Skip to main content

Adding Distributed Decryption and Key Generation to a Ring-LWE Based CCA Encryption Scheme

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2019)

Abstract

We show how to build distributed key generation and distributed decryption procedures for the \(\textsf {LIMA} \) Ring-LWE based post-quantum cryptosystem. Our protocols implement the CCA variants of distributed decryption and are actively secure (with abort) in the case of three parties and honest majority. Our protocols make use of a combination of problem specific MPC protocols, generic garbled circuit based MPC and generic Linear Secret Sharing based MPC. We also, as a by-product, report on the first run-times for the execution of the SHA-3 function in an MPC system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht, M.R., et al.: LIMA-1.1: a PQC encryption scheme (2018). https://lima-pq.github.io/

  2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX Security 2016, Austin, TX, USA, 10–12 August 2016, pp. 327–343. USENIX Association (2016). https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim

  3. Aly, A., et al.: SCALE and MAMBA documentation (2018). https://homes.esat.kuleuven.be/~nsmart/SCALE/

  4. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29

    Chapter  Google Scholar 

  5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

    Google Scholar 

  6. Brandao, L.T.A.N., Mouha, N., Vassilev, A.: Threshold schemes for cryptographic primitives: challenges and opportunities in standardization and validation of threshold cryptography (2018). https://csrc.nist.gov/publications/detail/nistir/8214/draft

  7. Choudhury, A., Loftus, J., Orsini, E., Patra, A., Smart, N.P.: Between a rock and a hard place: interpolating between MPC and FHE. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 221–240. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_12

    Chapter  Google Scholar 

  8. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  9. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_8

    Chapter  Google Scholar 

  10. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_28

    Chapter  Google Scholar 

  11. Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-ciphertext attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 351–368. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_21

    Chapter  Google Scholar 

  12. Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key generation for semi-honest and malicious adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 331–361. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_12

    Chapter  Google Scholar 

  13. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009). http://crypto.stanford.edu/craig

  14. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6_20

    Chapter  MATH  Google Scholar 

  15. Ito, M., Nishizeki, T., Saito, A.: Secret sharing scheme realizing general access structure. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 72, 56–64 (1989)

    Article  MathSciNet  Google Scholar 

  16. Katz, J., Yung, M.: Threshold cryptosystems based on factoring. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 192–205. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_12

    Chapter  Google Scholar 

  17. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_6

    Chapter  Google Scholar 

  18. Keller, M., Rotaru, D., Smart, N.P., Wood, T.: Reducing communication channels in MPC. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 181–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_10

    Chapter  Google Scholar 

  19. Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with adaptive security: new framework and constructions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_5

    Chapter  Google Scholar 

  20. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_21

    Chapter  Google Scholar 

  21. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_21

    Chapter  Google Scholar 

  22. Maurer, U.: Secure multi-party computation made simple. Discrete Appl. Math. 154(2), 370–381 (2006)

    Article  MathSciNet  Google Scholar 

  23. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: the garbled circuit approach. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 591–602. ACM Press, October 2015

    Google Scholar 

  24. NIST National Institute for Standards and Technology: SHA-3 derived functions: cSHAKE, KMAC, TupleHash and ParallelHash (2016). http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf

  25. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_15

    Chapter  Google Scholar 

  26. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113

    Chapter  Google Scholar 

  27. Smart, N.P., Wood, T.: Error detection in monotone span programs with application to communication-efficient multi-party computation. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_11

    Chapter  Google Scholar 

  28. Songhori, E.M., Hussain, S.U., Sadeghi, A.R., Schneider, T., Koushanfar, F.: TinyGarble: highly compressed and scalable sequential garbled circuits. In: 2015 IEEE Symposium on Security and Privacy, pp. 411–428. IEEE Computer Society Press, May 2015

    Google Scholar 

Download references

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT and by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070, and by the FWO under an Odysseus project GOH9718N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Smart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kraitsberg, M., Lindell, Y., Osheter, V., Smart, N.P., Talibi Alaoui, Y. (2019). Adding Distributed Decryption and Key Generation to a Ring-LWE Based CCA Encryption Scheme. In: Jang-Jaccard, J., Guo, F. (eds) Information Security and Privacy. ACISP 2019. Lecture Notes in Computer Science(), vol 11547. Springer, Cham. https://doi.org/10.1007/978-3-030-21548-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21548-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21547-7

  • Online ISBN: 978-3-030-21548-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics