
1 
Autonomous Systems – An Architectural Characterization, Joseph Sifakis, November 2018 

Autonomous Systems – An Architectural Characterization  
Joseph Sifakis  

Univ. Grenoble Alpes, Verimag laboratory 

 

Abstract 

The concept of autonomy is key to the IoT vision promising increasing integration of smart services 
and systems minimizing human intervention. This vision challenges our capability to build complex 
open trustworthy autonomous systems. We lack a rigorous common semantic framework for 
autonomous systems. It is remarkable that the debate about autonomous vehicles focuses almost 
exclusively on AI and learning techniques while it ignores many other equally important autonomous 
system design issues. 

Autonomous systems involve agents and objects coordinated in some common environment so that 
their collective behavior meets a set of global goals. We propose a general computational model 
combining a system architecture model and an agent model. The architecture model allows 
expression of dynamic reconfigurable multi-mode coordination between components. The agent 
model consists of five interacting modules implementing each one a characteristic function: 
Perception, Reflection, Goal management, Planning and Self-adaptation. It determines a concept of 
autonomic complexity accounting for the specific difficulty to build autonomous systems.  

We emphasize that the main characteristic of autonomous systems is their ability to handle 
knowledge and adaptively respond to environment changes. We advocate that autonomy should be 
associated with functionality and not with specific techniques. Machine learning is essential for 
autonomy although it can meet only a small portion of the needs implied by autonomous system 
design. 
We conclude that autonomy is a kind of broad intelligence. Building trustworthy and optimal 
autonomous systems goes far beyond the AI challenge. 

 

1. The concept of autonomy  

The concept of autonomy is key to the IoT vision promising increasing integration of smart services 
and systems to achieve global goals such as optimal resource management and enhanced quality of 
life, with minimal human intervention. 

This vision challenges our capability to build complex open trustworthy autonomous systems. In 
particular, we need an as much as possible, rigorous definition of autonomy. Is there a general 
reference model that could provide a basis for evaluating system autonomy? What are the technical 
solutions for enhancing a system’s autonomy? For each enhancement, is it possible to estimate the 
implied technical difficulties and risks? These are very important questions for autonomous systems 
engineering.  

Currently, the profusion of concepts and terms related to autonomy reflects the lack of a common 
semantic framework. It is remarkable that the technical discussion about autonomous vehicles 
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focuses almost exclusively on AI and learning techniques while it ignores many other equally 
important autonomous system design issues. 

What is the difference between a thermostat, an automatic train shuttle, a chess-playing robot, a 
soccer-playing robot and a robocar?  

All bring solutions to the following general problem.  

• A system consists of agents and objects sharing some common environment. It pursues a set 
of global goals to provide various services. 

• Objects are physical dynamic systems without computation capability. Agents can partially 
observe and change their state. Objects can also undergo internal state changes. 

• Agents have the ability to monitor the objects and act on their state, either alone or in some 
coordinated manner. 

• The number of objects and agents can change dynamically depending on specific conditions.  
 
The problem is to determine the behavior of the system agents pursuing each one its own specific 
goals so that the collective behavior of the system including agents and objects meets given 
global goals. 

We propose a technical definition of autonomy based on a general computational model consisting 
of an agent architecture model and a system architecture model: 

• The agent architecture model involves five modules, each one dealing with one fundamental 
aspect of autonomy: Perception, Refection, Goal management, Planning and Self-adaptation. 
It specifies the coordination between these features in order to achieve autonomous 
behavior. It also implicitly defines some abstract partial order relation for comparing the 
autonomy level of agents pursuing identical goals.  

• The system architecture model specifies coordination between system agents and their 
effect on the objects. We need such a model to explicate how an agent perceives its 
environment and elaborates its control strategy. 

We progressively introduce the concept of autonomy through a comparison between five automated 
systems: a thermostat, an automatic train shuttle, a chess-playing robot, a soccer-playing robot and a 
robocar  
 

1.1 Agent Environment  

All the above systems automatically perform some mission characterized by their respective goals. 
They integrate agents continuously interacting with their environment through sensors and 
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actuators. The sensors provide stimuli to the agent; the actuators receive commands from the agent 
and change accordingly the state of its environment. 

 All agents receive inputs and produce outputs so that their I/O relation meets their specific goals. 
They are real-time controllers monitoring state changes of the controlled environment and producing 
adequate responses. Nonetheless, there are significant differences regarding the complexity and 
intricacy of their environments and their goals with associated decision process. 

The environment of a thermostat is simply a room and a heating device. Stimuli are the temperature 
of the room and the state of the heater. 
For the automatic shuttle, the environment includes the cars composing the shuttle with their 
equipment and passengers. Stimuli take the form of numeric information about the position and 
speed of the cars and the state of various equipment and peripherals. 
For the chess robot, the environment is a chessboard with pawns and the adversary robot. Stimuli 
are the configuration of the pawns on the chessboard extracted from static images provided by the 
robot camera. 
For the soccer robot, the environment consists of all other players, the ball, the goalposts and lines 
delimiting regions of the field. Stimuli are extracted in real time from dynamic images; they include 
the position and speed of players and ball.  
Finally for the robocar, the environment is more involved as it includes vehicles and obstacles in its 
vicinity as well as traffic control and communication equipment. The perceived environment state is 
the configuration of other robocars and obstacles with their dynamic attributes and the state of 
traffic control and communication equipment. The environment state is built from data provided by 
different types of sensors adequately treated and interpreted. 

1.2 Agent goals and plan generation  

As explained, agents behave as controllers acting on their environment to achieve their specific 
goals. The agent environment can be modeled as a state machine with two types of actions: 
controllable actions triggered by the agent; and uncontrollable actions that are internal state 
changes of the environment. Without getting into technical details, given a set of goals and an agent 
environment model, there are methods (semi-algorithms) for the computation of plans. Figure 1 
illustrates their principle for given environment and goals. In the considered example, the goals 
require that the generated plans avoid the state Bad and eventually reach the state Target. The plan 
generation method consists in finding a subgraph of the environment state graph that is closed with 
respect to uncontrollable actions (in red) and does not contain state Bad; furthermore, by adequately 
triggering controllable actions (in green) the state Target can be reached.  
In general, environment models are infinite and the generated plans for given goals are infinite trees 
with alternating controllable and uncontrollable actions. When the environment model is finite, 
algorithms are used to compute a maximal controller including all the plans meeting the goals [1].  
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For infinite or complex environments, it is not possible to generate an explicit a controller. The 
existence of plans cannot be theoretically guaranteed. It depends on the type of goals and the 
controllability/observability relations. 
In practice, for given goals, finite-horizon plans are computed on line from the agent’s environment 
model. To cope with complexity, heuristics are used as well as precomputed plan skeletons. 
Furthermore, adequately choosing at design time the controllability/observability relation can 
significantly simplify on line plan generation. For instance, for simple safety goals e.g. avoiding 
harmful states, a finite horizon exploration from the current state may suffice. 

 

Figure 1: Plan generation from Goals and the Environment model 

Going back to the considered examples, the thermostat has an explicit controller that is a simple 
two-mode automaton switching between On and Off modes when temperature reaches minimal and 
maximal values, respectively. 
The shuttle has a more involved decision process. Usually an explicit controller ensures safety 
properties, while commands computed on line ensure adaptation to load variation and comfort 
optimization.  
For the chess robot, there is no explicitly precomputed controller. Depending on the current 
configuration of the chessboard, the robotic agent chooses between a set of strategies optimizing 
criteria implied by the rules of the game. Each strategy corresponds to a sub-goal from a 
hierarchically structured set of goals. To accelerate plan generation, precomputed knowledge is 
often used e.g. patterns of plans and associated methods. 
Similarly, for the soccer robot, plans are computed on line from the agent’s environment model and 
its current configuration. Here a significant difference is the dynamic nature of the game as the 
controller is subject to hard real-time constraints. The game involves interaction between 
dynamically changing sets of agents (players). Although the game rules are well-defined, their 
dynamicity makes the outcome less predictable. The decision process generates plans from a 
dynamically changing environment model. It should adequately combine defense and attack 
strategies to win a game within 90 minutes. Knowledge is instrumental for plan generation; it 
consists in using precomputed patterns and learning techniques for parameter estimation.  
For the robocar, the controller is even much more complex. In contrast to the previous examples, the 
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environment involves a dynamically and unpredictably changing number of agents and objects in 
particular due to agent mobility. While for chess or soccer agents the gaming rules are static and 
well-understood, traffic rules are dynamic and hard to formalize [2]. Rigorous definition of a coherent 
set of individual goals for an ensemble of robocars is a non-trivial problem. Individual goals of 
robocars may be conflicting and a global consensus should be achieved in real-time taking into 
account multiple safety and optimality requirements. 

1.3 Main aspects of autonomy  

The discussed examples illustrate important differences when moving from simple automation to full 
autonomy. They also show technical obstacles to overcome in autonomous systems design. 
Autonomy is the capacity of an agent to achieve a set of coordinated goals by its own means 
(without human intervention) adapting to environment variations. It combines five complementary 
aspects:  

• Perception e.g. interpretation of stimuli, removing ambiguity/vagueness from 
complex input data and determining relevant information;  

• Reflection e.g. building/updating a faithful environment run-time model; 
• Goal management e.g. choosing among possible goals the most appropriate ones for 

a given configuration of the environment model; 
• Planning to achieve chosen goals; 
• Self-adaptation e.g. the ability to adjust behavior through learning and reasoning and 

to change dynamically the goal management and planning processes. 

Note that the five aspects are orthogonal. The first two aspects deal with “understanding” the 
situation of the environment. The third and the forth aspect deal with autonomy of decision. Self-
adaptation ensures adequacy of decisions with respect to the environment situation. 

The above characterization, which we refine later, gives a clear insight about the very nature of the 
concept of autonomy. An autonomous agent uses at least one of the five functions. The thermostat is 
an automated agent that is not autonomous because its decision process is implemented by an 
explicit controller for a fixed set of goals. Furthermore, it has a fully observable/controllable 
environment providing stimuli that need no interpretation. 
Automated agents are often integrated in complex processes where autonomy is ensured by human 
operators. For instance, PLCs ensure production automation while qualified staff performs 
supervision and overall coordination.  
The level of autonomy of a system characterizes the relation between machine-empowered vs. 
human-assisted autonomy. Figure 2 illustrates this relation in a five-dimensional space. Improving 
autonomy for some aspect consists in replacing human intervention by autonomous steering. Full 
autonomy means that the function for each aspect is machine empowered.  
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Figure 2: Human assisted vs. Machine empowered autonomy. 

An illustration of this concept is provided by the five autonomy levels for cars defined by the SAE 
shown in Table 1. Level 5 corresponds to full autonomy while lower levels require increasing 
assistance of the driver. 
 

 

Table 1: SAE autonomy levels (https://en.wikipedia.org/wiki/Self-driving_car) 

2. A computational model for autonomous systems 

2.1 A system architecture model  

In order explain how an autonomous agent behaves, we need an adequate holistic model of its 
environment including other agents and objects. The model should in particular, propose concepts 
and principles accounting for the complex structure of the agent’s environment and intricate 
coordination mechanisms. 

https://en.wikipedia.org/wiki/Self-driving_car
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We succinctly present an expressive architecture model developed with autonomy in mind. The 
model is inspired from the BIP coordination language. It has been studied and implemented in two 
formalisms, one declarative and another imperative [3,4,5].  

As already explained, an autonomous system involves two kinds of components: agents and objects. 
The agents have computational capabilities. They can change the states of the objects and 
coordinate to enforce global system goals.  
Components are instances of predefined types of agents and objects: 

• An agent type is a computing system characterizing a mission or a service, e.g. Player, 
Arbiter, Sender, etc. Its semantics is a transition relation labeled with events and associated 
functions. Functions are triggered by the events that are atomic state changes involving 
other components, objects or agents.  

• An object type is a dynamic system e.g. electromechanical system, whose state can change 
through interaction with other components. Note that some objects may be passive such as. 
a pawn or a static obstacle. 

We consider that a system model is a collection of architecture motifs, simply called motifs.  

A motif is a “world” where live dynamically changing sets of agents and objects. It is equipped with 
a map represented by a graph specified by sets of nodes and edges. Nodes represent abstract 
coordinates in some reference space. The connectivity relation between the nodes of a map may 
admit a physical or a logical interpretation. For a lift or a shuttle, the map is a simple linear structure: 
the nodes are floors or stations, respectively. In the chess game, the map is an array representing the 
chessboard. 
The position of an agent a or of an object o is given by a partial address function @: @(a) and @(o) is 
the node of the map where a and o are located, respectively.  
For example, an address function can define the distribution of pawns over the chessboard. The 
function changes when pawns move; it is undefined for pawns not placed on the board. For the 
soccer game, the map is a three-dimensional array representing the field with some granularity grain. 
The only mobile object is the ball while all the agents are mobile. 
Finally, for robocars we need several maps to model the system. Figure 3 depicts a model consisting 
of two motifs with their corresponding maps. A Road Chunk Map accounts for the spatial 
configuration of robocars and of relevant objects, typically obstacles. Other logical maps are 
necessary to specify coordination structure between robocars; for instance, to form platoons or to 
describe connectivity of communication infrastructure used by cars.  

The dynamics of the system described by a motif is a transition relation between configurations. A 
configuration is the set of the states of its components as well as their corresponding addresses on 
the map. Configurations change when events occur as the result of agent coordination: by execution 
of interactions rules or of configuration rules. 
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Figure 3: Modeling principle for robocars with two motifs  

Interaction rules: An interaction is an atomic state change of a non-empty set of synchronizing 
agents that may also affect the state of objects. When the set is a singleton, the interaction is simply 
an action. We use rules in the form of guarded commands to describe interactions: the guard 
involves state variables of the synchronizing components and the command is a sequence of 
operations on their states. The rules are parametric which requires iteration over types of 
components. For example the rule  
for all a:vehicle, a’:vehicle if [distance(@(a),@(a’))<l] then exchange(a.speed, a’.speed).  
says that when two vehicles are close enough they exchange their speeds.  
The model provides primitives encompassing strong or weak synchronization and interactions of 
arbitrary arity. 

Configuration rules: Configuration rules allow the expression of three independent types of 
dynamism: component dynamism, component mobility, and map dynamism. They are guarded 
commands consisting of guards (conditions on state variables of components) and sequences of 
specific reconfiguration operations.  
Typical operations are create/delete for components and add/remove for elements of maps. For 
instance, the operation create(a:messenger,@(a)=n) creates an agent named a of type messenger at 
address n. The operation delete(o:pawn) removes the pawn named o.  
Agent mobility is modeled by rules modifying the address function of components. For example, the 
execution of the rule  
for all a:mobile if @(a)=n and @-1(n+1)=empty then @(a):=n+1  
consists in moving forward agents of type mobile by one space of the map. 
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The proposed model is minimal and expressive. Each motif is a dynamic reconfigurable architecture, 
an ensemble of agents and objects governed by specific coordination rules.  
Note that an agent may belong to more than one motif. Furthermore, components can migrate from 
one motif to another using reconfiguration commands. 
For instance, the model of a soccer game involves at least two motifs.  
The Attack motif ensures coordination rules that aim at getting inside the adversary’s defense and 
finally score a goal. The Defense motif ensures coordination rules that aim at slowing down an 
offense to disrupt the pace and/or numerical advantage of an attack and finally get possession of the 
ball. Players can dynamically migrate from one motif to the other.  

The model for an automated highway involves several motifs. All vehicles belonging to a Road Chunk 
motif are subject to general traffic coordination rules. A Platoon motif groups and coordinates an 
ensemble of vehicles cruising at the same speed and closely following a leader vehicle. An Overtake 
motif involves an overtaking vehicle and vehicles moving in the same direction in its vicinity. Finally, a 
Communication motif groups vehicles sharing a common communication infrastructure. 

2.2 A computational model for agents 
 
We present the agent computational model that puts emphasis on architectural aspects following 
the same line as [7]. It consists of four main modules and a Repository as depicted in Figure 4.  

 
 

Figure 4: The general architecture of the computational model for agents 

2.2.1 The Knowledge Repository 
 
The Knowledge Repository contains different kinds of knowledge used by the other modules for 1) 
the interpretation of sensory information; 2) building the environment model of the agent; 3) goal 
management and subsequent goal planning. 
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Some of the Repository knowledge is developed at design time and some is produced and stored at 
run time. 

Design time knowledge specifies basic components of the agent’s environment, their main 
observability/controllability features as well as key properties and methods related to system goals. 
It includes in particular: 

• A list of all the relevant types of agents and objects and their corresponding behavioral 
specification with the admitted coordination patterns e.g. interaction types and 
reconfiguration commands;  

• A list of predefined maps and coordination patterns used to build the agent’s environment 
model; 

• A list of the goals pursued by the agent as sets of properties of two types: 1) critical 
properties requiring that some condition is never violated; 2) best-effort properties dealing 
with resource optimization e.g. finding tradeoffs between performance and resource 
utilization. 

• A list of methods used to enrich the knowledge about the environment model and so to 
produce additional knowledge at run time e.g. monitoring and learning techniques. 

Run time knowledge is generated on line from monitors, learning and analysis techniques. It includes 
in particular: 

• Properties of the agent model that may be generated by application of analysis techniques or 
inferred by application of reasoning techniques; 

• Knowledge produced by monitors of the agent’s behavior e.g. detecting failures or intrusion;  
• Knowledge produced by application of learning techniques, in particular to remove ambiguity 

about the environment configuration or to estimate parameters characterizing the dynamic 
behavior of the environment e.g. worst-case and average execution times. 

This presentation leaves open important questions about the nature of knowledge and the different 
forms it can take [2]. We discuss below some issues relevant for agent design.  
We consider that knowledge is “truthful” information that is used in some specific context to 
understand/predict a situation or to solve a problem. Truthfulness cannot always be asserted in a 
rigorous manner. Mathematical knowledge has definitely the highest degree of truthfulness, e.g. 
knowledge extracted from programs using analysis tools. At the other extreme, empirical knowledge 
although not theoretically substantiated, proves to be very useful in practice. The most widely used 
knowledge is empirical e.g. common sense knowledge, but also knowledge from machine learning. 
 
Knowledge may be declarative or procedural, regarding the form it can take. Declarative knowledge 
is a relation (property) involving entities of a domain. In the Repository, can be stored: 1) logic 
formulas inferred from a set of axioms; 2) valid system properties extracted from a system model e.g. 
system invariants; 3) architecture patterns enforcing given properties.  
Procedural knowledge takes the form of an executable description such as algorithms, behavioral 
description of components and various analysis techniques.  
The Knowledge Repository contains all these types knowledge. Utilizing them effectively is essential 
for ensuring agent’s self-adaptation and autonomy.  



11 
Autonomous Systems – An Architectural Characterization, Joseph Sifakis, November 2018 

2.2.2 The Perception module 
 
The Perception module extracts relevant information from the various stimuli provided by sensors.  
For this purpose, it makes use of learning techniques or of analysis and recognition processes. The 
extracted information is linked to knowledge of the Repository. It concerns 

• the type and possibly the identity of each sensed agent or object; 
• the state of the so identified components; 
• the type of the external environment characterized as a set of motifs with maps and 

associated coordination features. 
 

For instance, the Perception module of a soccer agent provides, for each identified component of the 
environment, its position and speed in the field map. The Perception module of a robocar provides 
the types of the components in the vicinity with their associated attributes. Some attributes connect 
the components to motifs and their corresponding maps. 

2.2.3 The Reflection module 
 
The Reflection module uses information provided by the Perception module in order to build/update 
a model of the agent’s environment. For some agents, the environment model - number of 
components, map, coordination rules - does not change over lifetime e.g. chessboard robot, soccer 
robot. Thus, sensory information determines mainly the state of components e.g. their position in 
the maps and interactions. 

Agents with dynamically changing environment e.g. robocars, are initially equipped with some 
environment model that is dynamically updated e.g. by creating/deleting motifs. For this to be 
feasible, the stimuli should provide information about architectural changes of the environment. 
Furthermore, the detected changes should correspond to patterns stored in the Knowledge 
Repository.  

Reflection module extensively uses design-time knowledge of the Repository to build a complete 
behavioral model of its perceived environment. Nonetheless, to preserve faithfulness and freshness 
of the model, stimuli interpretation should be precise enough and performed within acceptable 
delay.  

Performance of this module is critical for mobile agents subject to real-time constraints. How fast the 
agent’s environment model can track changes of the real environment? Additionally, for distributed 
multi-agents systems, there is an inherent uncertainty about the global system states and thus a risk 
of discrepancy between environment models of different agents [7]. 

Note that each agent builds a partial model of the system environment reflecting its knowledge 
about its “neighborhood” that can be observed. In a distributed system, there is no global model of 
the system environment.   

2.2.4 The Decision module 
 
The Decision module is decomposed into two cooperating submodules: a Goal Manager handling the 
actual agent’s goals and a Planner generating plans that implement particular goals. 
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The module manages a set of goals both critical and best effort. It assigns higher priority to critical 
goals according to their importance.  
Often goal management boils down to solving an optimization problem. It consists in translating 
goals into utility function policies: a goal is characterized as the desired set of feasible states for 
which the objective function is optimized subject to a set of constraints [9].  
 
For a selected goal, the Planner computes from the environment model a corresponding plan. To 
cope with the exploding complexity of the planning process, various heuristics and precomputed 
patterns from the Knowledge Repository may be used.  
The generated plans involve commands for interaction with other agents or reconfiguration of their 
environment as explained in the system architecture model. The allowed coordination patterns with 
other components of the environment are specified in their definition stored in the Knowledge 
Repository. Note that interactions may involve exchange of knowledge between interacting agents 
e.g. changing methods or goals. 
 

2.2.5 The Self-adaption module 
 
The Self-adaptation module supervises and coordinates all the other modules. It continuously 
reassesses the coherency of the exchanged information, creates new knowledge and provides 
directives to the Goal manager. 
The module applies existing knowledge or generates new knowledge by combining reasoning and 
run-time analysis techniques to detect significant changes in the environment that require 
responsive adaptation. For instance, it applies monitoring or analysis techniques to the environment 
model to detect critical situations; it also can use learning techniques to estimate parameters or 
detect abnormal situations.  

The adaptation directives to the Goal Manager concern:  
1) Change of parameters affecting the choice of the managed goals, especially estimates of dynamic 
characteristics of the environment components; 

2) Change of the set of the managed goals (adding or removing a goal), in response to some 
exceptional event in the environment or to an explicit requirement through interaction with another 
agent.  
 

3. Autonomous system design complexity issues 

An interesting technical question is how to adequately choose the autonomy level for risk-benefit 
optimization in system design. Four main factors determine this choice.  
The first is the required degree of trustworthiness. For critical complex systems, semi-autonomy 
seems to be the realistic choice under the current state of the art e.g. ADAS cars.  
The other factors are three independent types of complexity discussed below: autonomic complexity, 
design complexity and implementation complexity.  
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3.1 Autonomic complexity  
 
We need a concept of complexity accounting for the specific difficulty to build autonomous systems. 
The following factors related to the fundamental aspects of autonomy, capture autonomic 
complexity.  

1. Complexity of perception characterizes the difficulty to interpret stimuli provided by the 
environment and to timely generate corresponding inputs for the agent environment model. 
It has various sources such as stimuli ambiguity (admitting different interpretations) or 
vagueness (fuzzy or noisy stimuli). Additionally, complexity is aggravated with the volume of 
stimuli data to be analyzed in order to extract relevant input information.   

2. Lack of observability/controllability which implies partial knowledge of the agent’s 
environment and consequently limitations for building a faithful run time model by the 
Reflection module. This affects the ability to build plans and act on the environment.   

3. Complexity of goal management which is the complexity of the process of choosing amongst 
a set of goals a maximal subset of compatible goals characterizing a strategy for which a 
consistent plan is generated. The selection process may involve both qualitative criteria such 
as priorities and quantitative criteria such as optimization of physical quantities. 

4. Complexity of planning which directly depends on the type of goals and the complexity of the 
agent’s environment model. As explained goals may be as simple as non-violation of a 
constraint and more complicated such as reachability of a condition or achieving optimality 
over a given time period.  

5. Complexity of adaptation which is directly related to uncertainty about the agent’s 
environment. Sources of uncertainty are multiple, including time-varying load, dynamic 
change due to mobility, bursty events, and most critical events such as failures and attacks. 
The Self-adaptation module generates objectives to cope with such situations involving 
imperfect knowledge and lack of predictability [2,5]. This can be achieved to some extent, 
using knowledge, e.g.[8]. 
Note that reduced observability is a source of uncertainty. Nonetheless, uncertainty is not 
completely resolved by simply enhancing observability [2]. 

Note that for agents not directly interacting with a physical environment, autonomy simply means to 
cope with the complexity of goals and some uncertainty e.g. an encoder adapting to varying load to 
avoid frame skipping. For a chess robot, only complexity of goals and planning are relevant; its 
environment is fully observable/controllable without uncertainty and the stimuli are non-ambiguous. 
For robocars, all types of complexity are relevant. 

3.2 Design complexity and its relationship to autonomy 
 
System design complexity characterizes the difficulty to build a system out of components – 
autonomous or not. It is conceptualized in a two-dimensional space [2].  
One dimension represents reactive complexity [10] of the agents constituting a system.  
The other dimension represents the complexity of the architectures used to coordinate the agents. 

Although design complexity is independent from autonomic complexity, it is interesting to 
understand how the demand for autonomy affects system design choices. 
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3.2.1 Reactive complexity  
 
Reactive complexity characterizes the intricacy of the interaction between an agent and its 
environment. It is independent from space complexity or time complexity measuring the quantity of 
computational resources needed by an agent.  

We discuss below a classification of agents according to their reactive complexity (Figure 5). 

• The simplest agents are transformational agents where the relation of the input to the 
output is sufficient to characterize their behavior. Computation is performed in batch mode 
without reference to any operating environment. Such agents are often software systems 
oblivious to real-time constraints, with simple well-defined environments. Adaptation 
consists in using precomputed knowledge to cope with inherent complexity of decision 
problems, e.g. intelligent resource orchestration in data centers, intelligent personal 
assistant, game playing agent.  

• Streaming agents compute functions on streams of data. For a given input stream of values, 
they compute a corresponding output stream. The output value at some time t depends on 
the history of input values received by t. The goals for streamers deal with functional 
correctness and specific time-dependent properties such as latency. Data-flow systems are 
usually composed of streamers. Adaptation is essential to cope with load unpredictability 
and meet latency constraints, see for example [11]  

 

Figure 5: Classification of agents according to their behavioral complexity  

• Embedded agents continuously interact with a physical environment to ensure global 
properties. They are mixed HW/SW systems where real-time behavior and dynamic 
properties are essential for correctness. Autonomous behavior is required when their 
mission involves high-level goals and complex environments, in particular to adaptively 
manage computational resources and meet critical goals. Embedded agents are integrated in 
industrial systems, transport systems and all kinds of devices. 
Note that the model of embedded agents should account for the behavior of their internal 
environment including computational resources (see discussion below). 

• A cyber physical agent is an embedded agent integrating in its internal environment objects 
that are exclusively under its control. Its behavior involves both discrete and continuous 
variables representing the state of the integrated objects.  
The environment model of such an agent should be refined to distinguish between internal 
and external environment as shown in Figure 6. The Perception module gets sensory 
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information from both the external and the internal environment model. The Reflection 
module builds/updates the two models corresponding to the two environments. The 
decision process is applied to the product of the environment models to generate plans with 
commands acting on both environments.  
Cyber physical systems seek a tight integration between computers and their physical 
environment. They are essential for building complex autonomous systems e.g. self-driving 
cars. 
 

 

Figure 6: Computational model for cyber physical agent 

3.2.2 Architecture complexity  
 
The proposed model in 2.1 provides a basis for classifying system architectures according to their 
degree of dynamism, from static to self-organizing architectures as shown in Figure 7. 

We enumerate some representative cases below for increasing complexity of coordination. 
a) Static architectures involve a given number of agents and objects, with fixed coordinates e.g. a 
smart building with fixed microcontrollers and electromechanical equipment. 
b) Parametric architectures can have arbitrary initially known numbers of “pluggable” components 
for fixed coordination patterns e.g. token ring architecture, an array computer.  
c) Dynamic architectures are parametric architectures with dynamic creation/deletion of agents or 
objects, e.g. array architecture for the Game of Life, client-server architecture.  
d) Mobile architectures are dynamic architectures where also the coordinates of objects and agents 
can change dynamically, e.g. swarm robotic system. Additionally, they may involve dynamic change 
of maps when mobile agents explore a space and progressively build a model of their environment. 
e) Self-organizing architectures are mobile architectures with many dynamically changing motifs e.g. 
for robocars, soccer playing robots. Self-organization is the ability to adapt coordination rules to 
changing system dynamics.  
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Figure 7: Variation of system complexity with respect to architecture, goals and implementation 

We have shown that all these types of architectures can be formalized as operators taking as 
arguments arbitrary numbers of instances of agent and objects types [3,4,5]. We badly need theory 
for studying their properties in a compositional manner. Knowing the properties of the types of 
objects and agents involved, is it possible to infer global system properties? A more ambitious 
avenue is to develop theory for correctness by construction [6]: how to combine basic architecture 
patterns with well-established properties in order to build complex architectures that preserve the 
properties. These are largely open hard problems that urgently need exploration.  

 
Figure 8: Design complexity 

Figure 8 illustrates design complexity for different types of systems depending on the reactive 
complexity of their agents and their architectural complexity. Note the separation between services 
and systems. Services use streamers and transformational agents. IoT systems with advanced 
autonomy features, require mobile or self-organizing architectures and integrate embedded or cyber 
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physical agents. Self-organization is important for such systems with many conflicting goals. 
Nonetheless, contrary to common opinion, self-organization is not an intrinsic property of 
autonomous systems. An ordinary distributed system involving agents with explicit controllers 
communicating by exchange of non-ambiguous messages is self-organizing if it has multiple 
coordination modes. Similar arguments are applicable for other “self”-prefixed properties commonly 
considered as characteristic properties of autonomous systems. 

3.3 Implementation complexity  
 
Implementation is the process that leads to the realization of the designed system model. The latter 
can admit different implementations depending on the available computational resources and their 
organization. In rigorous approaches, the outcome of the implementation process is another model 
accounting for the physical distribution of agents and features of infrastructure implementing the 
model coordination mechanisms [12].  
We discuss below main choices for the implementation architecture depending on how/where the 
decisions are made and how/where the information is shared between the coordinating agents. We 
distinguish three main types of implementation architecture.  
 
1. Centralized architecture where the agents are not geographically distributed. They coordinate 
through a shared memory that stores the data of a common Knowledge Repository as well as the 
data representing the state of a common environment model. In other words, each agent directly 
modifies/reads a shared data structure representing the motifs with their maps and the associated 
addressing functions. Such an implementation presents the advantage of the overall coherency of 
decision and coordination. Nonetheless, access conflicts may affect performance. A typical example 
is a blackboard architecture equipped with a common knowledge base, iteratively updated by agents 
starting with a problem specification and ending with a solution. 

2. Decentralized architecture where agents are geographically distributed and there is no central 
storage. Every agent makes decisions based on local knowledge and the resulting system behavior is 
the aggregate response. Nonetheless, agents can coordinate through local memory depending on the 
topology of the environment maps. A typical example are stigmergic systems where mobile 
independent agents e.g. ants, robots, use their common environment to for coordination purposes 
[13]  

3. Distributed architecture where there are no shared data storages. Each agent handles its own data 
and makes decisions according to its own goals. Coordination between agents is exclusively through 
asynchronous message passing. A key issue for such systems is coherency of coordination between 
components to achieve global goals. These are an emerging property of the collective behavior of the 
agents.  
Distributed autonomous agent systems are today a vast and active research field because of multiple 
applications in various domains from blockchain protocols to complex autonomous transportation 
systems.  



18 
Autonomous Systems – An Architectural Characterization, Joseph Sifakis, November 2018 

4. Trustworthy autonomous systems – From correctness at design time to 
autonomic correctness  

Systems Engineering comes to a turning point moving from small-size centralized non-evolvable 
automated systems with predictable environments, to large distributed evolvable autonomous 
systems with non-predicable dynamically changing environments.  
Is it possible to build trustworthy autonomous systems? As autonomous systems are often critical, 
this is the object of a considerable and sometimes heated debate [15]. As explained in [2], the trend 
for autonomous systems renders obsolete current critical systems engineering techniques and 
standards, such as ISO26262 and DO178B, that require conclusive trustworthiness evidence based on 
some rigorous design methodology. 
It is remarkable that currently cars with autonomy features are self-certified by their manufacturers, 
contrary to most industrial products that are certified by independent authorities. Furthermore, 
some carmakers consider that successfully passing an extremely large number of test cases is a 
sufficient evidence of trustworthiness.  

Trustworthiness is a transversal design issue. It is not limited to purely functional correctness. A 
system is deemed trustworthy if it behaves as expected despite design errors, hardware failures and 
any kind of harmful interaction with its human and physical environment, including misuse, attacks, 
disturbances and any kind of unpredictable events [6].  

We briefly discuss how the rigorous model-based approach for guaranteeing trustworthiness can be 
in principle, extended to autonomous systems and the implied technical difficulties. 
Currently, model-based approaches for achieving trustworthiness involve two steps.  

The first step aims at providing guarantees that some abstract system model representing the 
system’s nominal behavior satisfies critical system goals. The nominal behavior model usually 
assumes that system environment is fully reliable and to some extent predictable. The second step 
deals with possible violations of these assumptions for a given implementation. 

Building autonomous system models accounting for nominal behavior requires strong expertise on 
both modeling and algorithmic aspects. Algorithms describe how individual goals of agents 
contribute to achieving global system goals. Their design is a non-trivial problem because they are 
distributed or decentralized. Furthermore, they pursue jointly critical and optimization goals for 
dynamically changing environments. They allow the management of critical resources (space, time, 
memory, energy) by optimizing performance and additionally respecting smoothness conditions. 
Typical examples are collision avoidance algorithms for vehicles (cars, aircraft) that manage the 
available space respecting requirements on speed and avoiding collision with obstacles. Other 
examples are mixed criticality systems involving critical and non-critical features. 
 
Modeling deals with agent nominal behavior description and coordination. Agent nominal behavior 
assumes that both the sensors and the Perception function are flawless and that sensory information 
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is correctly interpreted into predefined concepts. It focuses on Reflection and Decision and in 
particular on their dynamic aspects.  
Following our approach, the coordination is described as the composition of motifs each one 
corresponding to a system mode and solving a specific coordination problem. Model correctness can 
be inferred in principle, by proving that the motifs are correct with respect to their coordination 
goals and that they are composable [6].  
Providing guarantees for complex autonomous systems faces several limitations [2]. One is the 
decomposition and formalization of high-level goals in terms of concrete requirements verifiable on 
the system behavioral model. A second limitation concerns our ability to build faithful system 
models, especially when they involve cyber physical components. The third limitation is that 
machine-learning techniques do not lend themselves to behavioral modeling and should be treated 
as “black boxes”. 

The second step aims at ensuring trustworthiness for a given implementation taking into account 
deviations from nominal behavior e.g. possible harmful events such as failures and security threats. It 
starts from the characterization of trustworthy states for nominal behavior provided by the first step 
(Figure 9). It involves a more or less exhaustive analysis to identify all kind of harmful events and 
their possible effect. Then, for each harmful event, specific techniques are used to ensure resilience 
e.g. typically, redundancy-based techniques. This practically means that the occurrence of a single 
harmful event does not (immediately) compromise system trustworthiness. It leads to some non-
fatal state from which using DIR (Detection, Isolation, Recovery) mechanisms it is possible to bring 
the system back to a trustworthy state [14].   

This approach has been successfully applied to small, centralized critical systems. It is costly and 
leads to overprovisioned systems [6] as it consists in estimating independently, for each type of 
harmful event and associated DIR mechanism, worst-case situations and statically reserving the 
needed resources to cope with them. Its application to autonomous systems is even more difficult as 
the characterization of the effect of harmful events depends on complex environmental conditions. 
Such a characterization cannot be enumerative and exhaustive; it should be symbolic and 
conservative, the result of a global model-based analysis.  

 

Figure 9: Recovery from non-fatal states 
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Figure 10: NHTSA pre-crash failure typology covering 99.4 percent of all light-vehicle crashes for 
5,942,000 cases. Source: Pre-Crash Scenario Typology for Crash Avoidance Research, DOT HS 810 

767, April 2017. 

 

Figure 10: Pre-Crash Scenario Typology covering 99.4 percent of all light-vehicle crashes for 
5,942,000 cases, DOT HS 810 767, April 2017 

This fact is illustrated by the pre-crash failure typology shown in Figure 10. For example, “Vehicle 
failure” needs further detailed and complex analysis to identify recovery policies, depending on the 
conditions under which this event occurs.  

For autonomous systems, a key idea is to replace the individual DIR mechanisms developed at design 
time, by adaptive mechanisms managing system resources globally to achieve, first of all critical goals 
and plan best-effort goals according to resource availability. Such an approach would avoid 
overprovisioning of traditional approaches and would close the existing gap between critical and 
best-effort systems engineering [6]. 

Moving from correctness at design time to autonomic correctness requires not only cutting-edge 
theory but also finding adequate tradeoffs between quality of control and performance. The 
adaptive DIR process involves complex decision methods that may affect the ability to react promptly 
for timely recovery. 

To conclude, the proposed computational model for autonomous systems can provide a basis for 
studying model-based autonomous system design. Nonetheless, we are far from ensuring that the 
conditions are in place to develop rigorous design flows. 
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5. Discussion  

The main characteristic of autonomous systems is their ability to handle knowledge about their 
situation and adaptively respond to environment changes. The identified aspects of autonomy have 
some similarity with types of awareness exhibited by human mind [7]. 

Closing the gap between artificial and human autonomy encounters several difficult to overcome 
barriers. 

A first barrier is that human mind understands goals in terms of high-level concepts. It is not trivial to 
link concepts to massive information collected by sensors or to commands of actuators. The 
Perception process should be robust and reliable for dynamically changing environment conditions.  
Similarly, there is a big distance between directives such as “deviate from the reference trajectory to 
avoid the obstacle” and their implementation in terms of concrete goals from which corresponding 
plans are effectively computed [2]. 

A second barrier is that situation understanding by humans is largely rooted in common sense 
reasoning. Our mind has built and continuously maintains since our birth, a complex semantic model 
of both our external and internal environments. It is practically impossible to elicit all the knowledge 
encompassed by such a model. No need to understand Newton’s laws to expect that apple fall out of 
trees, that parents are older than their children are, etc. The important question is how close 
computers can get to a solution of this problem.  
As humans have innate knowledge, we can equip an agent at design time with built-in knowledge 
and a faithful model of its initial environment. Then the agent’s Reflection function should: 1) have 
access to a huge Knowledge Repository involving all common concepts and their relations; and 2) be 
able to consistently update the environment model by matching the perceived information to 
predefined knowledge patterns.  

A third barrier for computers is matching human self-adaptation and the capacity: to supervise the 
state of acquired knowledge; to understand never encountered situations; and to create new goals. 
Goal creation and handling is a grand challenge of autonomy. How to assign individual goals to 
agents so that they all together concur to the achievement of given global system goals?  

The paper provides a technical characterization of autonomy as the combination of five basic and 
independent features. It clearly separates aspects that are essential for autonomic behavior from 
other general systems engineering aspects. In that respect, it differs from other approaches using a 
large number of poorly understood “self”-prefixed terms: Self-configuration, Self-healing, Self-
optimization, Self-protection, Self-regulation, Self-learning, Self-awareness, Self-organization, Self-
creation, Self-management, Self-description [16,17]. Such characterizations based on technically non-
substantiated terms obscure the debate about the very nature of autonomy. 
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A main conclusion is that autonomy should be associated with functionality and not with specific 
techniques. Machine learning is essential for removing ambiguity from complex stimuli and coping 
with uncertainty of unpredictable environments. Nonetheless, it can be used to meet only a small 
portion of the needs implied by autonomous system design. Furthermore, it is not the only way to 
build perceptors and controllers. 

Autonomy is a kind of broad intelligence. The current AI vision is too much influenced by Turing’s test 
that considers intelligence as a verbal game between a human and a computer. Nonetheless, animals 
are not verbal and exhibit intelligence. A big deal of human intelligence is not verbal. 
Intelligence is not just automation of decisions even if this requires the computation of strategies 
with exploding complexity. Our characterization as the combination of five different types of abilities 
shows a big difference between an autonomous vehicle and a game playing robot. The situation 
awareness required for the robot is minimal. The stimuli and the environment models are trivial to 
interpret and build. The rules of the game are well-understood and can be directly related to goals. 

Computers would exhibit intelligence when they can handle knowledge (create and use knowledge) 
so as to cope with the ever changing reality as humans do. Building trustworthy and optimal 
autonomous systems goes for far beyond the current AI challenge. 
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