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May and must testing were introduced by De Nicola and Hennessy to define semantic equivalences

on processes. May-testing equivalence exactly captures safety properties, and must-testing equiva-

lence liveness properties. This paper proposes reward testing and shows that the resulting semantic

equivalence also captures conditional liveness properties. It is strictly finer than both the may- and

must-testing equivalence.

This paper is dedicated to Rocco De Nicola, on the occasion of his 65th birthday. Rocco’s work has

been a source of inspiration to my own.

Introduction

The idea behind semantic equivalences ≡ and refinement preorders ⊑ on processes is that P ≡ Q says,

essentially, that for practical purposes processes P and Q are equally suitable, i.e. one can be replaced

for by the other without untoward side effects. Likewise, P ⊑ Q says that for all practical purposes under

consideration, Q is at least as suitable as P, i.e. it will never harm to replace P by Q. To this end, Q

must have all relevant good properties that P enjoys. Among the properties that ought to be so preserved,

are safety properties, saying that nothing bad will even happen, and liveness properties, saying that

something good will happen eventually.

In the setting of the process algebra CCS, refinement preorders ⊑may and ⊑must, and associated

semantic equivalences ≡may and ≡must, were proposed by De Nicola & Hennessy in [6]. In [12] I argue

that ≡may and ≡must are the coarsest equivalences that enjoy some basic compositionality requirements1

and preserve safety and liveness properties, respectively. Yet neither preserves so-called conditional

liveness properties. This is illustrated in Figure 1, showing two processes that are identified under both

•

τ

c g
≡may

≡must •

τ

c g
c

Figure 1: Processes identified by may and must testing, but with different conditional liveness properties

may and must testing. From a practical point of view, the difference between these two processes may

be enormous. It could be that the action c comes with a huge cost, that is only worth making when the

good action g happens afterwards. Only the right-hand side process is able to incur the cost without any

benefits, and for this reason it lacks an important property that the left-hand process has. I call such

properties conditional liveness properties. A conditional liveness property says that

under certain conditions something good will eventually happen.

This paper introduces a stronger form of testing that preserves conditional liveness properties.

1Namely being congruences for injective renaming and partially synchronous interleaving operators, or equivalently all

operators of CSP, or equivalently the CCS operators parallel composition, restriction and relabelling.

http://arxiv.org/abs/1907.13348v1
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1 General setting

It is natural to view the semantics of processes as being determined by their ability to pass tests [6, 17];

processes P1 and P2 are deemed to be semantically equivalent unless there is a test which can distinguish

them. The actual tests used typically represent the ways in which users, or indeed other processes, can

interact with Pi. This idea can be formulated in the following general testing scenario [9], of which the

testing scenarios of [6, 17] are instances. It assumes

• a set of processes P,

• a set of tests T, which can be applied to processes,

• a set of outcomes O, the possible results from applying a test to a process, and

• a function Apply :T×P→ P+(O), representing the possible results of applying a specific test

to a specific process.

Here P+(O) denotes the collection of non-empty subsets of O; so the result of applying a test T to

a process P, Apply(T,P), is in general a set of outcomes, representing the fact that the behaviour of

processes, and indeed tests, may be nondeterministic.

Moreover, some outcomes are considered better then others; for example the application of a test

may simply succeed, or it may fail, with success being better than failure. So one can assume that O is

endowed with a partial order, in which o1 ≤ o2 means that o2 is a better outcome than o1.

When comparing the result of applying tests to processes one needs to compare subsets ofO. There

are two standard approaches to make this comparison, based on viewing these sets as elements of either

the Hoare or Smyth powerdomain [16, 1] ofO. For O1,O2 ∈ P+(O) let

(i) O1 ⊑Ho O2 if for every o1 ∈ O1 there exists some o2 ∈ O2 such that o1 ≤ o2

(ii) O1 ⊑Sm O2 if for every o2 ∈ O2 there exists some o1 ∈ O1 such that o1 ≤ o2.

Using these two comparison methods one obtains two different semantic preorders for processes:

(i) For P,Q ∈P let P⊑may Q if Apply(T,P)⊑Ho Apply(T,Q) for every test T

(ii) Similarly, let P ⊑must Q if Apply(T,P) ⊑Sm Apply(T,Q) for every test T .

Note that ⊑may and ⊑must are reflexive and transitive, and hence preorders. I use P ≡may Q and P ≡must Q

to denote the associated equivalences.

The terminology may and must refers to the following reformulation of the same idea. Let Pass ⊆O
be an upwards-closed subset of O, i.e. satisfying o′ ≥ o ∈ Pass ⇒ o′ ∈ Pass, thought of as the set of

outcomes that can be regarded as passing a test. Then one says that a process P may pass a test T with

an outcome in Pass, notation “P may Pass T ”, if there is an outcome o ∈ Apply(P,T) with o ∈ Pass,

and likewise P must pass a test T with an outcome in Pass, notation “P must Pass T ”, if for all o ∈
Apply(P,T) one has o ∈ Pass. Now

P ⊑may Q iff ∀T ∈T ∀Pass ∈ P↑(O)(P may Pass T ⇒ Q may Pass T )

P ⊑must Q iff ∀T ∈T ∀Pass ∈ P↑(O)(P must Pass T ⇒ Q must Pass T )

where P↑(O) is the set of upwards-closed subsets ofO.

The original theory of testing [6, 17] is obtained by using as the set of outcomes O the two-point

lattice

⊥

⊤

with ⊤ representing the success of a test application, and ⊥ failure.
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Table 1: Structural operational semantics of CCS

α .E
α

−→ E (ACT)
E j

α
−→ E ′

j

∑i∈I Ei
α

−→ E ′
j

( j ∈ I) (SUM)

E
α

−→ E ′

E|F
α

−→ E ′|F
(PAR-L)

E
a

−→ E ′, F
ā

−→ F ′

E|F
τ

−→ E ′|F ′
(COMM)

F
α

−→ F ′

E|F
α

−→ E|F ′
(PAR-R)

E
α

−→ E ′

E\L
α

−→ E ′\L
(α , ᾱ 6∈ L) (RES)

E
α

−→ E ′

E[ f ]
f (α)
−→ E ′[ f ]

(REL)
fixLSX :SM

α
−→ E

fixLX :SM
α

−→ E
(REC)

2 CCS: The Calculus of Communicating Systems

CCS [24] is parametrised with a set C of names; Act := C
.
∪ C̄

.
∪ {τ} is the set of actions, where τ is

a special internal action and C̄ := {c̄ | c ∈ C } is the set of co-names. Complementation is extended

to C̄ by setting ¯̄c = c. Below, a ranges over A := C ∪ C̄ and α over Act. A relabelling is a function

f : C →C ; it extends to Act by f (c̄)= f (c) and f (τ) := τ . Let X be a set X , Y , . . . of process variables.

The set ECCS of CCS expressions is the smallest set including:

α .E for α ∈Act and E ∈ECCS action prefixing

∑i∈I Ei for I an index set and Ei ∈ECCS choice

E|F for E,F ∈ECCS parallel composition

E\L for L ⊆ C and E ∈ECCS restriction

E[ f ] for f a relabelling and E ∈ECCS relabelling

X for X ∈X process variable

fixLX :SM for S : X ⇀ECCS and X ∈ dom(S) recursion.

The expression ∑i∈{1,2}αi.Ei is often written as α1.E1+α2.E2, ∑i∈{1}αi.Ei as α1.E1, and ∑i∈ /0αi.Ei as 0.

Moreover, one abbreviates α .0 by α , and P\{c} by P\c. A partial function S : X ⇀ECCS is called a

recursive specification, and traditionally written as {Y
def
= S(Y ) |Y ∈dom(S)}. A CCS expression E is

closed if each occurrence of a process variable Y in E lays within a subexpression fixLX :SM of E with

Y ∈dom(S); PCCS, ranged over by P,Q, . . ., denotes the set of closed CCS expressions, or processes.

The semantics of CCS is given by the labelled transition relation → ⊆ PCCS ×Act ×PCCS, where

transitions P
α−→ Q are derived from the rules of Table 1. Here fixLSX :SM denotes the expression S(X)

(written SX ) with fixLY :SM substituted for each free occurrence of Y, for all Y ∈ dom(S), while renaming

bound variables in SX as necessary to avoid name-clashes.

The process α .P performs the action α first and subsequently acts as P. The choice operator ∑i∈I Pi

may act as any of its arguments Pi, depending on which of these processes is able to act at all. The

parallel composition P|Q executes an action from P, an action from Q, or in the case where P and Q

can perform complementary actions a and ā, the process can perform a synchronisation, resulting in

an internal action τ . The restriction operator P\L inhibits execution of the actions from L and their

complements. The relabelling P[ f ] acts like process P with all labels α replaced by f (α). Finally, the

rule for recursion says that a recursively defined process fixLX :SM behaves exactly as the body SX of the

recursive equation X
def
= SX , but with recursive calls fixLY :SM substituted for the variables Y ∈ dom(S).
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3 Classical may and must testing for CCS

Let Actω := Act ∪{ω}, where ω /∈ Act is a special action reporting success. A CCS test T ∈TCCS is

defined just like a CCS process, but with α ranging over Actω . So a CCS process is a special kind of

CCS test, namely one that never performs the action ω . To apply the test T to the process P one runs

them in parallel; that is, one runs the combined process T |P—which is itself a CCS test.

Definition 1 A computation π is a finite or infinite sequence T0,T1,T2, . . . of tests, such that (i) if Tn is

the final element in the sequence, then Tn
τ

−→ T for no T , and (ii) otherwise Tn
τ

−→ Tn+1.

A computation π is successful if it contains a state T with T
ω

−→ T ′ for some T ′.

For T ∈TCCS, P ∈PCCS, let Comp(T,P) be the set of computations whose initial element is T |P.

Let Apply(T,P) := {⊤ | ∃ successful π ∈ Comp(T,P)}∪{⊥ | ∃ unsuccessful π ∈ Comp(T,P)}.

Using this definition of Apply it follows that P ⊑may Q holds unless there is a test T such that T |P has

(that is, is the initial state of) a successful computation but Q has not. Likewise P ⊑must Q holds unless

there is a test T such that T |P has only successful computations but Q has not.

4 Dual may and must testing

A liveness property [20] is a property that says that something good will eventually happen. In the

context of CCS, any test T can be regarded to specify a liveness property; a process P is defined to have

this property iff all computations of T |P are successful. Now P ⊑must Q holds iff all liveness properties

T ∈TCCS that are enjoyed by P also hold for Q.

A safety property [20] is a property that says that something bad will never happen. When thinking

of the special action ω as reporting that something bad has occurred, rather than something good, any test

T can also be regarded to specify a safety property; a process P is defined to have this property iff none

of the computations of T |P are catastrophic; here catastrophic is simply another word for “successful”,

when reversing the connotation of ω . Now Q ⊑may P holds iff all safety properties T ∈ TCCS that are

enjoyed by P also hold for Q.

A labelled transition system (LTS) over a set Act is a pair (P,→) where P is a set of processes or

states and → ⊆ P×Act ×P a set of transitions. In [12] preorders ⊑liveness and ⊑safety are defined on

LTSs. Specialised to the LTS (PCCS,→) induced by CCS, ⊑liveness coincides with ⊑must, and ⊑safety is

exactly the reverse of ⊑may, in accordance with the reasoning above.

To explain the reversal of ⊑may when dealing with safety properties, I propose a variant of CCS

testing where in Definition 1 the word “catastrophic” is used for “successful” and Apply is redefined by

Apply(T,P) := {⊥ | ∃ catastrophic π ∈ Comp(T,P)}∪{⊤ | ∃ uncatastrophic π ∈ Comp(T,P)}.

An equivalent alternative to redefining Apply is to simply invert the order between ⊥ and ⊤. Let ⊑dual
may

and ⊑dual
must be the versions of the may- and must-testing preorders obtained from this alternative definition.

It follows immediately from the definitions that P ⊑dual
may Q iff Q ⊑must P and that P ⊑dual

must Q iff Q ⊑may P.

Based on this, it may be more accurate to say that ⊑safety coincides with ⊑dual
must.

A possibility property [21] is a property that says that something good might eventually happen. A

test T can be regarded to specify a possibility property; a process P is defined to have this property iff

some computation of T |P is successful. Now P ⊑may Q holds iff all possibility properties T ∈TCCS that

are enjoyed by P also hold for Q. Lamport argues that “verifying possibility properties tells you nothing

interesting about a system” [21]. As an example, consider the following models of coffee machines:

C1 := τ C2 := τ .c+ τ C3 := τ .c
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where c is the act of dispensing coffee. The machine C1 surely will not make coffee, C2 makes a non-

deterministic choice between making coffee or not, and C3 surely makes coffee. Under may testing,

systems C2 and C3 are equivalent—both have the possibility of making coffee—and each of them is

better than C1: C1 ⊏may C2 ≡may C3. The relevance of this indeed is questionable. It takes must testing to

formalise that C3 is better than C2: only C3 guarantees that coffee will eventually be dispensed.

When employing dual testing, the same example applies, but with c denoting a catastrophe. Now C1

is safe, whereas C2 and C3 are not: C1 ⊐
dual
must C2 ≡

dual
must C3. Dual may testing would argue that C2 is better

than C3 because a catastrophe might be avoided. This however, can be deemed a weak argument.

In view of these considerations, I will focus on the preorders ⊑must and ⊑dual
must (or ⊑safety). The (dual)

may preorders simply arise as their inverses, and hence do not require explicit treatment.

5 Reward testing for CCS

A CCS reward test is defined just like a CCS process, but with α ranging over Act ×R, the valued

actions. A valued action is an action tagged with a real number, the reward for executing this action.

A negative reward can be seen as a penalty. Let TR
CCS be the set of CCS reward tests. The structural

operational semantics for CCS reward tests has the following modified rules:

P
a,r−→ P′, Q

ā,r′−−→ Q′

P|Q τ ,r+r′−−−→ P′|Q′
(COMM

′)
P

α ,r−→ P′

P\L
α ,r−→ P′\L

(α , ᾱ 6∈ L) (RES
′)

P
α ,r−→ P′

P[ f ] f (α),r−−−→ P′[ f ]
(REL

′)

Thus, in synchronising two actions one reaps the rewards of both. In all other rules of Table 1, α is

simply replaced by α ,r, with r ∈R. A valued action α ,0 is simply denoted α , so that a CCS process

can be seen as a special CCS reward test, namely one in which all rewards are 0. To apply a reward test

T to a process P one again runs them in parallel.

Definition 2 A reward computation π is a finite or infinite sequence T0,r1,T1,r2,T2 . . . of reward tests,

such that (i) if Tn is the final element in π , then Tn
τ ,r−→ T for no r and T , and (ii) otherwise Tn

τ ,rn+1−−−→ Tn+1.

The reward of a finite computation π ending in Tn is ∑n
i=1 ri. The reward of an infinite computation

T0,r1,T1,r2,T2 . . . is
inf

n→∞

n

∑
i=1

ri ∈R∪{−∞,∞}.

For T ∈TR
CCS, P ∈PCCS, let CompR(T,P) be the set of reward computations with initial element T |P.

Let Apply(T,P) := {reward(π) | π ∈ CompR(T,P)}.

This defines reward preorders ⊑
may
reward and ⊑must

reward onPCCS. It will turn out that P⊑
may
reward Q iff Q⊑must

reward P.

As a consequence I will focus on ⊑must
reward, and simply call it ⊑reward.

6 Characterising reward testing

Assuming a fixed LTS (P,→), labelled over a set Act =A
.
∪ {τ}, the ternary relation =⇒⊆ P×A ∗×P

is the least relation satisfying

P
ε
=⇒ P ,

P
τ

−→ Q

P
ε
=⇒ Q

,
P

a
−→ Q, a 6= τ

P
a
=⇒ Q

and
P

σ
=⇒ Q

ρ
=⇒ r

P
σρ
=⇒ r

.

For σ ∈ A ∗ and ν ∈ A ∗∪A ∞ write σ ≤ ν for “σ is a prefix of ρ”, i.e. “∃ρ .σρ = ν”.
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Definition 3 Let P ∈ P.

• a1a2a3 · · · ∈ A ∞ is an infinite trace of P if there are P1,P2, . . . such that P
a1=⇒ P1

a2=⇒ P2
a3=⇒ ···.

• inf (P) denotes the set of infinite traces of P.

• P diverges, notation P⇑, if there are Pi ∈ P for all i > 0 such that P
τ

−→ P1
τ

−→ P2
τ

−→ ·· ·.
• divergences(P) := {σ ∈ A ∗ | ∃Q. P

σ
=⇒ Q⇑} is the set of divergence traces of P.

• initials(P) := {α ∈ A | ∃Q. P
α

−→ Q}.

• deadlocks(P) := {σ ∈ A ∗ | ∃Q. P
σ
=⇒ Q∧ initials(Q) = /0} is the set of deadlock traces of P.

• CT(P) := inf (P)∪divergences(P)∪deadlocks(P) is the set of complete traces of P.

• ptraces(P) := {σ ∈ A ∗ | ∃Q. P
σ
=⇒ Q} is the set of partial traces of P.

• failures(P) := {〈σ ,X〉 ∈ A ∗×P(A ) | ∃Q. P
σ
=⇒ Q∧ initials(Q)∩ (X ∪{τ}) = /0}.

• failuresd(P) := failures(P)∪{〈σ ,X〉 | σ ∈ divergences(P)∧X ⊆ A }.

• infd(P) := inf (P)∪{ν ∈ A ∞ | ∀σ<ν ∃ρ ∈ divergences(P). σ ≤ ρ < ν}.

• divergences⊥(P) := {σρ | σ ∈ divergences(P)∧ρ ∈ A ∗}.

• inf⊥(P) := inf (P)∪{σν | σ ∈ divergences(P)∧ν ∈ A ∞}.

• failures⊥(P) := failures(P)∪{〈σρ ,X〉 | σ ∈ divergences(P)∧ρ ∈ A ∗∧X ⊆ A }.

Note that ptraces(R) = {σ | 〈σ , /0〉 ∈ failuresd(R)} for any R ∈P. (*)

A path of a process P ∈ P is an alternating sequence P0 α1 P1 α2 P2 · · · of processes/states and actions,

starting with a state and either being infinite or ending with a state, such that Pi
αi+1−−→ Pi+1 for all relevant i.

Let l(π) := α1α2 · · · be the sequence of actions in π , and ℓ(π) the same sequence after all τs are removed.

Now σ ∈ inf (P)∪divergences(P) iff P has an infinite path π with ℓ(π) =σ . Likewise, σ ∈ ptraces(P) iff

P has a finite path π with ℓ(π) = σ . Finally, σ ∈ inf (P)∪ptraces(P) iff P has an path π with ℓ(π) = σ .

Any transition P|Q α−→ R derives, through the rules of Table 1, from

• a transition P
α−→ P′ and a state Q, where R = P′|Q ,

• two transitions P
a1−→ P′ and Q

ā2−→ Q′, where R = P′|Q′ ,

• or from a state P and a transition Q
α−→ Q′, where R = P|Q′.

This transition/state, transition/transition or state/transition pair is called a decomposition of P|Q α−→ R; it

need not be unique. Now a decomposition of a path π of P|Q into paths π1 and π2 of P and Q, respectively,

is obtained by decomposing each transition in the path, and concatenating all left-projections into a path

of P and all right-projections into a path of Q—notation π ∈ π1|π2 [15]. Here it could be that π is infinite,

yet either π1 or π2 (but not both) are finite. Again, decomposition of paths need not be unique.

Theorem 1 Let P,Q ∈PCCS. Then P ⊑reward Q ⇔ divergences(P) ⊇ divergences(Q)∧
inf (P) ⊇ inf (Q)∧

failuresd(P) ⊇ failuresd(Q).

Proof: Let ⊑NDFD be the preorder defined by: P ⊑NDFD Q iff the right-hand side of Theorem 1 holds.

For σ = a1a2 · · ·an ∈ A ∗, let σ̄ .T with T ∈ TR
CCS be the CCS reward test ā1.ā2. · · · ā1.T . It starts

with performing the complements of the actions in σ , where each of these actions is given a reward 0.

Write αr for (α ,r) ∈ Act ×R. For ν = a1a2a3 · · · ∈ A ∞, let ν̄r be the CCS reward test fixLX0:SM
where S = {Xi

def
= ār

i+1.Xi+1 | i ≥ 0}. This test simply performs the infinite sequence of complements of

the actions in ν , where each of these actions is given a reward r.

“⇒”: Suppose P 6⊑NDFD Q.

Case 1: Let σ ∈ divergences(Q) \ divergences(P). Take T := σ̄ .τ−1.τ1 ∈ TR
CCS. Then T |Q has a

computation π with reward(π)< 0, whereas T |P has no such computation. Hence P 6⊑reward Q.

Case 2: Let ν ∈ inf (Q) \ inf (P). Take T := ν̄−1 ∈ TR
CCS. Then T |Q has a computation π with

reward(π) =−∞, whereas T |P has no such computation. Hence P 6⊑reward Q.
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Case 3: Let 〈σ ,X〉 ∈ failuresd(Q)\ failuresd(P). Take T := σ̄ .τ−1.∑a∈X a1 ∈TR
CCS. Then T |Q has a

computation π with reward(π)< 0, whereas T |P has no such computation. Hence P 6⊑reward Q.

“⇐”: Suppose P ⊑NDFD Q. Let T ∈TR
CCS and r ∈R be such that ∃π ∈ Comp(T |Q) with reward(π) = r.

It suffices to find a π ′ ∈ Comp(T |P) with reward(π ′) ≤ r. The computation π can be seen as a path

of T |Q in which all actions are τ . Decompose this path into paths π1 of T and π2 of Q. Note that

reward(π) = reward(π1).

Case 1: Let π2 be infinite. Then ℓ(π2) ∈ inf (Q)∪ divergences(Q) ⊆ inf (P)∪ divergences(P). Thus

P has an infinite path π ′
2 with ℓ(π ′

2) = ℓ(π2). Consequently, T |P has an infinite path π ′ ∈ π1|π
′
2 that is a

computation with reward(π ′) = r.

Case 2: Let π2 be finite and π1 be infinite. Then ℓ(π1) ∈ divergences(T ) and ℓ(π2) ∈ ptraces(Q) ⊆
ptraces(P). The latter inclusion follows by (*). Thus P has a finite path π ′

2 with ℓ(π ′
2) = ℓ(π2). Conse-

quently, T |P has an infinite path π ′ ∈ π1|π
′
2 that is a computation with reward(π ′) = r.

Case 3: Let π1 and π2 be finite. Let T ′ and Q′ be the last states of π1 and π2, respectively. Let

X := {a ∈ Act | ar ∈ initials(T ′)}. Then τ /∈ X , τ /∈ initials(Q′) and initials(Q′)∩X = /0. So 〈ℓ(π2),X〉 ∈
failures(Q) ⊆ failuresd(Q) ⊆ failuresd(P). Thus P has either an infinite path π ′

2 with ℓ(π ′
2) = ℓ(π2)

or a finite path π ′
2 with ℓ(π ′

2) = ℓ(π2) and whose last state P′ satisfies initials(P′)∩ (X ∪ {τ}) = /0.

Consequently, T |P has a finite or infinite path π ′ ∈ π1|π
′
2 that is a computation with reward(π ′) = r. ✷

7 Weaker notions of reward testing

Finite-penalty reward testing doesn’t allow computations that incur infinitely many penalties. A test

T ∈ TR
CCS has finite penalties if each infinite path T αr1

1 T1αr2

2 T2 · · · has only finitely many transitions i

with ri < 0. Let P ⊑fp-reward Q iff Apply(T,P)⊑Sm Apply(T,Q) for every finite-penalty reward test T.

Theorem 2 Let P,Q ∈PCCS. Then P ⊑fp-reward Q ⇔ divergences(P) ⊇ divergences(Q)∧
infd(P) ⊇ infd(Q)∧

failuresd(P) ⊇ failuresd(Q).

Proof: Let ⊑d
FDI be the preorder defined by: P ⊑d

FDI Q iff the right-hand side of Theorem 2 holds.

“⇒”: Suppose P 6⊑d
FDI Q. Case 1 and 3 proceed exactly as in the proof of Theorem 1, but the proof of

Case 2 needs to be revised, as its proof uses a test with infinitely many penalties. So assume

divergences(P)⊇ divergences(Q) ∧ failuresd(P)⊇ failuresd(Q)

and let ν ∈ infd(Q)\ infd(P). I can rule out the case ∀σ<ν ∃ρ ∈ divergences(q). σ ≤ ρ < ν because then

ν ∈ infd(P), using that divergences(Q) ⊆ divergences(P). So ν ∈ inf (Q). Let ν := ν1ν2, where each

ρ ∈ divergences(Q) with ρ < ν satisfies ρ < ν1. Let ν2 = b1b2 · · · ∈ A ∞. Take T := ν̄1.τ
−1.fixLY0:SM,

where S = {Yi
def
= τ1 + b̄i+1.Yi+1 | i ≥ 0}. Then T |Q has a computation π with reward(π) < 0, whereas

T |P has no such computation. Hence P 6⊑fp-reward Q.

“⇐”: Suppose P ⊑d
FDI Q. The proof proceeds just as the one of Theorem 1, except for Case 1.

Case 1: Let π2 be infinite. Then ℓ(π2)∈ inf (Q)∪divergences(Q)⊆ infd(P)∪divergences(P). In case

ℓ(π2) ∈ inf (P)∪divergences(P) the proof concludes as for Theorem 1. So assume that ℓ(π2) ∈ A ∞ and

∀σ<ℓ(π2) ∃ρ ∈ divergences(P). σ ≤ ρ < ℓ(π2). Then there are prefixes π†, π†
1 and π†

2 of π , π1 and π2

such that (i) π† ∈ π†
1 |π

†
2 , (ii) there are no negative rewards allocated in the suffix of π1 past π†

1 , and (iii)

ℓ(π†
2 ) ∈ divergences(P). Let π ′

2 be an infinite path of P with ℓ(π ′
2) = ℓ(π†

2 ). Then there is a computation

π ′ ∈ π†
1 |π

′
2 of T |P with reward(π ′) = reward(π†

1 )≤ reward(π1) = r. ✷
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Single penalty reward testing doesn’t allow computations that incur multiple penalties. A test T ∈
T

R
CCS has the single penalty property if each path T αr1

1 T1αr2

2 T2 · · · has at most one transition i with ri < 0.

Let P ⊑sp-reward Q iff Apply(T,P) ⊑Sm Apply(T,Q) for every single penalty reward test T. Obviously,

⊑sp-reward coincides with ⊑fp-reward. This follows because all test used in the proof of Theorem 2 have the

single penalty property.

Analogously one might weaken reward testing and/or single penalty reward testing by requiring that

in each computation only finitely many, or at most one, positive reward can be reaped. This does not

constitute a real weakening, as the tests used in Theorems 1 and 2 already allot at most a single positive

reward per computation only.

Nonnegative reward testing requires all rewards to be nonnegative. Let P ⊑+reward Q iff Apply(T,P)
⊑Sm Apply(T,Q) for every nonnegative reward test T. Likewise ⊑−reward requires all rewards to be 0 or

negative.

Theorem 3 Let P,Q ∈PCCS. Then P ⊑+reward Q ⇔ divergences⊥(P) ⊇ divergences⊥(Q)∧
inf⊥(P) ⊇ inf⊥(Q)∧

failures⊥(P) ⊇ failures⊥(Q).

Proof: Let ⊑⊥
FDI be the preorder defined by: P ⊑⊥

FDI Q iff the right-hand side of Theorem 3 holds.

“⇒”: Suppose P 6⊑⊥
FDI Q.

Case 1: Let σ = a1a2 · · ·an ∈ divergences⊥(Q)\divergences⊥(P). Take T := fixLX0:SM in which

S = {Xi
def
= τ1 +ai+1.Xi+1 | 0≤ i<n}∪{Xn

def
= τ1}.

Then T |Q has a computation π with reward(π)< 1, which T |P has not. Hence P 6⊑+reward Q.

Case 2: Let ν = a1a2 · · · ∈ inf⊥(Q)\ inf⊥(P). Let T := fixLX0:SM with S = {Xi−1
def
= τ1+ai.Xi | i≥1}.

Then T |Q has a computation π with reward(π)< 1, which T |P has not. Hence P 6⊑+reward Q.

Case 3: Let 〈a1a2 · · ·an,X〉 ∈ failures⊥(Q)\ failures⊥(P). Take T := fixLX0:SM in which

S = {Xi
def
= τ1 +ai+1.Xi+1 | 0≤ i<n}∪{Xn

def
= ∑

a∈X

a1}.

Then T |Q has a computation π with reward(π)< 1, which T |P has not. Hence P 6⊑+reward Q.

“⇐”: Suppose P ⊑⊥
FDI Q. Let T ∈TR

CCS be a nonnegative rewards test and r ∈R be such that there is

a π ∈ Comp(T |Q) with reward(π) = r. It suffices to find a π ′ ∈ Comp(T |P) with reward(π ′) ≤ r. The

computation π can be seen as a path of T |Q in which all actions are τ . Decompose this path into paths

π1 of T and π2 of Q. Note that reward(π) = reward(π1).
Case 1: Let π2 be infinite. Then ℓ(π2) ∈ inf (Q)∪ divergences(Q) ⊆ inf⊥(P)∪ divergences⊥(P). If

ℓ(π2) ∈ inf (P)∪ divergences(P) then P has an infinite path π ′
2 with ℓ(π ′

2) = ℓ(π2). Consequently, T |P
has an infinite path π ′ ∈ π1|π

′
2 that is a computation with reward(π ′) = r. The alternative is that ℓ(π2)

has a prefix in divergences(P). In that case there are prefixes π†, π†
1 and π†

2 of π , π1 and π2 such that

π† ∈ π†
1 |π

†
2 and ℓ(π†

2 ) ∈ divergences(P). Let π ′
2 be an infinite path of P with ℓ(π ′

2) = ℓ(π†
2 ). Then there

is a computation π ′ ∈ π†
1 |π

′
2 of T |P with reward(π ′) = reward(π†

1 )≤ reward(π1) = r.

Case 2: Let π2 be finite and π1 be infinite. Then ℓ(π1) ∈ divergences(T ) and ℓ(π2) ∈ ptraces(Q) ⊆
ptraces(P)∪divergences⊥(P). The latter inclusion follows since

ptraces(R)∪divergences⊥(R) = {σ | 〈σ , /0〉 ∈ failures⊥(R)}

for any R ∈ P. If ℓ(π2) ∈ ptraces(P) then P has a finite path π ′
2 with ℓ(π ′

2) = ℓ(π2). Consequently, T |P
has an infinite path π ′ ∈ π1|π

′
2 that is a computation with reward(π ′) = r. The alternative is handled just

as for Case 1 above.
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Case 3: Let π1 and π2 be finite. Let T ′ and Q′ be the last states of π1 and π2, respectively. Let

X := {a ∈ Act | ar ∈ initials(T ′)}. Then τ /∈ X , τ /∈ initials(Q′) and initials(Q′)∩X = /0. So 〈ℓ(π2),X〉 ∈
failures(Q)⊆ failures⊥(Q)⊆ failures⊥(P). If 〈ℓ(π2)∈ failures(P) then P has a finite path π ′

2 with ℓ(π ′
2)=

ℓ(π2) and whose last state P′ satisfies initials(P′)∩ (X ∪ {τ}) = /0. Consequently, T |P has a finite or

infinite path π ′ ∈ π1|π
′
2 that is a computation with reward(π ′) = r. The alternative is handled just as for

Case 1 above. ✷

One might weaken nonnegative reward testing by requiring that in each computation only finitely many,

or at most one, reward can be reaped. This does not constitute a real weakening, as the tests used in

Theorem 3 already allot at most a single reward per computation only.

Theorem 4 Let P,Q ∈PCCS. Then P ⊑−reward Q ⇔ ptraces(P) ⊇ ptraces(Q)∧
inf (P) ⊇ inf (Q)

Proof: Let ⊑∞
T be the preorder defined by: P ⊑∞

T Q iff the right-hand side of Theorem 4 holds.

“⇒”: Suppose P 6⊑∞
T Q.

Case 1: Let σ ∈ ptraces(Q) \ ptraces(P). Take T := σ̄ .τ−1. Then T |Q has a computation π with

reward(π)< 1, which T |P has not. Hence P 6⊑−reward Q.

Case 2 proceeds exactly as in the proof of Theorem 1.

“⇐”: Suppose P ⊑∞
T Q. Let T ∈TR

CCS be a nonpositive rewards test and r ∈R be such that there is a

π ∈ Comp(T |Q) with reward(π) = r. It suffices to find a π ′ ∈ Comp(T |P) with reward(π ′) ≤ r. The

computation π can be seen as a path of T |Q in which all actions are τ . Decompose this path into paths

π1 of T and π2 of Q. Note that reward(π) = reward(π1).

Moreover, ℓ(π2)∈ inf (Q)∪ptraces(Q)⊆ inf (P)∪ptraces(P). So P has a path π ′
2 with ℓ(π ′

2) = ℓ(π2).
Consequently, T |P has an path π ′ ∈ π1|π

′
2 that is either a computation, or a prefix of a computation, with

reward(π ′) = r. In case it is a prefix of a computation π ′′ then reward(π ′′)≤ reward(π ′) = r. ✷

Finite-penalty nonpositive reward testing only allows computations that incur no positive rewards and

merely finitely many penalties. Let P ⊑fp-−reward Q iff Apply(T,P) ⊑Sm Apply(T,Q) for every finite-

penalty nonpositive reward test T.

Theorem 5 Let P,Q ∈PCCS. Then P ⊑fp-−reward Q ⇔ ptraces(P) ⊇ ptraces(Q)

Proof: Let ⊑T be the preorder defined by: P ⊑T Q iff the right-hand side of Theorem 5 holds.

“⇒”: Suppose P 6⊑T Q. Let σ ∈ ptraces(Q)\ptraces(P). Take T := σ̄ .τ−1. Then T |Q has a computation

π with reward(π)< 1, which T |P has not. Hence P 6⊑−reward Q.

“⇐”: Suppose P ⊑T Q. Let T ∈TR
CCS be a finite-penalty nonpositive rewards test and r ∈R be such that

there is a π ∈ Comp(T |Q) with reward(π) = r. Then π has a finite prefix π† (not necessarily a computa-

tion) with reward(π) = r. It suffices to find a prefix π ′ of a computation of T |P with reward(π ′) = r. The

finite prefix π† can be seen as a path of T |Q in which all actions are τ . Decompose this path into finite

paths π1 of T and π2 of Q. Now ℓ(π2)∈ ptraces(Q)⊆ ptraces(P). So P has a path π ′
2 with ℓ(π ′

2) = ℓ(π2).
Consequently, T |P has a path π ′ ∈ π1|π

′
2 that is a prefix of a computation, with reward(π ′) = r. ✷

Single penalty nonpositive reward testing only allows computations that incur no positive rewards and at

most one penalty. Let P ⊑sp-−reward Q iff Apply(T,P)⊑Sm Apply(T,Q) for every single penalty nonpos-

itive reward test T. Obviously, ⊑sp-−reward coincides with ⊑fp-−reward. This follows because all test used

in the proof of Theorem 5 have the single penalty property.
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8 Reward may testing

Call a test T ∈ TR
CCS well-behaved if for each infinite path T αr1

1 T1αr2

2 T2 · · · the limit limn→∞ ∑n
i=1 ri ∈

R∪{−∞,∞} exists. If the sequence (ri)
∞
i=1 alternates between 1 and −1 for instance, the test is not well-

behaved. Since all tests used in the proof of Theorem 1 are well-behaved, the reward testing preorder

⊑reward would not change if one restricts the collection of available test to the well-behaved ones only.

When restricting to well-behaved tests, the infimum infn→∞ in Definition 2 may be read as limn→∞.

Theorem 6 P ⊑
may
reward Q iff Q ⊑must

reward P.

Proof: For any well-behaved test T , let −T be obtained by changing all occurrences of actions (α ,r)
into (α ,−r). Now Apply(−T,P) = {−r | r∈Apply(T,P)}. This immediately yields the claimed result.✷

All weaker notions of testing contemplated in Section 7 employ well-behaved tests only. The same

reasoning as above yields (besides ⊑may
reward =⊑−1

reward)

⊑may
fp-reward =⊑−1

reward , ⊑may
+reward =⊑−1

−reward , ⊑may
−reward =⊑−1

+reward and ⊑may
fp-−reward =⊑−1

−reward .

9 A hierarchy of testing preorders

Theorem 7 P ⊑must Q iff P ⊑+reward Q. Likewise, P ⊑dual
must Q iff P ⊑fp-−reward Q.

Proof: “If”: Without affecting ⊑must one may restrict attention to tests T ∈TCCS with the property that

each path of T contains at most one success state—one with an outgoing transition labelled ω . Namely,

any outgoing transition of a success state may safely be omitted. Now each such test T can be converted

into a nonnegative reward test T ′, namely by assigning a reward 1 to any action leading into a success

state, keeping the rewards of all other actions 0. The success action itself may then be renamed into τ ,

or omitted. Now trivially, a computation of T |P is successful iff the matching computation of T ′ yields a

reward 1; a computation of T |P is unsuccessful iff the matching computation of T ′ yields a reward 0. It

follows that must-testing can be emulated by nonnegative reward testing.

“Only if”: As remarked in Section 7, nonnegative reward testing looses no power when allowing

only one reward per computation. For the same reasons it looses no power if each positive reward is 1.

Now any reward test T ′ ∈TR
CCS with these restrictions can be converted to a test T ∈TCCS by making

any target state of a reward-1 transition into a success state. It follows that nonnegative reward testing

can be emulated by must-testing.

The second statement follows in the same way, but using a reward −1. ✷

⊑−1
may =⊑dual

must =⊑fp-−reward =⊑T =⊑safety

⊑−reward =⊑∞
T

⊑reward =⊑NDFD =⊑lt-properties

⊑must =⊑+reward =⊑⊥
FDI =⊑liveness

⊑fp-reward =⊑d
FDI =⊑cond. liveness

Figure 2: A spectrum of testing preorders

A preorder ⊑X is said to be finer than or equal to a preorder ⊑Y iff P ⊑X Q ⇒ P ⊑Y Q for all P and Q; in

that case ⊑Y is coarser than or equal to ⊑X .
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Theorem 8 The preorders occurring in this paper are related as indicated in Figure 2, where the arrows

point in the coarser direction.

Proof: The relations between ⊑reward, ⊑fp-reward, ⊑+reward, ⊑−reward and ⊑fp-−reward follow immediately

from the definitions, as the coarser variant uses only a subset of the tests available to the finer variant.

The strictness of all these relations is obtained by the examples below.

The connections with ⊑must, ⊑
dual
must and the inverse of ⊑may are provided by Theorem 7 and Section 4.

The characterisations in terms of ⊑NDFD, ⊑d
FDI , ⊑

⊥
FDI , ⊑

∞
F and ⊑T are provided by Theorems 1–5. The

connections with ⊑lt-properties, ⊑cond. liveness, ⊑liveness and ⊑safety will be established in Section 10. ✷

Let an.P be defined by a0.P := P and ai+1.P = a.ai.P. Furthermore, let a∞ := fixLX :X
def
= a.XM be a pro-

cess that performs infinitely many as. Let ∆ be the unary operator given by ∆P := fixLX :X
def
= τ .X +P M.

It first performs 0 or more τ-actions, and if this number is finite subsequently behaves as its argument P.

So ∆0 = τ∞ just performs an infinite sequence of τ-moves.

Example 1 ∑
n≥1

an.∆0 ≡fp-reward a∞ + ∑
n≥1

an.∆0, but ∑
n≥1

an.∆0 6⊑−reward a∞ + ∑
n≥1

an.∆0 (and thus 6⊑reward).

Example 2 ∆(c.g) ≡must ∆(c + c.g) and ∆(c.g) ≡−reward ∆(c + c.g), yet ∆(c.g) 6⊑fp-reward ∆(c + c.g).
These are the processes displayed in Figure 1. A test showing the latter is c−1.g1.

Example 3 c.g ≡fp-−reward c+ c.g, yet c.g 6⊑+reward c+ c.g. A test showing the latter is c.g1.

Example 4 ∆a ≡+reward ∆0, yet ∆a 6⊑fp-−reward ∆0. A test showing the latter is a−1.

A process P is divergence-free if divergences(P) = /0. It is regular, or finite-state, if there only finitely

many processes Q such that ∃σ ∈ A ∗. P
σ
=⇒ Q. It is =⇒-image-finite if for each σ ∈ A∗ there are

only finitely many Q such that P
σ
=⇒ Q. Note that the class of =⇒-image-finite processes is not closed

under parallel composition, or under renaming transition labels a ∈ A into τ . Regular processes are

=⇒-image-finite. Any P ∈PCCS without parallel composition, relabelling or restriction is regular. Any

P ∈PCCS without recursion is both divergence-free and regular.

Proposition 1 If P ∈PCCS is divergence-free, then P ⊑+reward Q iff P ⊑reward Q.

Proof: This follows immediately from Theorems 1 and 3, using that divergences(P) = /0, inf⊥(P) =
infd(P) = inf (P) and failures⊥(P) = failuresd(P) = failures(P). (In case Q is not divergence-free one has

neither P ⊑+reward Q nor P ⊑reward Q.) ✷

Proposition 2 If P is =⇒-image-finite then (a) P ⊑fp-−reward Q iff P ⊑−reward Q

and (b) P ⊑fp-reward Q iff P ⊑reward Q.

Proof: By Königs lemma ν ∈ A ∞ is an infinite trace of P iff only if each finite prefix of ν is a partial

trace of P. Now (a) follows immediately from Theorems 4 and 5: Suppose P ⊑−reward Q and ν ∈ inf (Q).
Then each finite prefix of ν is in ptraces(Q) and thus in ptraces(P). Thus ν ∈ inf (P).

(b) follows in the same way from Theorems 1 and 2, using (*). ✷

10 Conditional liveness properties

To obtain a general liveness property for labelled transition systems, assume that some notion of good is

defined. Now, to judge whether a process P satisfies this liveness property, one should judge whether P

can reach a state in which one would say that something good had happened. But all observable behaviour

of P that is recorded in a labelled transition system until one comes to such a verdict, is the sequence of

visible actions performed until that point. Thus the liveness property is completely determined by the

set sequences of visible actions that, when performed by P, lead to such a judgement. Therefore one can

just as well define a liveness property in terms of such a set.
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Definition 4 A liveness property of processes in an LTS is given by a set G ⊆ A ∗. A process P satisfies

this liveness property, notation P |= liveness(G), when each complete trace of P has a prefix in G.

This formalisation of liveness properties stems from [12] and is essentially different from the one in [2]

and most subsequent work on liveness properties; this point is discussed in [12, Section 6].

A preorder ⊑ preserves liveness properties if P ⊑ Q implies that Q enjoys any liveness property that

P has. It is a precongruence for an n-ary operator op if Pi ⊑ Qi for i = 1, . . . ,n implies op(P1, . . . ,Pn) ⊑
op(Q1, . . . ,Qn). Now let ⊑liveness be the coarsest preorder that is a precongruence for the operators of

CSP and preserves liveness properties. In [12] it is shown that this preorder exists, and equals ⊑⊥
FDI , as

defined in the proof of Theorem 3. The proof of this result does not require that ⊑liveness be a preorder for

all operators of CSP; it goes through already when merely requiring it to be precongruence for injective

renaming and partially synchronous interleaving operators. Looking at this proof, the same can also be

obtained requiring ⊑liveness to be a precongruence for the CCS operators |, \L and injective relabelling.

It follows that ⊑liveness coincides with ⊑+reward (cf. Theorem 8). This connection can be illustrated

by a translation from liveness properties G ⊆ A ∗ (w.l.o.g. assumed to have the property that if σ ∈ G

then σρ /∈ G for any ρ 6= ε) to nonnegative reward tests TG. Here TG can be rendered as a deterministic

tree in which all transitions completing a trace from Ḡ yield a reward 1, so that all computations of T |P
earn a positive reward iff P |= liveness(G).

One obtains a general concept of safety property by means of the same argument as for liveness

properties above, but using “bad” instead of “good”.

Definition 5 A safety property of processes in an LTS is given by a set B ⊆ A ∗. A process P satisfies

this safety property, notation P |= safety(B), when ptraces(p)∩B = /0.

This formalisation of safety properties stems from [12] and is in line with the one in [2]. Now let ⊑safety

be the coarsest precongruence (for the same choice of operators as above) that preserves safety properties.

In [12] it is shown that this preorder exists, and equals ⊑T , as defined in the proof of Theorem 5.

It follows that ⊑safety coincides with ⊑fp-−reward (cf. Theorem 8). This connection can be illustrated

by a translation from safety properties B ⊆ A ∗ (w.l.o.g. assumed to have the property that if σ ∈ B then

σρ /∈ B for any ρ 6= ε) to nonnegative reward tests TB. Here TB can be rendered as a deterministic tree in

which all transitions completing a trace from B̄ yield a reward −1, so that all computations of T |P earn

a nonnegative reward iff P |= safety(B).

A conditional liveness property says that under certain conditions something good will eventually

happen. To obtain a general conditional liveness property for LTSs, assume that some condition, and

some notion of good is defined. Now, to judge whether a process P satisfies this conditional liveness

property, one should judge first of all in which states the condition is fulfilled. All observable behaviour

of P that is recorded in an LTS until one comes to such a verdict, is the sequence of visible actions

performed until that point. Thus the condition is completely determined by the set of sequences of

visible actions that, when performed by P, lead to such a judgement. Next one should judge whether P

can reach a state in which one would say that something good had happened. Again, this judgement can

be expressed in terms of the sequences of visible actions that lead to such a state.

Definition 6 ([12]) A conditional liveness property of processes in an LTS is given by two sets C,G ⊆
A ∗. A process P satisfies this conditional liveness property, notation P |= livenessC(G), when each

complete trace of P that has a prefix in C, also has a prefix in G.

Now let ⊑cond. liveness be the coarsest precongruence (for the same choice of operators as above) that

preserves conditional liveness properties. In [12] it is shown that this preorder exists, and equals ⊑d
FDI ,

as defined in the proof of Theorem 2. It follows that ⊑safety coincides with ⊑fp-reward (cf. Theorem 8).
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Similar to the above cases, this connection can be illustrated by a translation from conditional liveness

properties C,G⊆A ∗ to reward tests in which each computation has at most one negative and one positive

reward, which are always −1 and +1.

Definition 7 A linear time property of processes in an LTS is given by a set Φ ⊆ A ∗∪A ∞ of finite and

infinite sequences of actions. A process P satisfies this property, notation P |= Φ, when CT(P)⊆ Φ.

A liveness property is a special kind of linear time property:

liveness(G) = {σ ∈ A ∗∪A ∞ | ∃ρ ∈ G. ρ ≤ σ}.

Likewise, safety(B) = {σ ∈A ∗∪A ∞ | ¬∃ρ ∈B. ρ ≤ σ}, and

livenessC(G) = {σ ∈ A ∗∪A ∞ | (∃ρ ∈C. ρ ≤ σ)⇒ (∃ν ∈ G. ν ≤ σ)}.

Now let ⊑lt. properties be the coarsest precongruence (for the same choice of operators as above) that

preserves linear time properties. In [19, 12] it is shown that this preorder exists, and equals ⊑NDFD, as

defined in the proof of Theorem 1. It follows that ⊑lt. properties coincides with ⊑reward (cf. Theorem 8).

11 Congruence properties

Theorem 9 The preorders of this paper are precongruences for the CCS operators |, \L and [ f ].

Proof: Note that Apply(T,R|P) =Apply(T|R,P), using the associativity (up to strong bisimilarity) of |.
Therefore P ⊑reward Q implies R|P ⊑reward R|Q, showing that ⊑reward is a precongruence for parallel

composition. The same holds for ⊑fp-reward, ⊑+reward, ⊑−reward and ⊑fp-−reward.

Likewise Apply(T,P\L) =Apply(T\L,P). This yields precongruence results for restriction.

Finally, Apply(T,P[f ]) =Apply(T[f−1],P), yielding precongruence results for relabelling.

Here [ f−1] is an operator with rule
E

α ,r
−→ E ′

E[ f−1]
β ,r
−→ E ′[ f−1]

( f (β ) =α). Although this is not a CCS operator,

for any test T the test T [ f−1] is expressible in CCS, on grounds that each process in an LTS is expressible

in CCS. ✷

Theorem 10 The preorders of this paper are precongruences for action prefixing.

Proof: This follows in a straightforward way from the characterisations of the preorders in Sections 6

and 7. For instance, failuresd(a.P) = {〈aσ ,X〉 | 〈σ ,X〉 ∈ failuresd(a.P)}. ✷

In the same way it follows that ⊑fp-−reward and ⊑−reward are precongruences for the CCS operator +.

However, the preorders ⊑reward, ⊑fp-reward and ⊑+reward fail to be congruences for choice:

Example 5 0 ≡reward τ , yet 0+a 6⊑+reward τ +a, using that 〈ε ,A 〉 ∈ failures⊥(τ +a)\ failures⊥(0+a).

This issue occurs for almost all semantic equivalences and preorders that abstract from internal actions.

The standard solution is to replace each such preorder ⊑X by the coarsest precongruence for the operators

of CCS that is finer than ⊑X . Let stable be the predicate that holds for a process P iff there is no P′ with

P
τ−→ P′. Write P ⊑τ

X Q iff P ⊑X Q∧ (stable(P)⇒ stable(Q)).

Theorem 11 Let X ∈ {reward, fp-reward, +reward}. Then ⊑τ
X is the coarsest precongruence for the operators

of CCS that is contained in ⊑X .



14 Reward Testing Equivalences for Processes

Proof: That ⊑τ
+reward is a precongruence for + follows with Theorem 3 since

stable(P+Q) ⇔ stable(P)∧ stable(Q)

failures⊥(P+Q) = {〈σ ,X〉 ∈ failures⊥(P) | σ 6= ε ∨¬stable(P)}∪
{〈σ ,X〉 ∈ failures⊥(Q) | σ 6= ε ∨¬stable(Q)}∪
{〈ε ,X〉 | 〈ε ,X〉 ∈ failures⊥(P)∩ failures⊥(Q)},

inf⊥(P+Q) = inf⊥(P)∪ inf⊥(Q)
divergences⊥(P+Q) = divergences⊥(P)∪divergences⊥(Q) .

That it is a congruence for action prefixing, |, \L and [ f ] follows since

stable(α .P) iff α 6= τ

stable(P|Q) iff stable(P)∧ stable(Q)∧¬∃a ∈ A . (〈a, /0〉 ∈ failures⊥(P)∧〈ā, /0〉 ∈ failures⊥(P))
stable(P\L) iff stable(P)
stable(P[ f ]) iff stable(P).

By definition, ⊑τ
+reward is contained in ⊑+reward. To see that it is the coarsest precongruence contained

in ⊑+reward, suppose P 6⊑τ
+reward Q. It suffices to build a context C[ ] from CCS operators such that

C[P] 6⊑+reward C[Q]. The case P 6⊑+reward Q is immediate—take the trivial context with C[P] := P. So

assume P ⊑+reward Q. Then stable(P) and ¬stable(Q). Hence ε /∈ divergences⊥(P) ⊇ divergences⊥(Q).
Choose a /∈ ptraces(Q)—in case no such a exists, one first applies an injective relabelling to P and Q

such that a 6∈ range( f ). Now 〈ε ,{a}〉 ∈ failures(Q) ⊆ failures⊥(Q) ⊆ failures⊥(P). However, whereas

〈ε ,{a}〉 ∈ failures⊥(Q+a) one has 〈ε ,{a}〉 /∈ failures⊥(P+a). It follows that P+a 6⊑+reward Q+a.

The arguments for X ∈ {reward, fp-reward} are very similar. ✷

12 Axiomatisations

The following axioms are easily seen to be sound for ⊑τ
reward. Here an equality P ≡ Q can be seen as a

shorthand for the two axioms P ⊑ Q and Q ⊑ P. Action prefixing and ∆ bind stronger than +.







(R1) τ .X +Y ≡ τ .X + τ .(X +Y)
(R2) α .X + τ .(α .Y +Z) ≡ τ(α .X +α .Y +Z)
(R3) α .(τ .X + τ .Y) ≡ α .X +α .Y







(RP1) τ .X +Y ⊑ τ .(X +Y )
(RP2) τ .X +Y ⊑ X

(R4) τ .∆X +Y ≡ ∆(X +Y )

For recursion-free processes, and dropping the infinite choice operator in favour of + and 0, ⊑τ
must

coincides with ⊑τ
reward and ⊑τ

fp-reward. Together with the standard axioms for strong bisimilarity [24],

the three axioms (R1)–(R3) constitute a sound and complete axiomatisation of ≡τ
must [5, Theorem 4.2],

and thus for ≡τ
reward. Likewise, the three axioms (RP1),(RP2) and (R3) constitute a sound and complete

axiomatisation of ⊑τ
must [5, Theorem 4.1], and thus for ⊑τ

reward; the axioms (R1) and (R2) are derivable from

them. The first sound and complete axiomatisation of ⊑τ
must appears in [6]; their axioms are derivable

from the ones above (and vise versa).

A sound and complete axiomatisation of ≡may (and hence of ≡−reward) is obtained by adding the

axioms τ .X ≡ X and α(X +Y )≡ α .X +α .Y to the standard axioms for strong bisimilarity [5, Theorem

4.5]. The axioms (R1)–(R3) are derivable from them. Adding the axiom X +Y ⊑ X yields a sound and
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complete axiomatisation of ⊑−1
may (and hence of ⊑−reward) [5, Theorem 4.6]. The axioms (RP1) and (RP2)

are then also derivable. The first sound and complete axiomatisation of ⊑may appears in [6]; their axioms

are derivable from the ones above (and vise versa).

To illustrate the difference between ≡τ
must and ≡τ

reward, without having to deal with recursion, I con-

sider recursion-free CCS with finite choice (as done above), but upgraded with the delay operator ∆

introduced in [3] and in Section 9. Clearly all preorders of this paper are precongruences for ∆. With

(R4), sound for ≡τ
reward, one can derive τ .∆X ≡ ∆X and ∆X +Y ≡ ∆(X +Y ). Writing Ω for ∆0, the latter

implies ∆Y ≡ Ω+Y so one can equally well take Ω as ∆ as primitive. It also follows that ∆∆X ≡ ∆X .

The above sound and complete axiomatisations of ≡may and ⊑−1
may (and hence of ≡−reward and

⊑−reward) are extended with ∆ by adding the trivial axiom ∆X = X ; (R4) is then derivable. This illus-

trates that these preorders abstract from divergence. The axiom

(R5) ∆X ≡ ∆Y

is sound for ≡τ
must. It expresses that must testing does not record any information past a divergence.

Axioms (RP2), (R4) and (R5) imply Ω ⊑ X , an axiom featured in [6]. Neither ∆X = X nor (R5) is sound for

≡τ
reward.

13 Failure of congruence property for recursion

Each preorder ⊑ on CCS processes (= closed CCS expressions) can be extended to one on all CCS

expressions by defining E ⊑ F iff all closed substitution instances of this inequality hold.

Definition 8 A preorder ⊑ on ECCS is a (full) precongruence for recursion if SY ⊑ TY for each Y ∈
dom(S) = dom(T ) implies fixLX :SM ⊆ fixLX :T M.

The following counterexample shows that the must-testing preorder ⊑τ
must fails to be a precongruence for

recursion, implying that the must-testing equivalence ≡τ
must fails to be a congruence for recursion.

Example 6 Let P ∈TCCS be such that ε /∈ divergences(P)—for instance P = 0. Then by (R1) one has

τ .P+X ≡τ
must τ .P+ τ .(X +P). Yet fixLX :X

def
= τ .P+XM 6⊑τ

must fixLX :X
def
= τ .P+ τ .(X +P)M, because

only the latter process has a divergence ε .

The same example shows that also ⊑τ
reward, ⊑τ

fp-reward, ⊑reward, ⊑fp-reward and ⊑must fail to be precongru-

ences for recursion. However, I conjecture that all these preorders are lean precongruences for recursion

as defined in [14].

14 Unguarded recursion

The must-testing preorder ⊑must on CCS presented in this paper is not quite the same as the original one

⊑
org
must from [6]. The following example shows the difference.

Example 7 0
≡must

6⊑
org
must

fixLX :X
def
= XM

6⊑must

≡
org
must

fixLX :X
def
= τ .XM.

The ≡must-statement follows since neither process has a single outgoing transition; the processes are

even strongly bisimilar [24]. The 6⊑must-statement follows since ε ∈ divergences(fixLX :X
def
= τ .XM), yet

ε /∈ divergences(fixLX :X
def
= XM). A test showing the difference is τ .ω .
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The reason that in the original must-testing approach fixLX :X
def
= XM sides with fixLX :X

def
= τ .XM rather

than with 0, is that [6] treats a process featuring unguarded recursion (cf. [24]), such as fixLX :X
def
= XM, as

if it diverges, regardless whether it can do any internal actions τ . This leads to a must-testing equivalence

that is incomparable with strong bisimilarity.

In my view, the decision whether fixLX :X
def
= XM diverges or not is part of the definition of the process

algebra CCS, and entirely orthogonal to the development of testing equivalences. Below I define a pro-

cess algebra CCS⊥ that resembles CCS in all aspects, expect that any process with unguarded recursion

is declared to diverge. I see the work of [6] not so much as defining a must-testing equivalence on CCS

that is incomparable with strong bisimilarity, but rather as defining a must-testing equivalence on CCS⊥,

a languages that is almost, but not quite, the same as CCS.2 This is a matter of opinion, as there is no

technical difference between these approaches.

I now proceed to define CCS⊥, and apply the reward testing preorders of this paper to that language.

Definition 9 Let ↓ be the least predicate on PCCS which satisfies

• α .P↓ for any α ∈ Act,

• if Pi↓ for all i ∈ I then ∑i∈I Pi↓,

• if P↓ and Q↓ then P|Q↓, P\L↓ and P[ f ]↓,

• if fixLSX :SM↓ then fixLX :SM↓.

Let P↑ if not P↓. If P↑ then P features strongly unguarded recursion.3

Note that 0↓, fixLX :X
def
= XM↑ and fixLX :X

def
= τ .XM↓, the latter because in Definition 9 τ is allowed as

a guard. The definitions of this paper are adapted to CCS⊥ by redefining P diverges, notation P⇑, if

either there is a P′ with P =⇒ P′ ↑ or there are Pi ∈ P for all i > 0 such that P
τ

−→ P1
τ

−→ P2
τ

−→ ·· ·. In

Definition 2, and similarly for Definition 1, clause (i) is replaced by (i′) “if Tn is the final element in π ,

then either Tn ↑ or Tn
τ ,r−→ T for no r and T ”. Now all results for CCS from Sections 3–12 remain valid

for CCS⊥ as well. The only change in the proofs of Theorems 1–3, direction “⇐”, is that finite paths

ending in ↓ are treated like infinite paths.

My definition of ⊑must on CCS⊥ differs on two points from the definition of ⊑must on CCS⊥ from [6].

But both differences are inessential, and the resulting notion of ⊑must is the same. The first difference is

that in [6] the notion of computation is exactly as in Definition 1, rather than the amended form above.

However, in [6] a computation π = T0,T1,T2, . . . ∈ Comp(T |P) counts as successful only if (a) it contains

a state T with T
ω−→ T ′ for some T ′, and (b) if Tk ↑ then Tk′

ω−→ T ′ for some T ′ and some k′ ≤ k. It is

straightforward to check that Apply(T|P) remains the same upon dropping (b) and changing (i) into (i′).

The other difference is that in [6] τ does not count as a guard—their version of Definition 9 requires

α ∈ A . So in [6] one has fixLX :X
def
= τ .XM↑. The notion of ↓ from [6] is therefore closer to unguarded

recursion rather than strongly unguarded recursion. However, in the treatment of [6] one would have

fixLX :X
def
= a.X |āM↓, showing that the resulting notion of guardedness is not very robust. Since the

essential difference between CCS and CCS⊥ is that in CCS⊥ a strongly unguarded recursion is treated as

a divergence, it does not matter whether ↓ also includes all or some not-strongly unguarded recursions,

such as fixLX :X
def
= τ .XM. For any such not-strongly unguarded recursion is already divergent, and hence

it does not make difference whether it is declared syntactically divergent as well.

An alternative to moving from CCS to CCS⊥ is to restrict either language to processes P satisfying

P↓. This restriction rules out the process fixLX :X
def
= XM, but includes fixLX :X

def
= τ .XM. On this restricted

set of processes their is no difference between CCS and CCS⊥.

2All processes of Example 7 are weakly bisimilar [24]. In my view this does not mean that weak bisimulation semantics uses

a variant of CCS in which none of these processes diverges. Instead it tells that weak bisimilarity abstracts from divergence.
3Un(strongly unguarded) recursion should not be called “strongly guarded” recursion; it is weaker than guarded recursion.
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Another approach to making unguarded recursions divergent is to change the rule (REC) from Table 1

into fixLX :SM τ−→ fixLSX :SM; this is done in the setting of CSP [26]. This would not have the same result,

however, as here and in [6] one has a+fixLX :X
def
= bM ≡must a+b.

The great advantage of moving from CCS to CCS⊥ is that Counterexample 6, against testing pre-

orders being congruences for recursion, disappears.

Question 1 Are ⊑τ
reward, ⊑τ

fp-reward and ⊑τ
must precongruences for recursion on CCS⊥?

In [6] it is shown that, in the absence of infinite choice, ⊑τ
must is a precongruences for recursion. Central

in the proof is that on CCS⊥ with finite choice, the clause on infinite traces (inf⊥(P)⊇ inf⊥(Q)) may be

dropped from Theorem 3, since the infinite traces inf⊥(P) of a CCS⊥ process P with finite choice are

completely determined by divergences⊥(P) and failures⊥(P). This proof does not generalise to ⊑τ
reward

or ⊑τ
fp-reward, since here, on CCS⊥ with finite choice, the infinite traces are not redundant. The proof also

does not generalise to ⊑τ
must on CCS with infinite choice.

In [28] it is shown that ⊑⊥
FDI (cf. Theorem 3), which coincides with ⊑must, is a congruence for

recursion on the language CSP. I expect that similar reasoning can show that ⊑τ
reward is a congruence

for recursion on CCS⊥. In [29] it is shown that ⊑d
FDI (cf. Theorem 2), which coincides with ⊑fp-reward,

is a congruence for recursion on CSP. I expect that similar reasoning can show that ⊑τ
fp-reward is a

congruence for recursion on CCS⊥. Roscoe [29] also presents an example, independently discovered by

Levy [23], showing that ≡NDFD (cf. Theorem 1), which coincides with ⊑reward, fails to be a congruence

for recursion:4 Let FA be a process that has all conceivable failures, divergences and infinite traces,

except for the infinite trace a∞. Then FA+ τ .X ≡NDFD FA+ a.X , for both sides have all conceivable

failures, divergences and infinite traces, with the possible exception of a∞, and both side have the infinite

trace a∞ iff X has it. However,

fixLX :FA+ τ .XM 6≡NDFD fixLX :FA+a.XM

since only the latter process has the infinite trace a∞.

It could be argued that this example shows that the definition of being a congruence for recursion

ought to be sharpened, for instance by requiring that E ⊑ F holds only if all closed substitutions of

E ⊑F employing an extended alphabet of actions hold. This would invalidate FA+τ .X ≡NDFD FA+a.X ,

namely by substituting b for X , with b a fresh action, not alluded to in FA. With such a sharpening, the

question whether ⊑τ
reward is a congruence for recursion on CCS⊥ is open.

15 Related work

The concept of reward testing stems from [18], in the setting of nondeterministic probabilistic processes.

In the terminology of Section 7, they employ single reward nonnegative reward testing. In [10] it was

shown, again in a probabilistic setting, that nonnegative reward testing is no more powerful then classical

testing. This result is a probabilistic analogue of Theorem 7. Negative rewards were first proposed in

[11], a predecessor of the present paper. In [8], reward testing with also negative rewards, called real-

reward testing, was applied to nondeterministic probabilistic processes. Although technically no rewards

can be gathered after a first reward has been encountered, thanks to probabilistic branching rewards

can be distributed over multiple actions in a computation. This makes the approach a probabilistic

generalisation of the reward testing proposed here. The main result of [8] is that for finitary (= finite-state

and finitely many transitions) nondeterministic probabilistic processes without divergence, real-reward

testing coincides with nonnegative reward testing. This is a generalisation (to probabilistic processes) of

4The example was formulated for another equivalence, but actually applies to a range of equivalences, including ≡NDFD.
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a specialisation (to finitary processes) of Proposition 1. An explicit characterisation (as in Theorem 1) of

real-reward testing for processes with divergence was not attempted in [8].

The nondivergent failures divergences equivalence, ≡NDFD, defined in the proof of Theorem 1, stems

from [19]. There it was shown to be the coarsest congruence (for a collection of operators equivalent

to the ones used in Section 10) that preserves those linear-time properties (cf. Definition 7) that can be

expressed in linear-time temporal logic without the nexttime operator. If follows directly from their proof

that it is also the coarsest congruence that preserves all linear-time properties as defined in Definition 7;

so ≡NDFD coincides with ≡lt. properties , as remarked at the end of Section 10. It is this result that inspired

Theorem 1 in the current paper.

The paper [22] argues that ≡NDFD can be seen as a testing equivalence, but does not offer a testing

scenario in quite the same style as [6] or the current paper.

The semantic equivalence ≡d
FDI , whose associated preorder occurs in the proof of Theorem 2, stems

from [27]. There it was shown to be the coarsest congruence (for the same operators) that preserves

deadlocks(P)∪ divergences(P), the combined deadlock and divergence traces of a process (cf. Defini-

tion 3). It is this result that directly led (via [12, Theorem 9]) to Theorem 2 in the current paper.

In [6] the action ω is used merely to mark certain states as success states, namely the states were an

ω-transition is enabled; a computation is successful iff it passes through such a success state. In [30], on

the other hand, it is the actual execution of ω that constitutes success. In [10, 7], this is called action-

based testing; [7, Proposition 5.1 and Example 5.3] shows that action-based must testing is strictly less

discriminating than state-based must-besting:

τ .a.Ω ≡action-based
must τ .a.Ω+ τ .0, whereas τ .a.Ω 6⊑must τ .a.Ω+ τ .0.

The preorders in the current paper are generalisations of state-based testing; an action-based form of

reward testing could be obtained by only allowing τ-actions to carry non-0 rewards. The same coun-

terexample as above would show the difference between state- and action-based reward testing.

The reward testing contributed here constitutes a strengthening of the testing machinery of De Nicola

& Hennessy. As such it differs from testing-based approaches that lead to incomparable preorders, such

as the efficiency testing of [31], or the fair testing independently proposed in [4] and [25].

In [13] I advocate an overhaul of concurrency theory to ensure liveness properties when making the

reasonable assumption of justness. The current work is prior to any such overhaul. It is consistent with

the principles of [13] when pretending that the parallel composition | of CCS is in fact not a parallel

composition of independent processes, but an interleaving operator, scheduling two parallel treads by

means of arbitrary interleaving.

16 Conclusion

In this paper I contributed a concept of reward testing, strengthening the may and must testing of De

Nicola & Hennessy. Inspired by [19, 27], I provided an explicit characterisation of the reward-testing

preorder, as well as of a slight weakening, called finite-penalty reward testing. Must testing can be re-

covered by only considering positive rewards, and may testing by only considering negative rewards.

While the must-testing preorder preserves liveness properties, and the inverse of the may-testing pre-

order (which can also be seen as a must-testing preorder dealing with catastrophes rather than successes)

preserves safety properties, the (finite-penalty) reward testing preorder, which is finer than both, addi-

tionally preserves conditional liveness properties. I illustrated the difference between may testing, must

testing and (finite-penalty) reward testing in terms of their equational axiomatisations. When applied to

CCS as intended by Milner, must-testing equivalence fails to be a congruence for recursion, and the same

problem exists for reward testing. The counterexample is eliminated by applying it to a small variant of
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CCS that, following [6], treats a process with unguarded recursion as if it is diverging, even if it cannot

make any internal moves. In this setting, by analogy with Roscoe’s work on CSP [28, 29], I expect must-

testing and finite-penalty reward testing to be congruences for recursion; for reward testing this question

remains open.

References

[1] S. Abramsky & A. Jung (1994): Domain Theory. In: Handbook of Logic and Computer Science, 3, Clarendon

Press, pp. 1–168.

[2] B. Alpern & F.B. Schneider (1985): Defining liveness. Information Processing Letters 21(4), pp. 181–185,

doi:10.1016/0020-0190(85)90056-0.

[3] J.A. Bergstra, J.W. Klop & E.-R. Olderog (1987): Failures without chaos: a new process semantics for fair

abstraction. In M. Wirsing, editor: Formal Description of Programming Concepts – III, Proceedings of the

3th IFIP WG 2.2 working conference, Ebberup 1986, North-Holland, Amsterdam, pp. 77–103.

[4] E. Brinksma, A. Rensink & W. Vogler (1995): Fair Testing. In I. Lee & S. Smolka, editors: Proceedings

6th International Conference on Concurrency Theory, (CONCUR’95), Philadelphia, PA, USA, August 1995,

LNCS 962, Springer, pp. 313–327, doi:10.1007/3-540-60218-6_23.

[5] T. Chen, W.J. Fokkink & R.J. van Glabbeek (2015): On the Axiomatizability of Impossible Futures. Logical

Methods in Computer Science 11(3):17, doi:10.2168/LMCS-11(3:17)2015.

[6] R. De Nicola & M. Hennessy (1984): Testing equivalences for processes. Theoretical Computer Science 34,

pp. 83–133, doi:10.1016/0304-3975(84)90113-0.

[7] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2008): Characterising Testing Preorders for

Finite Probabilistic Processes. Logical Methods in Computer Science 4(4):4, doi:10.2168/LMCS-4(4:

4)2008.

[8] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2014): Real-Reward Testing for Probabilistic

Processes. Theoretical Computer Science 538, pp. 16–36, doi:10.1016/j.tcs.2013.07.016.

[9] Y. Deng, R.J. van Glabbeek, M. Hennessy, C.C. Morgan & C. Zhang (2007): Remarks on Testing Probabilis-

tic Processes. In L. Cardelli, M. Fiore & G. Winskel, editors: Computation, Meaning, and Logic: Articles

dedicated to Gordon Plotkin, Electronic Notes in Theoretical Computer Science 172, Elsevier, pp. 359–397,

doi:10.1016/j.entcs.2007.02.013.

[10] Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang (2007): Scalar Outcomes Suffice for Finitary Prob-

abilistic Testing. In R. De Nicola, editor: Proceedings 16th European Symposium on Programming, ESOP

2007, Braga, Portugal, LNCS 4421, Springer, pp. 363–378, doi:10.1007/978-3-540-71316-6_25.

[11] R.J. van Glabbeek (2009): The Linear Time Branching Time Spectrum after 20 years, or Full abstraction for

safety and liveness properties. Copies of slides. Invited talk for IFIP WG 1.8 at CONCUR 2009 in Bologna.

Available at http://theory.stanford.edu/~rvg/abstracts.html#20years.

[12] R.J. van Glabbeek (2010): The Coarsest Precongruences Respecting Safety and Liveness Properties. In

C.S. Calude & V. Sassone, editors: Proceedings 6th IFIP TC 1/WG 2.2 International Conference on Theoret-

ical Computer Science (TCS 2010); held as part of the World Computer Congress 2010, Brisbane, Australia,

IFIP 323, Springer, pp. 32–52, doi:10.1007/978-3-642-15240-5_3.

[13] R.J. van Glabbeek (2016): Ensuring Liveness Properties of Distributed Systems (A Research Agenda). Posi-

tion paper. Available at https://arxiv.org/abs/1711.04240.

[14] R.J. van Glabbeek (2017): Lean and Full Congruence Formats for Recursion. In: Proceedings 32nd Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 2017, IEEE

Computer Society Press, doi:10.1109/LICS.2017.8005142.
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