Skip to main content

Proxy Re-Encryption and Re-Signatures from Lattices

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11464))

Abstract

Proxy re-encryption (PRE) and Proxy re-signature (PRS) were introduced by Blaze, Bleumer and Strauss [Eurocrypt ’98]. Basically, PRE allows a semi-trusted proxy to transform a ciphertext encrypted under one key into an encryption of the same plaintext under another key, without revealing the underlying plaintext. Since then, many interesting applications have been explored, and constructions in various settings have been proposed. On the other hand, PRS allows a semi-trusted proxy to transform Alice’s signature on a message into Bob’s signature on the same message, but the proxy cannot produce new valid signature on new messages for either Alice or Bob.

In this work, we first point out a subtle mistake in the security proof of the work by Kirshanova (PKC ’14), who proposed a lattice-based CCA1 PRE. Thus, this reopens the direction of lattice-based CCA1-secure constructions, even in the single-hop setting. Then we construct a single-hop PRE scheme that is proven secure in our new tag-based CCA-PRE model. Next, we construct the first multi-hop PRE construction. Lastly, we also construct the first PRS scheme from lattices that is proved secure in our proposed unified security model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    CCA1 security is weaker in the sense that the attacker does not have the decryption oracle after receiving the challenge ciphertext.

  2. 2.

    Under current techniques, zero knowledge proof systems based on pure lattices assumptions either require interactions or random oracles.

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  2. Ajtai, M.: Determinism versus non-determinism for linear time RAMs (extended abstract). In 31st ACM STOC, pp. 632–641. ACM Press, May 1999

    Google Scholar 

  3. Alwen, J., et al.: On the relationship between functional encryption, obfuscation, and fully homomorphic encryption. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 65–84. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45239-0_5

    Chapter  Google Scholar 

  4. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 1–18. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4_1

    Chapter  Google Scholar 

  5. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29

    Chapter  Google Scholar 

  6. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure distributed storage. In: NDSS 2005. The Internet Society, February 2005

    Google Scholar 

  7. Ateniese, G., Hohenberger, S.: Proxy re-signatures: new definitions, algorithms, and applications. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005, pp. 310–319. ACM Press, November 2005

    Google Scholar 

  8. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

    Chapter  Google Scholar 

  9. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_29

    Chapter  Google Scholar 

  10. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007, pp. 185–194. ACM Press, October 2007

    Google Scholar 

  11. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_19

    Chapter  MATH  Google Scholar 

  12. Canetti, R., Lombardi, A., Wichs, D.: Non-interactive zero knowledge and correlation intractability from circular-secure FHE. Cryptology ePrint Archive, Report 2018/1248 (2018). https://eprint.iacr.org/2018/1248

  13. Chandran, N., Chase, M., Liu, F.-H., Nishimaki, R., Xagawa, K.: Re-encryption, functional re-encryption, and multi-hop re-encryption: a framework for achieving obfuscation-based security and instantiations from lattices. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 95–112. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_6

    Chapter  Google Scholar 

  14. Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 404–421. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_23

    Chapter  Google Scholar 

  15. Chow, S.S.M., Phan, R.C.-W.: Proxy re-signatures in the standard model. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 260–276. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85886-7_18

    Chapter  Google Scholar 

  16. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 316–332. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9_19

    Chapter  Google Scholar 

  17. Cohen, A.: What about Bob? the inadequacy of CPA security for proxy reencryption. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 287–316. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_10

    Chapter  Google Scholar 

  18. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  19. Fan, X., Liu, F.-H.: Proxy re-encryption and re-signatures from lattices. IACR Cryptology ePrint Archive 2017, 456 (2017)

    Google Scholar 

  20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  21. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_1

    Chapter  Google Scholar 

  22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008

    Google Scholar 

  23. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_13

    Chapter  Google Scholar 

  24. Kirshanova, E.: Proxy re-encryption from lattices. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 77–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_5

    Chapter  Google Scholar 

  25. Libert, B., Vergnaud, D.: Multi-use unidirectional proxy re-signatures. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 511–520. ACM Press, October 2008

    Google Scholar 

  26. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1_21

    Chapter  Google Scholar 

  27. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  28. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  29. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_2

    Chapter  Google Scholar 

  30. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press, October 2004

    Google Scholar 

  31. Nunez, D., Agudo, I., Lopez, J.: A parametric family of attack models for proxy re-encryption. In: 2015 IEEE 28th Computer Security Foundations Symposium (CSF), pp. 290–301. IEEE (2015)

    Google Scholar 

  32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005

    Google Scholar 

  33. Shao, J., Cao, Z., Liu, P.: CCA-Secure PRE scheme without random oracles. Cryptology ePrint Archive, Report 2010/112 (2010). http://eprint.iacr.org/2010/112

  34. Shao, J., Feng, M., Zhu, B., Cao, Z., Liu, P.: The security model of unidirectional proxy re-signature with private re-signature key. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 216–232. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-5_14

    Chapter  Google Scholar 

Download references

Acknowledgement

Xiong Fan is supported by NSF Award CNS-1561209. Feng-Hao Liu is supported by the NSF Award CNS-1657040. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, X., Liu, FH. (2019). Proxy Re-Encryption and Re-Signatures from Lattices. In: Deng, R., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds) Applied Cryptography and Network Security. ACNS 2019. Lecture Notes in Computer Science(), vol 11464. Springer, Cham. https://doi.org/10.1007/978-3-030-21568-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21568-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21567-5

  • Online ISBN: 978-3-030-21568-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics