Skip to main content

Efficient Secure Multi-Party Protocols for Decision Tree Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11547))

Abstract

We propose novel secure multi-party protocols for decision-tree classification. Our protocols hide not only an input vector and an output class but also the structure of the tree, which incurs an exponential communication complexity in terms of the maximum depth of the tree, \(d_{max}\), for a naive construction. We tackle this problem by applying Oblivious RAM (ORAM) and obtain two efficient constructions with polynomial communication complexity (that counts the number of multiplications). The first protocol simulates ORAM in secure multi-party computation. The communication complexity of the first protocol is \(O(d_{max}^3 \log d_{max})\) in the online phase and \(O(d_{max}^4 \log d_{max})\) in total. We then improve this protocol by removing the position-map accesses, which is the most time-consuming parts in the ORAM. In the second protocol, we reduce the communication complexity to \(O(d_{max}^2 \log d_{max})\) in the online phase and \(O(d_{max}^3 \log d_{max})\) in total, and also reduce the number of rounds from \(O(d_{max}^2)\) to \(O(d_{max})\). We implemented the proposed two constructions and the naive one, and experimentally evaluated their performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(\bot \) means that there is no corresponding node, and the depth d starts from 0.

  2. 2.

    In theory, we need the maximum depth \(\lceil \log N\rceil - 1\), but in practice, \(\lceil \log N\rceil - 2\) is sufficient, as in [5].

  3. 3.

    The holder can be one of the servers.

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd FOCS, pp. 160–164 (1982)

    Google Scholar 

  2. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  3. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.E.: Privately evaluating decision trees and random forests. PoPETs 2016(4), 335–355 (2016)

    Google Scholar 

  4. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3) worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 197–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_11

    Chapter  Google Scholar 

  5. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol. In: CCS, pp. 299–310 (2013)

    Google Scholar 

  6. Blakley, G.R.: Safeguarding cryptographic keys. In: National Computer Conference, pp. 313–317. American Federation of Information Processing Societies Proceedings (1979)

    Google Scholar 

  7. Damgård, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_32

    Chapter  Google Scholar 

  8. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15

    Chapter  Google Scholar 

  9. Hamada, K., Hasegawa, S., Misawa, K., Chida, K., Ogishima, S., Nagasaki, M.: Privacy-preserving fisher’s exact test for genome-wide association study. In: International Workshop on Genome Privacy and Security (GenoPri) (2017)

    Google Scholar 

  10. Backes, M., et al.: Identifying personal DNA methylation profiles by genotype inference. In: IEEE Symposium on Security and Privacy (2017)

    Google Scholar 

  11. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structures. In: Proceedings of the IEEE Global Telecommunication Conference, Globecom 1987, pp. 99–102 (1987)

    Google Scholar 

  12. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_27

    Chapter  Google Scholar 

  13. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM 43(3), 431–473 (1996)

    Article  MathSciNet  Google Scholar 

  14. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: NDSS (2015)

    Google Scholar 

  15. Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_22

    Chapter  Google Scholar 

  16. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_23

    Chapter  Google Scholar 

  17. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptol. 15, 177–206 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsunori Ichikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ichikawa, A., Ogata, W., Hamada, K., Kikuchi, R. (2019). Efficient Secure Multi-Party Protocols for Decision Tree Classification. In: Jang-Jaccard, J., Guo, F. (eds) Information Security and Privacy. ACISP 2019. Lecture Notes in Computer Science(), vol 11547. Springer, Cham. https://doi.org/10.1007/978-3-030-21548-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21548-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21547-7

  • Online ISBN: 978-3-030-21548-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics