Skip to main content

DL-Extractable UC-Commitment Schemes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11464))

Abstract

We define a new UC functionality (DL-extractable commitment scheme) that allows committer to open a commitment to a group element \(g^x\); however, the simulator will be able to extract its discrete logarithm x. Such functionality is useful in situations where the secrecy of x is important since the knowledge of x enables to break privacy while the simulator needs to know x to be able to simulate the corrupted committer. Based on Fujisaki’s UC-secure commitment scheme and the Damgård-Fujisaki integer commitment scheme, we propose an efficient commitment scheme that realizes the new functionality. As another novelty, we construct the new scheme in the weaker RPK (registered public key) model instead of the CRS model used by Fujisaki.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistinguishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 332–352. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_15

    Chapter  MATH  Google Scholar 

  2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: 45th FOCS, pp. 186–195 (2004)

    Google Scholar 

  3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_20

    Chapter  Google Scholar 

  4. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium on Security and Privacy, pp. 287–304 (2015)

    Google Scholar 

  5. Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Analysis and improvement of Lindell’s UC-secure commitment schemes. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 534–551. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_34

    Chapter  MATH  Google Scholar 

  6. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: 20th ACM STOC, pp. 103–112 (1988)

    Google Scholar 

  7. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_8

    Chapter  Google Scholar 

  8. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145 (2001)

    Google Scholar 

  9. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_2

    Chapter  Google Scholar 

  10. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503 (2002)

    Google Scholar 

  11. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Chapter  Google Scholar 

  12. Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_36

    Chapter  Google Scholar 

  13. Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_8

    Chapter  Google Scholar 

  14. Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding universally composable commitment schemes with constant expansion factor. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_37

    Chapter  Google Scholar 

  15. Fischlin, M., Libert, B., Manulis, M.: Non-interactive and re-usable universally composable string commitments with adaptive security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 468–485. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_25

    Chapter  Google Scholar 

  16. Fujisaki, E.: Improving practical UC-secure commitments based on the DDH assumption. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 257–272. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_14

    Chapter  Google Scholar 

  17. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37

    Chapter  Google Scholar 

  18. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19

    Chapter  Google Scholar 

  19. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

    Chapter  Google Scholar 

  20. Kosba, A.E., et al.: C\(\emptyset \)C\(\emptyset \): a framework for building composable zero-knowledge proofs. Technical report 2015/1093, IACR (2015). http://eprint.iacr.org/2015/1093. Accessed 9 Apr 2017

  21. Lindell, Y.: Highly-efficient universally-composable commitments based on the DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 446–466. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_25

    Chapter  Google Scholar 

  22. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

    Chapter  Google Scholar 

  23. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_6

    Chapter  Google Scholar 

  24. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  25. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors were supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 780477 (project PRIViLEDGE), and by the Estonian Research Council grant PRG49. The work was done while Zając was working at the University of Tartu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helger Lipmaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zając, M. (2019). DL-Extractable UC-Commitment Schemes. In: Deng, R., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds) Applied Cryptography and Network Security. ACNS 2019. Lecture Notes in Computer Science(), vol 11464. Springer, Cham. https://doi.org/10.1007/978-3-030-21568-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21568-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21567-5

  • Online ISBN: 978-3-030-21568-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics