦ γ ∈ GE(G).
(2) For rule [Ecomm] we get G = p → q : ⊞i∈Iλi; Gi and G′ = Gk and α = pqλk

for some k ∈ I. We conclude α • γ ∈ GE(G′) by Lemma 8.11(2).
For rule [Icomm] we get G = p → q : ⊞i∈Iλi; Gi and G = p → q : ⊞i∈Iλi; G′

i
and

Gi
α
−→ G′

i
for all i ∈ I and part(α)∩ {p, q} = ∅. By Definition 7.10(1) γ ∈ GE(G) implies

γ = ev(σ) for some σ ∈ Tr+(G). This implies σ = pqλk · σ
′ and γ = [σ0]∼ with either

σ0 ∼ pqλk · σ
′
0

for some k ∈ I or part(σ0) ∩ {p, q} = ∅ by Definition 7.6. Then pqλk • γ
is defined unless σ0 = pqλk by Definition 8.9(1). We consider two cases.
Ifσ0 = pqλk, thenα•γ = [pqλk]∼ since part(α)∩{p, q} = ∅. We concludeα•γ ∈ GE(G′)
by Definition 7.10(1). Otherwise let γ′ = pqλk • γ. By Lemma 8.11(2) γ′ ∈ GE(Gk).
We first show that α • γ′ is defined. Since α • γ and pqλk • γ are defined, by
Definition 8.9(1) we have four cases:

(a) σ0 ∼ α · σ1 for some σ1 and σ0 ∼ pqλk · σ
′
0
;

(b) σ0 ∼ α · σ1 and part(σ0) ∩ {p, q} = ∅;

(c) part(α) ∩ part(σ0) = ∅ and σ0 ∼ pqλk · σ
′
0
;

(d) part(α) ∩ part(σ0) = ∅ and part(σ0) ∩ {p, q} = ∅.
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In case (a) σ0 ∼ α · pqλk · σ
′
1
∼ pqλk ·α · σ

′
1

for someσ′
1

since part(α)∩{p, q} = ∅. Notice
that σ′

1
, ǫ since σ0 is pointed and part(α)∩{p, q} = ∅. We get γ′ = pqλk•γ = [α · σ′

1
]∼

and α • γ′ = [σ′
1
]∼.

In case (b) γ′ = γ and α • γ′ = [σ1]∼.
In case (c) γ′ = [σ′

0
]∼ and α • γ′ = [σ′

0
]∼, since part(α) ∩ part(σ0) = ∅ implies

part(α) ∩ part(σ′
0
) = ∅.

In case (d) γ′ = γ and α • γ′ = γ.
By induction α • γ′ ∈ GE(G′

k
). By Lemma 8.11(1) pqλk ◦ (α • γ′) ∈ GE(G′).

We now show that pqλk ◦ (α • γ′) = α•γ. From γ′ = pqλk •γ and Lemma 8.10(1)
pqλk ◦ γ

′ = γ. Therefore from α • γ defined we have α • (pqλk ◦ γ
′) defined.

Since α • γ′ is also defined and part(α) ∩ {p, q} = ∅, by Lemma 8.10(8) we get
pqλk ◦ (α • γ′) = α • (pqλk ◦ γ

′). Therefore pqλk ◦ (α • γ′) = α • γ ∈ GE(G′).
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