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Abstract. One of the most fundamental aspects of quantum circuit de-
sign is the concept of families of circuits parametrized by an instance size.
As in classical programming, metaprogramming allows the programmer
to write entire families of circuits simultaneously, an ability which is
of particular importance in the context of quantum computing as algo-
rithms frequently use arithmetic over non-standard word lengths. In this
work, we introduce metaQASM, a typed extension of the openQASM
language supporting the metaprogramming of circuit families. Our lan-
guage and type system, built around a lightweight implementation of
sized types, supports subtyping over register sizes and is moreover type-
safe. In particular, we prove that our system is strongly normalizing, and
as such any well-typed metaQASM program can be statically unrolled
into a finite circuit.

Keywords: Quantum programming, Circuit description languages,
Metaprogramming.

1 Introduction

Quantum computers have the potential to solve a number of important
problems, including integer factorization [29], quantum simulation [23],
approximating the Jones polynomial [1] and unstructured searching [12]
asymptotically faster than the best known classical algorithms. These al-
gorithms are typically described abstractly and make heavy use of classi-
cal arithmetic such as modular exponentiation. To make such algorithms
concrete, efficient, reversible implementations of large swaths of a classi-
cal arithmetic and computation is needed – moreover, due to the limited
space constraints and special-purpose nature of quantum circuits, these
operations are typically needed in a multitude of bit sizes.

In part due to the increasing viability of quantum computing and the
scaling of NISQ [28] devices, there has been a recent explosion in quan-
tum programming tools. Such tools range from software development kits
(e.g., Qiskit [5], ProjectQ [32], Strawberry Fields [19], Pyquil [30]) to Em-
bedded domain-specific languages (e.g., Quipper [11], Qwire [27], Q|SI〉
[22]) and standalone languages and compilers (e.g., QCL [26], QML [2],
ScaffCC [16], Q# [33]). Going beyond strict programming tools, software
for the synthesis, optimization, and simulation of quantum circuits and
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programs (e.g., Revkit [31], TOpt [15], Feynman [3], PyZX [20], Quan-
tum++ [9], QX [17]) are becoming more and more abundant.
The proliferation of both hardware and software tools for quantum com-
puting has in turn spurred a need for standardization and portability
[14,24]. One such standard which has recently grown in popularity is
the Quantum Assembly Language and its many various dialects (e.g.,
openQASM [6], QASM-HL [16], cQASM [18]). As a lightweight, mod-
ular language for specifying simple quantum circuits, programs with a
well-defined syntax, QASM support – in particular, for the openQASM
dialect – has been built-in to an increasingly large number of software
tools, particularly standalone programs like circuit optimizers, as a way
to support interoperability.
One feature that is noticeably lacking in these dialects is the ability to
define families of quantum circuits parametrized over different register
sizes, and by extension to generate concrete instances. This creates a
barrier for the use of QASM in writing portable libraries of quantum cir-
cuit families, particularly for classical operations such as arithmetic. As
a result, software designers typically end up re-implementing code – typ-
ically implemented in the host language for EDSLs, and hence not easily
re-usable – for generating instances of simple operations such as adders
and multipliers. Alternatively, programmers resort to using other compil-
ers such as Quipper, Q# or ReVerC [4] to generate individual instances,
which complicates the compilation or simulation process. While recent
progress towards the development of portable libraries of circuit families
with high-level non-embedded languages, standardization remains an on-
going process, and moreover a low-level approach is preferable in many
situations, including as compilation targets and middle-ends.
In this paper we make progress towards the design of a low-level lan-
guage for quantum programming that supports the metaprogramming of
sized circuit families. In particular, we develop a typed extension of the
untyped open quantum assembly language (openQASM) with metapro-
gramming over lightweight sized types à la dependent ML [34]. Our
language, metaQASM, is further shown to be type-safe and strongly-
normalizing, while the non-meta fragment is both more expressive than
openQASM and admits a simpler syntax, owing to the type system.
For the purposes of this paper, we focus on the type system design and
metatheory of such a language, leaving implementation to future work.

1.1 Quantum metaprogramming

Most QRAM-based quantum programming languages are metaprogram-
ming languages – called circuit description languages – in that they typi-
cally operate by building quantum circuits to be sent in a single batch to
a quantum processor. Such quantum circuits can typically be composed,
reversed, and depend on the result of classical computations.
In this paper, we are interested in a particular type of quantum circuit
metaprogramming, wherein circuit families are parametrized over shapes
[11,27], such as the number of input qubits. Existing languages offer vary-
ing support for such metaprogramming, either implicitly (e.g., uniform or
transversal families of circuits in openQASM, iteration and qubit arrays
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in Q#), or more explicitly (e.g., the generic QData type-class in Quipper,
which can be instantiated via explicit type applications). Our approach
differs from previous attempts by explicitly parametrizing registers and
circuit families with size parameters. We adopt a typed approach for a
number of reasons:
– it allows the light-weight verification of libraries of circuit generators,
– it provides a means of self-documentation, and
– it allows explicit generation of sized-specialized instances.

The ability to generate instances of circuit families in various sizes with-
out executing them is particularly important for the purposes of resource
estimation, and for benchmarking tools that operate on fixed-size but
arbitrary input circuits, such as circuit optimizers [14].
As an illustration, given an in-place family of adders written in the style
of (imperative) Quipper with the type

inplace add :: [Qubit] -> [Qubit] -> Circ (),

one may wish to generate a static, optimized instance of inplace add

operating on 2-qubit registers, using an external circuit optimizer. Doing
so requires the specialization to (and serialization of) a function

inplace add2 :: (Qubit, Qubit) -> (Qubit, Qubit) -> Circ ().

One possible method of generating such a function is to write the body
of inplace add2 using a call to the generic inplace add applied to the
4 input qubits. However, this quickly gets unwieldy, both in the boil-
erplate code defining a particular instance, and in the large number of
parameters.
A more common solution is to use dummy parameters, whereby the
generic function is “applied” to lists of qubits, which are then taken
by the serialization method as meaning arbitrary inputs. For instance,
the following Quipper1 code [10] prints out a PDF representation of
inplace add2 using dummy parameters qubit :: Qubit

print generic PDF inplace add [qubit, qubit] [qubit, qubit].

The use of dummy parameters is partly a question of style, though it can
cause problems when combining optimizations with initialized dummy
parameters. In either case, the use explicitly sized circuit families carries
further benefits to both readability and correctness [27].

1.2 Organization

The remainder of this paper is organized as follows. Section 2 gives a
brief overview of quantum computing. Section 3 reviews the openQASM
language and defines a formal semantics for it. Sections 4 and 5 extend
openQASM with types and metaprogramming capabilities, and finally
Section 6 concludes the paper.

1 The function inplace add2 could instead be directly generated by writing the adder
as inplace add :: QData qa => qa -> qa -> Circ (), then specializing qa to the
finite type (Qubit, Qubit) using type applications. However, the non-generic serial-
ization functions in Quipper appear to work only for small finite tuple types.
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2 Quantum computing

We give a brief overview of the basics of quantum computing. For a more
in-depth introduction of quantum computation we direct the reader to
[25], while an overview of quantum programming can be found in [8].
In the circuit model, the state of an n-qubit quantum system is described
as a unit vector in a dimension 2n complex vector space. The 2n elemen-
tary basis vectors form the computational basis, and are denoted by |x〉
for bit strings x ∈ {0, 1}n – these are called the classical states. A general
quantum state may then be written as a superposition of classical states

|ψ〉 =
∑

x∈Fn
2

αx|x〉,

for complex αx and having unit norm. The states of two n and m qubit
quantum systems |ψ〉 and |ψ〉 may be combined into an n+m qubit state
by taking their tensor product |ψ〉 ⊗ |ψ〉. If to the contrary the state of
two qubits cannot be written as a tensor product the two qubits are said
to be entangled.
Quantum circuits, in analogy to classical circuits, carry qubits from left
to right along wires through gates which transform the state. In the
unitary circuit model gates are required to implement unitary operators
on the state space – that is, quantum gates are modelled by complex-
valued matrices U satisfying UU† = U†U = I , where U† is the complex
conjugate of U . As a result, unitary quantum computations must be
reversible, and in particular the quantum circuits performing classical
computations are precisely the set of reversible circuits.
The standard universal quantum gate set, known as Clifford+T , con-
sists of the two-qubit controlled-NOT gate (CNOT), and the single-qubit
Hadamard (H) and T gates. As quantum circuits implement linear op-
erators, we may define the above three gates by their effect on classical
states:

CNOT|x〉|y〉 = |x〉|x⊕ y〉, T |x〉 = e
2πi

8
x|x〉,

H |x〉 = 1√
2

∑

x′∈{0,1}

(−1)x·x′ |x′〉.

Figure 1 gives a pictorial representation of a quantum circuit over CNOT,
H , and T gates. CNOT gates are written as a solid dot on their first
argument and an exclusive-OR symbol (⊕) on their second argument.
More general quantum operations include qubit initialization and mea-
surement, which effectively convert between classical and quantum data.
As neither operation is unitary and hence not (directly) reversible, we
regard them as functions of the classical computer rather than gates in
a quantum circuit.

T • • T •
T T † • •

H T T † • T † • H

Fig. 1. An example of a quantum circuit implementing the Toffoli gate.
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3 openQASM

The open quantum assembly language (openQASM [6]) is a low-level,
untyped imperative quantum programming language, developed as a di-
alect of the informal QASM language. One of the key additions of the
openQASM language is that of modularity, in the form of a simple mod-
ule and import system. As this work is largely concerned with the ques-
tion of making this modularity more powerful – specifically, to support
the modular definition of entire circuit families – we first give a brief
overview of the openQASM language.

The official specification of openQASM can be found in [6]. Programs in
openQASM are structured as sequences of declarations and commands.
Programmers can declare statically-sized classical or quantum registers,
define unitary circuits (called gates in openQASM), apply gates or cir-
cuits, measure or initialize qubits and condition commands on the value
of classical bits. Gate arguments are restricted to individual qubits, where
the application of gates to one or more register of the same size is syn-
tactic sugar for the application of a single gate in parallel across the
registers. The listing below gives an example of an openQASM program
performing quantum teleportation:

OPENQASM 2.0;

qreg q[3];

creg c0 [1];

creg c1 [1];

h q[1];

cx q[1],q[2];

cx q[0],q[1];

h q[0];

measure q[0] -> c0 [0];

measure q[1] -> c1 [0];

if(c0==1) z q[2];

if(c1==1) x q[2];

We give a slightly different syntax from the above, and from the concrete
syntax [6], as it will be more convenient and readable for our purposes.
As is common in imperative languages, we leave some of the concrete
syntactic classes of openQASM [6] separate in our formalization – since
all operations in openQASM nominally have unit type, this allows terms
with unitary and non-unitary effects to be distinguished, without relying
on an effect system or monadic types. In particular, terms of the class U
of unitary statements represent computations with purely unitary effects,
while commands C may have non-unitary effects, such as measurement.
Statements of the form

E(E1, . . . , En)

represent the application of a unitary gate or named circuit E to the
(quantum) arguments E1 through En. While the openQASM specifica-
tion includes built-in cx (controlled-NOT) and parametrized single qubit
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Identifier x
Index I ::= i ∈ N

Expression E ::= x | x[I ]
Unitary Stmt U ::= cx(E1, E2) | h(E) | t(E) | tdg(E) | E(E1, . . . , En) | U1; U2

Command C ::= creg x[I ] | qreg x[I ] | gate x(x1, . . . , xn) { U }
| measure E1 -> E2 | reset E | U
| if(E==I) { U } | C1; C2

Location l ∈ N

Value V ::= (l0, . . . , lI−1) | λx1, . . . , xn.U

Fig. 2. openQASM (abstract) syntax

gates U, we drop the parametrized U gate in favour of built-in Hadamard
and T/T † gates h and t/tdg, respectively.
The commands creg, qreg and gate declare classical registers, quantum
registers, and unitary circuits, respectively. The if statement differs from
the formal openQASM definition by testing the value of a single classical
bit, rather than a classical register – this was done to simplify the se-
mantics of the language. Locations l and values V do not appear directly
in openQASM programs, but are used to define the semantics. In partic-
ular, values of the form (l0, . . . , lI−1) denote registers and λx1, . . . , xn.U
denote unitary circuits. We leave out a number of features of openQASM
which are orthogonal to the extensions we describe here, namely classical
arithmetic and the barrier and opaque terms. We also write parentheses
around arguments and parameters.
As no formal semantics of openQASM is given in [6], we define an op-
erational semantics in Figure 3. Our semantics is defined with respect
to a configuration 〈S, σ, η, |ψ〉〉, which stores a term S taken from some
syntactic class (e.g., C, U , E), an environment σ which maps variables
to values, a classical heap η storing the value of the classical bits, and
a quantum state |ψ〉. Gates applied to qubit l of a quantum state are
written by added a subscript to the intended gate, e.g.,

Hl|ψ〉 = (I⊗l−1 ⊗H ⊗ I⊗n−l)|ψ〉

σ[x ← v] denotes the environment mapping x to v or σ(x) otherwise,
and S{X/x} denotes the substitution of X for x in S. We assume for
convenience that no valid program will run out of classical memory or
quantum bits. We say 〈S, σ, η, |ψ〉〉 ⇓ v if S reduces to v, where the
form of v depends on the syntactic class of S – for instance, expressions
evaluate to locations, arrays or circuits while commands produce a new
environment, heap and quantum state. Note that we use a call-by-name
evaluation strategy, as openQASM has only globally scoped variables.
Rather than give a full probabilistic reduction system to account for mea-
surement probabilities, it suffices for our purposes to make the semantics
non-deterministic. In particular, rules are given for both of the possible
measurement outcomes in measure E1 -> E2, setting the classical bit
to the result c ∈ {0, 1} and non-destructively applying the projector
P c = |c〉〈c| (appropriately normalized) to the measured qubit.
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Expressions:

x ∈ dom(σ)

〈x, σ, η, |ψ〉〉 ⇓ σ(x)
〈x, σ, η, |ψ〉〉 ⇓ (l0, . . . , lI′) I ≤ I ′

〈x[I ], σ, η, |ψ〉〉 ⇓ lI
Unitary statements:

〈E, σ, η, |ψ〉〉 ⇓ l
〈h(E), σ, η, |ψ〉〉 ⇓ Hl|ψ〉

〈E,σ, η, |ψ〉〉 ⇓ l
〈t(E), σ, η, |ψ〉〉 ⇓ Tl|ψ〉

〈E, σ, η, |ψ〉〉 ⇓ l
〈tdg(E), σ, η, |ψ〉〉 ⇓ T †

l |ψ〉

〈E1, σ, η, |ψ〉〉 ⇓ l1 〈E2, σ, η, |ψ〉〉 ⇓ l2
〈cx(E1, E2), σ, η, |ψ〉〉 ⇓ CNOTl1,l2 |ψ〉

〈E, σ, η, |ψ〉〉 ⇓ λx1, . . . , xn.U,
〈U{E1/x1, . . . , En/xn}, σ, η, |ψ〉〉 ⇓ |ψ′〉
〈E(E1, . . . , En), σ, η, |ψ〉〉 ⇓ |ψ′〉

〈U1, σ, η, |ψ〉〉 ⇓ |ψ′〉 〈U2, σ, η, |ψ′〉〉 ⇓ |ψ′′〉
〈U1; U2, σ, η, |ψ〉〉 ⇓ |ψ′′〉

Commands:

l0, . . . , lI−1 are fresh heap indices

〈creg x[I ], σ, η, |ψ〉〉 ⇓ 〈σ[x← (l0, . . . , lI−1)], η, |ψ〉〉
l0, . . . , lI−1 are fresh qubit indices

〈qreg x[I ], σ, η, |ψ〉〉 ⇓ 〈σ[x← (l0, . . . , lI−1)], η, |ψ〉〉

〈gate x(x1, . . . , xn) { U }, σ, η, |ψ〉〉 ⇓ 〈σ[x← λx1, . . . , xn.U ], η, |ψ〉〉
〈E1, σ, η, |ψ〉〉 ⇓ l1 〈E2, σ, η, |ψ〉〉 ⇓ l2

〈measure E1 -> E2, σ, η, |ψ〉〉 ⇓ 〈σ, η[l2 ← 0], P 0

l1
|ψ〉〉

〈E1, σ, η, |ψ〉〉 ⇓ l1 〈E2, σ, η, |ψ〉〉 ⇓ l2
〈measure E1 -> E2, σ, η, |ψ〉〉 ⇓ 〈σ, η[l2 ← 1], P 1

l1
|ψ〉〉

〈E,σ, η, |ψ〉〉 ⇓ l
〈reset E, σ, η, |ψ〉〉 ⇓ 〈σ, η, P 0

l |ψ〉〉
〈E, σ, η, |ψ〉〉 ⇓ l η(l) 6= I

〈if(E==I) { U }, σ, η, |ψ〉〉 ⇓ 〈σ, η, |ψ〉〉
〈E, σ, η, |ψ〉〉 ⇓ l η(l) = I

〈U, σ, η, |ψ〉〉 ⇓ |ψ′〉
〈if(E==I) { U }, σ, η, |ψ〉〉 ⇓ 〈σ, η, |ψ′〉〉

〈C1, σ, η, |ψ〉〉 ⇓ 〈σ′, η′, |ψ′〉〉 〈C2, σ
′, η′, |ψ′〉〉 ⇓ 〈σ′′, η′′, |ψ′′〉〉

〈C1; C2, σ, η, |ψ〉〉 ⇓ 〈σ′′, η′′, |ψ′′〉〉

Fig. 3. openQASM semantics
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Base types β ::= Bit | Qbit
Types τ ::= β | β[I ] | Circuit(τ1, . . . , τn)

Command C ::= . . . | creg x[I ] in { C } | qreg x[I ] in { C }
| gate x(x1 : τ1, . . . , xn : τn) { U } in { C }

Fig. 4. typedQASM specification

4 Adding types to QASM

Run-time errors may occur in syntactically valid openQASM programs
in a number of ways – particularly when either an array access is out of
bounds and the program halts, or a classical (resp. quantum) location is
used in a context when a quantum (resp. classical) location is expected.
In the official openQASM specification, the latter error is eliminated by
the requirement that only (global) variables can be declared as quantum
registers may be used as arguments to gates, for instance. In either case
however, it is desirable to check that an openQASM program will not

go wrong, as circuit simulations are frequently run on large, expensive
supercomputers (e.g., [13]).

In this section we developed a typed variant of openQASM, called type-
dQASM, which provably rules out such runtime errors. Moreover, the
type system uses sized types to eliminate out-of-bound accesses, which
we later develop into the core of our metaprogramming type system. The
use of a type system in this case actually allows more valid programs to
be written than the standard openQASM specification, as the type sys-
tem allows us to remove some syntactic distinctions and instead make
them in the type system. In particular, our type system allows regis-
ters and circuits to be passed as functions to other circuits, whereas the
formal specification restricts circuit arguments to only individual qubits.

Figure 4 gives the syntax of typedQASM. We only show the syntactic
elements which are different from openQASM or otherwise new. To sim-
plify our analysis, declarations are given explicit block scope, though we
leave textual examples in the regular openQASM style of declaration. As
the semantics of typedQASM is effectively identical, modulo the block
scoping, to openQASM we don’t explicitly give the semantics.

4.1 The type system

Figure 5 gives the rules of our type system. As is standard, the judgement
Γ ⊢ S : τ states that in the context Γ consisting of pairs of identifiers
and types, S can be assigned type τ . We overload ⊢ to allow environment
judgements of the form ⊢ σ : Γ stating that the σ maps identifiers x to
values of the type τ if x : τ ∈ Γ .
The type system of typedQASM is mostly as expected, with the excep-
tion of static-length registers and register bounds checks in the typing
rules for dereferences. To give the programmer flexibility to apply gates
and circuits to just parts of a larger register – for instance, when perform-
ing an n-bit addition into a length 2n register as in binary multiplication
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Environment:

⊢ · : ·
⊢ σ : Γ

⊢ σ[x← (l0, . . . , lI−1)] : Γ, x : β[I ]

⊢ σ : Γ Γ, x1 : τ1, . . . , xn : τn ⊢ U : Unit

⊢ σ[x← λx1 : τ1, . . . , xn : τn.U ] : Γ, x : Circuit(τ1, . . . , τn)

Expressions:

x : τ ∈ Γ
Γ ⊢ x : τ

Γ ⊢ x : β[I ′] I ≤ I ′ − 1

Γ ⊢ x[I ] : β
Γ ⊢ E : β[I ′] I ≤ I ′

Γ ⊢ E : β[I ]

Unitary statements:

Γ ⊢ E1 : Qbit Γ ⊢ E2 : Qbit

Γ ⊢ cx(E1, E2) : Unit

Γ ⊢ E : Qbit g ∈ {h, t, tdg}
Γ ⊢ g(E) : Unit

Γ ⊢ E : Circuit(τ1, . . . , τn)
Γ ⊢ E1 : τ1 · · · Γ ⊢ En : τn
Γ ⊢ E(E1, . . . , En) : Unit

Γ ⊢ U1 : Unit Γ ⊢ U2 : Unit

Γ ⊢ U1; U2 : Unit

Commands:

Γ, x : Bit[I ] ⊢ C : Unit

Γ ⊢ creg x[I ] in { C } : Unit
Γ, x : Qbit[I ] ⊢ C : Unit

Γ ⊢ qreg x[I ] in { C } : Unit
Γ, x1 : τ1, . . . , xn : τn ⊢ U : Unit Γ, x : Circuit(τ1, . . . , τn) ⊢ C : Unit

Γ ⊢ gate x(x1 : τ1, . . . , xn : τn) { U } in { C } : Unit
Γ ⊢ E1 : Qbit Γ ⊢ E2 : Bit

Γ ⊢ measure E1 -> E2 : Unit

Γ ⊢ E : Qbit

Γ ⊢ reset E : Unit

Γ ⊢ E : Bit Γ ⊢ U : Unit
Γ ⊢ if(E==I) { U } : Unit

Γ ⊢ C1 : Unit Γ ⊢ C2 : Unit

Γ ⊢ C1; C2 : Unit

Fig. 5. typedQASM typing rules

– the type system also implicitly supports subtyping of static length reg-
isters. Specifically, any length I array can be used in a context requiring
at most I cells. While this adds a great deal of flexibility on the side of
the programmer, as a downside typedQASM typing derivations are not
unique.
As an example of a well-typed QASM program, we show an implemen-
tation of the Toffoli circuit from Figure 1 below:

gate toffoli (x:Qbit , y:Qbit , z:Qbit ) {

h(z);

t(x); t(y); t(z);

cx(x,y); cx(x,z);

tdg(y); tdg(z);

cx(y,z); cx(z,x);

t(x); tdg(z);

cx(z,x); cx(x,y); cx(y,z);

h(z)

}
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4.2 Type safety

We now briefly sketch a proof of type safety for typedQASM. In partic-
ular, we show that typedQASM is strongly normalizing, as expected.

As is standard, we establish strong normalization by giving type preserva-
tion and progress lemmas. While type preservation is effectively implicit
in the semantics of typedQASM due to the different syntactic classes,
expressions may return different types of values and so we give a form of
type preservation for such terms.

Lemma 1 (Preservation (expressions)). If Γ ⊢ E : τ , ⊢ σ : Γ and

〈E, σ, η, |ψ〉〉 ⇓ v, then either

– τ = β and v = l for some base type β & location l,

– τ = β[I ] and v = (l0, . . . , lI′) where I ′ ≥ I, or
– τ = Circuit(τ1, . . . , τn) and v = λx1 : τ1, . . . , xn : τn.U .

Proof. If τ = β then we must have E = x[I ], hence by the definition of ⇓,
v = l. Likewise if τ = β[I ] then we must have E = x where x : β[I ′] ∈ Γ
for some I ′ ≥ I , and since ⊢ σ : Γ then v = σ(x) = (l0, . . . , lI′). The case
for τ = Circuit(τ1, . . . , τn) is similar.

The following lemmas give progress properties – the fact that for a well-
typed program, evaluation can always continue – for the different syntac-
tic classes of typedQASM. Together with type preservation, the result is
that any well-typed typedQASM program evaluates to a value, i.e. that
typedQASM is strongly normalizing.

Lemma 2 (Progress (expressions)). If Γ ⊢ E : τ and ⊢ σ : Γ , then
for any η, |ψ〉, 〈E, σ, η, |ψ〉〉 ⇓ v.

Proof. By case analysis on E. If E = x the proof is trivial, as x : τ ∈ Γ by
inversion and ⊢ σ : Γ implies x ∈ dom(x). If on the other hand E = x[I ],
we must have x : β[I ′] ∈ Γ for some I ′ > I . Then by preservation,
〈x, σ, η, |ψ〉〉 ⇓ (l0, . . . , lI′′) for some I ′′ ≥ I ′ − 1, hence 〈x, σ, η, |ψ〉〉 ⇓ lI

Lemma 3 (Progress (unitary stmts)). If Γ ⊢ U : Unit and ⊢ σ : Γ ,
then for any η, |ψ〉, 〈U, σ, η, |ψ〉〉 ⇓ |ψ′〉.

Proof. For the case U = E(E1, . . . , En), by the typing derivation we have
Γ ⊢ E : Circuit(τ1, . . . , τn) so by progress and preservation for expres-
sions, 〈E, σ, η, |ψ〉〉 ⇓ λx1 : τ1, . . . , xn : τn.U . By the substitution lemma
below, Γ ⊢ U{E1/x1, . . . , En/xn} : Unit and hence we can structural
induction to show that 〈U, σ, η, |ψ〉〉 ⇓ |ψ′〉.

Lemma 4 (Substitution). If Γ, x1 : τ1, . . . , xn : τn ⊢ U : Unit, and
Γ ⊢ Ei : τi for each 1 ≤ i ≤ n then Γ ⊢ U{E1/x1, . . . , En/xn} : Unit

Lemma 5 (Progress (commands)). If Γ ⊢ C : Unit and ⊢ σ : Γ ,
then for any η, |ψ〉, 〈C, σ, η, |ψ〉〉 ⇓ 〈σ′, η′, |ψ′〉〉.
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Proof. Proof by induction on the structure of C. We show one case:

C = gate x(x1 : τ1, . . . , xn : τn) { U } in { C }

We know that

〈gate x(x1 : τ1, . . . , xn : τn) { U }, σ, η, |ψ〉〉 ⇓ 〈σ[x← λx1, . . . , xn.U ], η, |ψ〉〉.

By the typing derivation, Γ, x1 : τ1, . . . , xn : τn ⊢ U : Unit and Γ, x :
Circuit(τ1, . . . , τn) ⊢ C : Unit. It then follows that

⊢ σ[x← λx1 : τ1, . . . , xn : τn.U ] : Γ, x : Circuit(τ1, . . . , τn),

and hence we can apply the inductive hypothesis to complete the case.
The remaining cases are similar.

Theorem 1 (Strong normalization). If ⊢ C : Unit, then

〈C, ∅, λl.0, |00 · · · 〉〉 ⇓ 〈σ, η, |ψ〉〉.

Proof. Direct consequence of Lemma 5.

5 MetaQASM

Now that we have a safe, array-bounds-checked, typed language, we can
add metaprogramming features. In particular, we wish to support2

– circuit inversion/reversal, and
– circuits parametrized by sizes.

While the latter could be accomplished in an ad-hoc way, allowing type-

level integers allows for more safety in that array bounds can be statically
checked, and increases the readability of programs. Moreover, it enforces
a clear separation between circuits and families of circuits, which nat-
urally support different operations – for instance, a family of circuits
can’t easily be visualized diagrammatically, while a particular instance
can [27].
Figure 6 gives the new syntax for metaQASM. Indices I are extended
with index variables y and integer arithmetic, and a new syntactic form
defining a family of quantum circuits parametrized over index variables
is given. The index ∞ only exists in the process of type checking and is
not valid syntax in source code. Intuitively, the declaration

family(y1, . . . , ym) x(x1 : τ1, . . . , xn : τn) { U } in { C }

introduces index variables y1, . . . , ym into the evaluation and type check-
ing contexts for τi and U .

2 Controlled circuits are another desirable metaprogramming feature found in many
quantum circuit description languages. While metaQASM gates are in fact closed
over qubit controls, they require ancillae to construct [21]. This complicates the
inclusion of a control instruction in metaQASM, and further abstracts away from
concrete, resource-driven nature of QASM.
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Types τ ::= . . . | Family(y1, . . . , ym)(τ1, . . . , τn)
Index I ::= . . . | y | ∞ | I1 + I2 | I1 − I2 | I1 · I2
Range ι ::= [I1,I2]

Expression E ::= . . . | instance(I1, . . . , Im) E
Unitary Stmt U ::= . . . | reverse U | for y = I1..I2 do { U }

Command C ::= . . . | family(y1, . . . , ym) x(x1 : τ1, . . . , xn : τn) { U } in { C }
Value V ::= . . . | Πy1, . . . , ym.V

Fig. 6. metaQASM syntax

Figure 7 gives the semantics of the new syntax. Since index variables
cannot be modified or captured, we use a substitution style of evaluation
for circuit families. The reverse command introduces a new reduction
relation 〈U, σ, |ψ〉〉 ⇑ v for which reduction of U is inverted. We give a
concrete semantics rather than an abstract rule such as

〈U, σ, η, |ψ′〉〉 ⇓ |ψ〉
〈reverse U, σ, η, |ψ〉〉 ⇓ |ψ′〉

so that metaQASM has a concrete execution model. Inversion of circuits
is straightforward in metaQASM, as in any closed context a unitary
statement can be statically unrolled to a finite sequence of gates.
As an illustration of metaprogramming in metaQASM, Figure 8 gives
metaQASM code for a simple (non-garbage-cleaning) adder. Our syntax
(and type system) also allows an instance of a family of circuits to accept
other circuit families as arguments, a useful feature which allows circuit
families to be parametric in the implementation of a sub-routine as shown
below (using a minor syntax extension to allow array slicing).

family(n) mult (x:Qbit [n], y:Qbit [n], z:Qbit [2*n],

anc:Qbit , ctrlAdd :Family(m)

(x:Qbit , y:Qbit [m], z:Qbit [m], c:Qbit ))

{

for i=0..n-1 do {

instance(n) ctrlAdd (x[i], y, z[i..i+n-1], anc)

}

}

By extending our syntax with parametrized gates as in regular open-
QASM, we can also define a parametrized family of circuits computing
the quantum Fourier transform as in [27].

include "cphase.qasm ";

family(n) qft(x:Qbit [n]) {

for i=0..n-1 do {

h(x[i]);

for j=i+1..n-1 do {

cphase(j -1+1)(x[i], x[j])

}

}

}
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Indices:

〈i, σ, η, |ψ〉〉 ⇓ i
〈I1, σ, η, |ψ〉〉 ⇓ i1 〈I2, σ, η, |ψ〉〉 ⇓ i2 ⋆ ∈ {+,−, ·}

〈I1 ⋆ I2, σ, η, |ψ〉〉 ⇓ i1 ⋆ i2
Expressions:

〈E, σ, η, |ψ〉 ⇓ Πy1, . . . , ym.λx1 : τ1, . . . , xn : τn.U

〈instance(I1, . . . , Im) E, σ, η, |ψ〉 ⇓ (λx1 : τ1, . . . , xn : τn.U){I1/y1, . . . , Im/ym}

Unitary statements:

〈U, σ, η, |ψ〉〉 ⇑ |ψ′〉
〈reverse U, σ, η, |ψ〉〉 ⇓ |ψ′〉

〈I1, σ, η, |ψ〉〉 ⇓ i1 〈I2, σ, η, |ψ〉〉 ⇓ i2 i1 > i2

〈for y = I1..I2 do { U }, σ, η, |ψ〉〉 ⇓ |ψ〉
〈I1, σ, η, |ψ〉〉 ⇓ i1 〈I2, σ, η, |ψ〉〉 ⇓ i2 i1 ≤ i2

〈U{i1/y}, σ, η, |ψ〉〉 ⇓ |ψ′〉
〈for y = i1 + 1..i2 do { U }, σ, η, |ψ′〉〉 ⇓ |ψ′′〉
〈for y = I1..I2 do { U }, σ, η, |ψ〉〉 ⇓ |ψ′′〉

Reverse reduction:

〈E, σ, η, |ψ〉〉 ⇓ l
〈h(E), σ, η, |ψ〉〉 ⇑ Hl|ψ〉

〈E, σ, η, |ψ〉〉 ⇓ l
〈t(E), σ, η, |ψ〉〉 ⇑ T †

l |ψ〉
〈E, σ, η, |ψ〉〉 ⇓ l

〈tdg(E), σ, η, |ψ〉〉 ⇑ Tl|ψ〉

〈E1, σ, η, |ψ〉〉 ⇓ l1 〈E2, σ, η, |ψ〉〉 ⇓ l2
〈cx(E1, E2), σ, η, |ψ〉〉 ⇑ CNOTl1,l2 |ψ〉

〈E, σ, η, |ψ〉〉 ⇓ λx1, . . . , xn.U,
〈U{E1/x1, . . . , En/xn}, σ, η, |ψ〉〉 ⇑ |ψ′〉
〈E(E1, . . . , En), σ, η, |ψ〉〉 ⇑ |ψ′〉

〈U2, σ, η, |ψ〉〉 ⇑ |ψ′〉 〈U1, σ, η, |ψ′〉〉 ⇑ |ψ′′〉
〈U1; U2, σ, η, |ψ〉〉 ⇑ |ψ′′〉

〈U, σ, η, |ψ〉〉 ⇓ |ψ′〉
〈reverse U, σ, η, |ψ〉〉 ⇑ |ψ′〉

〈I1, σ, η, |ψ〉〉 ⇓ i1 〈I2, σ, η, |ψ〉〉 ⇓ i2 i2 < i1

〈for y = I1..I2 do { U }, σ, η, |ψ〉〉 ⇑ |ψ〉
〈I1, σ, η, |ψ〉〉 ⇓ i1 〈I2, σ, η, |ψ〉〉 ⇓ i2 i2 ≥ i1

〈U{i2/y}, σ, η, |ψ〉〉 ⇑ |ψ′〉
〈for y = i1..i2 − 1 do { U }, σ, η, |ψ′〉〉 ⇑ |ψ′′〉
〈for y = I1..I2 do { U }, σ, η, |ψ〉〉 ⇑ |ψ′′〉

Commands:

〈C, σ[x← Πy1, . . . , ym.λx1 : τ1, . . . , xn : τn.U ], η, |ψ〉〉 ⇓ 〈σ′, η′, |ψ′〉〉
〈family(y1, . . . , ym) x(x1 : τ1, . . . , xn : τn) { U } in { C }, σ, η, |ψ〉〉 ⇓ 〈σ, η′, |ψ′〉〉

Fig. 7. metaQASM semantics
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include "toffoli.qasm ";

gate maj(a:Qbit , b:Qbit , c:Qbit , res:Qbit ) {

toffoli (b, c, res );

cx(b, c);

toffoli (a, c, res );

cx(b, c)

}

family(n) add(a:Qbit [n], b:Qbit [n], c:Qbit [n], anc:Qbit [n]) {

cx(a[0], c[0]);

cx(b[0], c[0]);

toffoli (a[0], b[0], anc [0]);

for i=1..n-1 do {

cx(a[i], c[i]);

cx(b[i], c[i]);

cx(anc[i-1], c[i]);

maj(a[i], b[i], anc[i-1], anc[i])

}

}

Fig. 8. metaQASM implementation of a carry-ripple adder.

5.1 Type system

The type system of metaQASM is inspired by Dependent ML [34]. Fig-
ure 9 gives the rules of our system. Type rules are defined over two
contexts ∆;Γ , where ∆ contains interval constraints on index variables.
As with typedQASM, array bounds are checked and subtyping on array
lengths is allowed. Integer expressions are assigned intervals which may
be arbitrary (well-formed) integer expressions. The judgement ∆ |= P
which appears in the typing rules for integer expressions denotes that
under the context ∆, the (in)equality P holds. We leave a particular
constraint solver up to implementation. It remains an open question
whether undecidable constraints can be generated by our type system,
though in practice it appears most common constraints can be efficiently
solved with off-the-shelf constraint solvers [34].
The type system of Figure 9 also involves kind judgements of the form

∆ ⊢ τ :: ∗

stating that τ is a simple type in the index context ∆. While the rules
of our kind system are not given here, it is straightforward to derive. In
particular, τ has kind ∗ if τ does not reference any free index variables,
and does not contain any registers of negative length.

Remark 1. The fact that metaQASM has no means of specifying and
checking relational properties on indices causes some programs to require
counter-intuitive type schemes. For instance, the following n-bit adder is
not well-typed due to the statement toffoli(x[n-2], ctrl, y[n-1]),
though it does not cause run-time errors when n ≥ 2.
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Indices:

∆ ⊢ i : [i, i]
y : [I1, I2] ∈ ∆
∆ ⊢ y : [I1, I2]

∆ ⊢ I : [I1, I2] ∆ |= I ′1 ≤ I1 ∆ |= I ′2 ≥ I2
∆ ⊢ I : [I ′1, I

′
2]

∆ ⊢ I : [I1, I2] ∆ ⊢ I ′ : [I ′1, I ′2]
∆ ⊢ I + I ′ : [I1 + I ′1, I2 + I ′2]

∆ ⊢ I : [I1, I2] ∆ ⊢ I ′ : [I ′1, I ′2]
∆ ⊢ I − I ′ : [I1 − I ′1, I2 − I ′2]

∆ ⊢ I : [I1, I2] ∆ ⊢ I ′ : [I ′1, I ′2]
∆ |= I ′′1 = min(I1 · I ′1, I1 · I ′2, I2 · I ′1, I2 · I ′2)
∆ |= I ′′2 = max(I1 · I ′1, I1 · I ′2, I2 · I ′1, I2 · I ′2)

∆ ⊢ I · I ′ : [I ′′1 , I ′′2 ]

Expressions:

∆;Γ ⊢ x : β[I ′] ∆ |= 0 ≤ I < I ′

∆;Γ ⊢ x[I ] : β
∆;Γ ⊢ E : Family(y1, . . . , ym)(τ1, . . . , τn)
∆ ⊢ I1 : [0,∞] · · · ∆ ⊢ Im : [0,∞]

∆;Γ ⊢ instance(I1, . . . , Im) E : Circuit(τ1{I1/y1, . . . , Im/ym}, . . . , τn{I1/y1, . . . , Im/ym})

Unitary statements:

∆;Γ ⊢ U : Unit

∆;Γ ⊢ reverse U : Unit

∆ ⊢ I : [I1, I2] ∆ ⊢ I ′ : [I ′1, I ′2]
∆, y : [I, I ′];Γ ⊢ U : Unit

∆;Γ ⊢ for y = I..I ′ do { U } : Unit

Commands:

∆, y1 : [0,∞], . . . , ym : [0,∞] ⊢ τ1 :: ∗ · · · ∆, y1 : [0,∞], . . . , ym : [0,∞] ⊢ τn :: ∗
∆, y1 : [0,∞], . . . , ym : [0,∞];Γ, x1 : τ1, . . . , xn : τn ⊢ U : Unit,

∆;Γ, x : Family(y1, . . . , ym)(τ1, . . . , τn) ⊢ C : Unit

∆;Γ ⊢ family(y1, . . . , ym) x(x1 : τ1, . . . , xn : τn) { U } in { C } : Unit

Fig. 9. metaQASM typing rules
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include "toffoli.qasm ";

family(n) ctrlAdd(ctrl :Qbit , x:Qbit [n],

y:Qbit [n], c:Qbit ) {

toffoli (x[0], ctrl , y[0]);

cx(x[0], c);

toffoli (c, y[0], x[0]);

for i=1..n-2 do {

toffoli(x[i], ctrl , y[i]);

cx(x[i-1], x[i]);

toffoli(x[i-1], y[i], x[i])

}

toffoli (x[n-1], ctrl , y[n -1]);

toffoli (x[n-2], ctrl , y[n -1]);

for i=2..n-1 do {

toffoli(x[n-i-1], y[n-i], x[n-i]);

cx(x[n-i-1], x[n-i]);

toffoli(x[n-i-1], ctrl , y[n-i])

}

toffoli (c, y[0], x[0]);

cx(x[0], c);

toffoli (c, ctrl , y[0])

}

The above adder can modified [7] to a well-typed program by using m =
n−2 as the parameter, effectively specifying the number of entries greater
than 2 that the input registers contain. The program snippet below gives
the declaration required to make the controlled Adder implementation
(with appropriate re-indexing) well-typed.

family(m) ctrlAdd(ctrl :Qbit , x:Qbit [m+2],

y:Qbit [m+2], c:Qbit )

In most practical cases appropriate parameters can be given so as to
allow a well-typed implementation of a circuit family. However, the fam-
ily parameters can be counter-intuitive, and more egregiously it can be
unclear as to how to generate an intended instance. We leave it as an
avenue for future work to add specification and checking of bounds and
relational properties to metaQASM.

5.2 Type safety

As in the case of typedQASM, metaQASM is strongly normalizing, due
to the lack of recursion and unbounded loops. Progress relies on the
fact that during the course of evaluation, no free index variables are
encountered – hence any term encountered by an interpreter is well-typed
in the empty index context, and in particular indices can be evaluated
to finite integers, as shown below.

Lemma 6. If · ⊢ I : [I1, I2], then 〈I, σ, η, |ψ〉〉 ⇓ i.
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Proof. Trivial since the judgement · ⊢ I : [I1, I2] requires that I does not
contain any variables. Note also that there is no derivation of a judgement
of the form ∆ ⊢ ∞ : [I1, I2] hence I cannot contain any infinite integers.

The remaining lemmas are extensions of results for typedQASM. Only
the new or different cases are considered.

Lemma 7 (Preservation (expressions)). If ·;Γ ⊢ E : τ , ⊢ σ : Γ and

〈E, σ, η, |ψ〉〉 ⇓ v, then either

1. τ = β and v = l,
2. τ = β[I ] and v = (l0, . . . , lI′) where I ′ ≥ I, or
3. τ = Circuit(τ1, . . . , τn) and v = λx1 : τ1, . . . , xn : τn.U
4. τ = Family(y1, . . . , ym)(τ1, . . . , τn) and

v = Πy1, . . . , ym.λx1 : τ1, . . . , xn : τn.U.

Proof. The new Family case is effectively identical to the Circuit case.
For the case where τ = β, it suffices to note that by Lemma 6, the
expressions I and I ′ in the typing derivation reduce to integers i, i′ and
the proof concludes as in the typedQASM case.
Finally we have to revise the τ = Circuit(τ1, . . . , τn) case as we now have
two possible derivations. The new case E = instance(I1, . . . , Im) E is
also trivial as the only reduction produces a value of the form λx1 :
τ1, . . . , xn : τn.U . Note that the type τ in the derivation has Ii substituted
for index variables yi, as in the conclusion of the reduction rule.

Lemma 8 (Progress (expressions)). If ·;Γ ⊢ E : τ and ⊢ σ : Γ ,
then for any η, |ψ〉, 〈E, σ, η, |ψ〉〉 ⇓ v.

Proof. Again, the new case E = instance(I1, . . . , Im) E needs consid-
eration. By inversion we see that E : Family(y1, . . . , ym)(τ1, . . . , τn).
By structural induction and the preservation lemma, 〈E′, σ, η, |ψ〉〉 ⇓
Πy1, . . . , ym.λx1 : τ1, . . . , xn : τn.U and so 〈E,σ, η, |ψ〉〉 ⇓ v.

Lemma 9 (Progress (unitary stmts)). If ·;Γ ⊢ U : Unit and ⊢ σ :
Γ , then for any η, |ψ〉, 〈U, σ, η, |ψ〉〉 ⇓ |ψ′〉.

Proof. The case U = reverse U requires a separate progress lemma
for reverse reduction, which follows similar to progress for unitary state-
ments.
For the remaining case U = for y = I1..I2 do { U }, it suffices to ob-
serve that by inversion, · ⊢ Ii : [Ii, I

′
i] and so both bounds reduce to

integers. As each recursive call increases the lower bound I1, and I2 is
necessarily finite, there can be no infinite chains of reductions. The only
condition that needs checking is that 〈U{i1/y}, σ, η, |ψ〉〉 ⇓ |ψ′〉, for which
we need the following substitution lemma.

Lemma 10. If ∆, y : [I1, I
′
2];Γ ⊢ U : Unit, and ∆ ⊢ i1 : [I1, I

′
2] then

∆;Γ ⊢ U{i1/y} : Unit

To complete the proof, another lemma is needed stating that the result of
evaluating an integer expression is within the bounds of the expression’s
type. We leave this as an easy exercise.
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Lemma 11 (Progress (commands)). If ·;Γ ⊢ C : Unit and ·; · ⊢ σ :
Γ , then for any η, |ψ〉, 〈C, σ, η, |ψ〉〉 ⇓ 〈σ′, η′, |ψ′〉〉.

Proof. We have one new command to check,

C = family(y1, . . . , ym) x(x1 : τ1, . . . , xn : τn) { U } in { C }.

The proof in this case is effectively identical to regular gate declaration.

Theorem 2 (Strong normalization). If ·; · ⊢ C : Unit, then

〈C, ∅, λl.0, |00 · · · 〉〉 ⇓ 〈σ, η, |ψ〉〉.

Proof. Follows directly from Lemma 11

6 Conclusion

We have described a typed extension to openQASM that supports static
array bounds checking, higher-order circuits, and lightweight metapro-
gramming in the form of size-indexed families of circuits. The resulting
language is powerful enough to use for writing libraries of general quan-
tum circuit families, such as for reversible arithmetic, while low-level
enough to be used wherever openQASM is used.

As this is preliminary work, much remains to be done to make metaQASM
a practical language for quantum library development. In particular, a
concrete implementation needs to be developed, as do more examples of
practical circuit families. A major question which remains is whether a
decision procedure for the simple, non-linear integer constraints gener-
ated by our type system exists.

Another interesting question for future work is whether parametrized re-

source counts for algorithms can be computed directly from metaQASM
programs. In particular, a desirable feature would be to compute closed-
form formulas for the number of qubits, gates, etc., in an arbitrary in-
stance of a circuit family, so that different implementations of the same
circuit family can be analytically compared for any instance size. Doing
so would help not only with resource estimation, but also compilation by
allowing compilers to automatically select the best implementation for a
particular cost model.
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