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Abstract. We introduce pRate, a novel reputation management scheme with strong security and privacy guarantees
for the users and their reputation scores. The reputation scores are computed based on the (aggregated) number(s)
of stars that users receive from their raters. pRate allows users to advertise privacy-friendly statements about their
reputation when searching for potential transaction partners. Ratings can only be submitted by partners who have
been initially authorised by the ratee and issued a rating token. The scheme is managed by a possibly untrusted
reputation manager who can register users and assist ratees in updating their reputation scores, yet without learning
these scores. In addition to ensuring the secrecy of the ratings, a distinctive feature of pRate over prior proposals, is
that it hides the identities of raters and ratees from each other during the transaction and rating stages. The scheme
is built from a number of efficient cryptographic primitives; its security is formally modeled and proven to hold
under widely used assumptions on bilinear groups.

1 Introduction

Establishing trust between prospective transaction partners on online platforms is a major challenge for today’s digital
economy. Reputation systems have gained popularity as an important risk assessment mechanism for measuring and
managing the trustworthiness of involved parties and a variety of reputation systems is already deployed across many
online marketplaces, e.g., eBay, Yelp!, BlaBlaCar, Airbnb, etc. Reputation is one of the most important assets of an
individual and has its special market value [19, 34]. Online reviews are extremely influential for businesses. Studies
have shown that 90% of customers read reviews before making a purchase decision and 94% of customers would use
a business with a four-star rating [1].

In a reputation system, typically provided and managed by an online platform (reputation manager), each user is
associated with a reputation score and transaction partners can rate each other, leave feedback and recommendations.
The concern of repercussions thereby often deters users from providing honest ratings. It is particularly hard to get
honest opinions when users are not anonymous, e.g., over 95% of Airbnb listings and almost all of the ratings of
the BlaBlaCar rides are above 4.5-star scores which are overwhelmingly positive [34, 35]. The fear of retaliation is
considered as a major factor for users to withhold truthful feedback after having some negative experience [31, 34].
Retaliation can be in any form such as unfairly low ratings, refusal of future transactions, or even physical assault.
There is also fear that shared personal information can create racial and/or gender bias among users when choosing
transaction partners. For example, Airbnb had to face racial discrimination complaints from African-American and
Latino would-be renters. Moreover, the great amount of information shared on the online platform poses a serious
threat to personal privacy and security. Take for instance car sharing or riding services where booked trips and travel
patterns can be misused for person abductions or car thefts. The reputation score itself is also a potential threat to
privacy as it can possibly be used to link users across transactions. The linkage between user activities and ratings can
also de-anonymise users [28, 29].

Another point of concern is a potential bias from the service provider that manages the online reputation system.
For many years, the online rating site Yelp! has been accused of removing positive reviews and highlighting negative
ones, thus causing a massive downgrading of businesses in an attempt to force them to purchase advertisements
[2–4,19]. Hence protecting honest users and the integrity of their ratings from a potentially biased reputation manager
is another important requirement in the design of the reputation systems. One way to achieve this is to prevent the
reputation manager from learning the individual scores obtained by the users.

Various privacy-preserving reputation schemes [5,6,9–11,15,20–22] (see also Section 7 for more discussion) have
been proposed to protect anonymity of raters and ratees to some extent, but none of these aims to hide reputation scores
against the reputation manager. As far as we know, only [27, 30, 36] discuss the protection of reputation scores. The



scheme in [27] hides rating scores from the users but not from the reputation manager and does not provide anonymity
of the users. The scheme in [30] only supports unidirectional rating, i.e., a buyer can use pseudonyms to anonymously
rate a service provider but not vice versa. Also, this system lacks accountability on users since users can arbitrarily
create uncertified pseudonyms. AnonRep [36] is an anonymous reputation system designed for evaluating the quality
of messages posted on a public board. Since any posted message can be rated by arbitrary users, AnonRep cannot be
used to rate transactions where only transaction partners are allowed to rate each other.

Our contribution. We propose a star rating scheme called pRate that provides strong privacy and security guarantees
for the users and their reputation scores. In our scheme, a reputation manager issues and updates reputation credentials
for the users without learning the actual scores. Users can advertise their reputation scores anonymously and selectively
to other parties. Two users are able to transact and rate each other without leaking any identity information to each
other. Despite being anonymous, transaction partners are held accountable for their behaviours. This is achieved by
enabling the reputation manager to learn the identities of transacting partners (but not the details of their transaction)
when they submit their ratings, i.e., misbehaving users can thus be reported to and identified by the reputation manager.
We also describe a batch accumulation mechanism which enables the reputation manager to aggregate multiple ratings,
hiding the link between the transaction and the rating sessions, and preventing the ratee from learning individual
rating values. Our construction is based on BBS+ signature [17], Bulletproofs [14], Chaum-Pedersen-Signed ElGamal
Encryption [33], and several standard (non-interactive) zero-knowledge proofs of knowledge. We formally model and
prove the security properties of pRate under well-known assumptions on bilinear maps in the random oracle model.

Organisation. The rest of this paper is organised as follows: Section 2 gives an overview of pRate. Section 3 presents
formal definitions of its functionality and security. Section 4 describes the cryptographic assumptions and building
blocks. The construction of pRate is specified in Section 5. Section 6 provides its security analysis. Section 7 describes
other related work. The paper concludes in Section 8.

2 Overview of the pRate scheme

pRate is a star rating system that provides strong security guarantees for protecting reputation scores and user privacy.
pRate is managed by the reputation manager (RM) who issues and updates reputation credentials for the users without
learning their reputation scores. Users can advertise their reputation scores and exchange rating tokens enabling them
to rate each other anonymously by submitting their (encrypted) ratings to the RM. A user i who submits a rating for
another user j is called the rater, whereas user j is called the ratee.

In pRate each user’s reputation is measured by a v-star score (n1, · · · , nv), where v is fixed and each ni represents
the number of received i-stars. For example, v = 5 implies that a single rating can contain up to five stars and a
score (10, 20, 30, 40, 50) in this case would mean that the user has received a total of ten 1-star, twenty 2-star, thirty
3-star, forty 4-star and fifty 5-star individual ratings. A user’s reputation score is aggregated in a reputation credential
which is blindly signed by the RM. Using the reputation credential, a user can publish an anonymous advertisement
for their current reputation score. Instead of revealing the exact reputation score in the advertisement, the user can
show that it satisfies some predicate P , e.g., that the average score is higher than four stars or that 90% of ratings are
above three stars. Based on their advertisements, two anonymous users can establish an authenticated and confidential
communication channel over which they exchange their rating tokens. These rating tokens encrypt the identities of
the two transaction partners which can only be decrypted by the RM. Hence, both user identities are kept anonymous
and unlinkable from each other during the transaction and rating phases. In order to rate each other, each transaction
partner would use the received rating token to encrypt the rating value (which can only be decrypted by the ratee),
sign and submit his encrypted rating to the RM. This phase does not require any online presence of the ratee and can
be performed at any time. Each rating token has a unique serial number and can be used only once. Upon receiving
the submitted (encrypted) rating, the RM extracts the identities of the rater and the ratee, aggregates the ratee’s rating,
and sends an update to the ratee enabling the latter to update his reputation credential. The rating tokens make users
accountable for their behaviour and can also be used to directly report misbehaving users in case of wrongdoings.
The fact that the RM is able to retrieve the identities of the rater and the ratee during the rating accumulation phase
prevents a number of conventional attacks against reputation systems, such as Sybil attacks, self-promotion attacks,
ballot stuffing attacks, whitewashing attacks and bad mouthing attacks [25]. Furthermore, pRate offers the following
security and privacy properties:
– Anonymity: This property allows users to advertise their reputation scores and rate each other in an anonymous

and unlinkable way. More specifically, a user can prove statements about his reputations score without revealing his
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identity and the actual score. Moreover, the link between the advertisements and ratings of transaction partners based
on these advertisements remains unknown to the RM and any other users in the system. Multiple advertisements by
the same user also remain unlinkable against other users and the RM. Different ratings submitted by the same user
also remain unlinkable from the ratee’s perspective.

– Rating-secrecy: Only the user knows the exact values from his reputation score. The submitted ratings are encrypted
and thus remain hidden from the RM and other users. The RM can aggregate a newly submitted rating for some user
into that user’s reputation credential without learning the actual value of the rating.

– Unforgeability: This property ensures that none of the advertisements, rating tokens, or submitted rating values can
be forged. In particular, any valid advertisement can only be generated by a user with a valid reputation credential
which ensures that each user is accountable for their behaviours. It is impossible to forge a rating token exchanged
during the transaction or to submit a forged rating for an honest user, even if the attacker corrupts the RM and other
users. When a rater submits a new (encrypted) rating to the RM, the latter can check that the rater has been previously
authorised by the ratee and that the rating is well-formed. A ratee can verify that updates for the reputation score
received from the RM are correctly formed and were received from raters who have been previously authorised by
the ratee. This ensures that the RM is not able to introduce fake ratings nor forge or modify ratings received from
authorised honest raters.

In pRate, users publish anonymous advertisements to remain unlinkable across multiple transactions and use temporary
public keys to set up independent secure communication channels for each transaction. Although the use of temporary
keys preserves users’ anonymity during the transaction and rating submission, we note that in real-world applications
the identities of transacting users can be leaked due to some side-channel information. For example, in Airbnb, guests
would meet home owners in person. For these applications, we provide a batch accumulation mechanism which enables
the RM to aggregate multiple ratings for the same user prior to sending its reputation score update. This accumulation
can be used to break the link between a single transaction session and the submitted rating for that transaction. The
ratee would thus learn only the aggregated rating value from multiple transactions.

In addition to the above security properties, pRate is highly non-interactive and efficient. pRate allows users to
publish and verify the reputation advertisements published by other users without any interaction with other users or
the RM. Submission of ratings to the RM does not require online presence of the ratee, while the update of a rating
by the ratee does not require interaction with the rater. The scheme provides short reputation credentials and utilises a
number of efficient cryptographic mechanisms, including short and computationally efficient zero-knowledge proofs.

3 Syntax and security properties of pRate

In this section, we formalise the syntax of our pRate scheme and define its main security and privacy properties.

Definition 1. A pRate scheme consists of the following polynomial-time algorithms and protocols:

– (ik, ok, pp) ← Setup(1λ) : With this algorithm the RM initialises the rating scheme. On input of a security
parameter λ, it outputs a master issuing key ik, a master opening key ok, and a set of public parameters pp.

– ((urep[i], scr[i]) ← Join(pp, i), reg[i] ← Issue(pp, ik, i)) : This is a registration protocol between a new user i
and the RM, modeled as a pair of interactive algorithms, Join executed by i, and Issue executed by the RM. Upon
successful completion, the protocol outputs a reputation credential urep[i] and an initial reputation score scr[i] to
the user, and a registration record reg[i] to the RM which is stored in the registration database.

– (aid, πrep) ← RepAds(pp, urep[i], scr[i],m, P ) : With this algorithm any registered user i can anonymously ad-
vertise its reputation. The algorithm takes some message m and a predicate P as an additional input and outputs
a reputation advertisement consisting of an advertisement identifier aid and a reputation proof πrep. We consider
m as a placeholder for any additional information about the advertised transaction. Moreover, since the adver-
tiser is anonymous, we assume that m includes information on how the advertiser can be securely contacted by
prospective transaction partners, e.g., by including some temporary public key for establishing a secure channel.
With predicate P as an input to the algorithm we enable advertisements proving statements about user’s scr[i],
i.e. P (scr[i]) = 1, without disclosing the score.

– 1/0← RepVer(pp, aid, πrep,m, P ) : This algorithm verifies the validity of a published reputation advertisement,
in particular of the reputation proof πrep in relation to the predicate P . It outputs 1 if πrep is valid and 0 otherwise.

– ((sn0, sn1,RT0,UT0)← Token(pp, urep[i0], aid0, aid1), (sn1, sn0,RT1,UT1)← Token(pp, urep[i1], aid1, aid0)) :
This is an interactive protocol for the exchange of rating tokens between two users i0 and i1. Upon successful exe-
cution, the interactive algorithm Token(pp, urep[ib], aidb, aid1−b) run by each user ib (b ∈ {0, 1}) outputs unique
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serial numbers snb, sn1−b, a rating token RTb that user ib will use to rate i1−b, and an update token UTb that ib
will retain and use later to update its own reputation credential.

– δ ← RateGen(pp, urep[i],RT, x) : This algorithm enables a user i to generate a rating. On input of the public
parameters pp, a reputation credential urep[i], a rating token RT received from the transaction partner, and a
chosen rating value x ∈ [1, v], it outputs a rating δ. This algorithm may fail and output ⊥ if the process could not
be completed successfully, e.g., x /∈ [1, v].

– (i, j, aux)/⊥ ← RateAcc(pp, ok, reg, δ) : Using this algorithm the RM accumulates received ratings into the
reputation credential of the ratee. Upon successful execution, the algorithm outputs the extracted rater’s identity
i, ratee’s identity j, and an update information aux, which the RM sends to the ratee j. As part of this algorithm,
the RM may also update the record reg[j] of the ratee. This algorithm may fail and output ⊥ if the accumulation
process could not be completed successfully, e.g., if the rating δ submitted by the rater is invalid.

– 1/0 ← Upd(pp, urep[j], scr[j],UT, aux) : With this algorithm a rated user j after receiving the update informa-
tion aux from the RM and in possession of the matching update token UT can update its own reputation credential
urep[j] and score scr[j]. The algorithm outputs 1 if the update is successful and 0 otherwise.

A secure pRate scheme must possess the anonymity, rating-secrecy and unforgeability properties that were introduced
informally in Section 2. In Appendix A we formalise these properties using game-based security definitions which
are based on security models for group signatures [8, 13]. For unforgeability, we model three different aspects: (i)
advertisement-unforgeability to ensure that only users in possession of a valid reputation credential urep can create
valid advertisements for their reputations scores, (ii) ratee-unforgeability to ensure that only users in possession of a
valid reputation credential urep can issue rating tokens during the execution of the Token protocol that can then be
used to produce ratings, (iii) rater-unforgeability to ensure that only users in possession of rating tokens issued to them
by some other user can submit valid ratings for that user.

4 Cryptographic building blocks and assumptions

In the following we recall some well-known assumptions on bilinear maps and cryptographic building blocks used in
our scheme.

Bilinear Maps. Let G1,G2 and GT be multiplicative groups of prime order p. A function ê : G1 × G2 → GT is a
bilinear map if it satisfies the following three properties:

1. Bilinear: ê(ga, hb) = ê(g, h)ab for all g ∈ G1, h ∈ G2 and a, b ∈ Z∗p.
2. Non-degenerate: there exists g ∈ G1, h ∈ G2 such that ê(g, h) 6= 1.
3. Computable: ê(g, h) is efficiently computable for all g ∈ G1, h ∈ G2.

Our scheme can be implemented using both Type 2 and Type 3 pairings [24], as long as the XDH and q-SDH assump-
tions described below are supported.

EXternal Diffie-Hellman (XDH) Assumption [16]. Given groups G1,G2,GT associated with a bilinear pairing
ê : G1 ×G2 → GT . The XDH assumption holds if the Decision Diffie-Hellman (DDH) problem is hard in G1.

q-SDH Assumption [12]. The q-Strong Diffie-Hellman (SDH) assumption states that given two multiplicative groups
G1 and G2 of prime order pwith generators g1 for G1 and g2 for G2, for any PPT adversaryA, the following advantage

is negligible in λ: Advq-SDH
A (1λ) = Pr[A(g1, g

γ
1 , · · · , g

γq

1 , g2, g
γ
2 ) = (g

1
γ+x
1 , x) : γ $←− Z∗p].

BBS+ Signature [7, 17]. The BBS+ signature allows a signer to issue and update a signature on a tuple of messages
in a blind way, i.e., without learning the values of the messages. In pRate these techniques are used to construct
reputation credentials. A user in possession of a BBS+ signature can selectively disclose some messages and produce
zero-knowledge proofs for statements about other messages.

Zero-knowledge proofs. Following the notations in [18], we use PoK {(x) : h = gx} to denote a non-interactive
zero-knowledge proof of knowledge of x that satisfies h = gx and use SoK [m] {(x) : h = gx} to refer to a signature
of knowledge onm. A range proof is a special zero-knowledge proof which shows that a committed value lies within a
certain interval. Recent Bulletproofs [14] that do not require a trusted setup are used in our scheme to produce privacy-
preserving statements about reputation scores.A proof that some secret lies within an interval statement v ∈ [0, 2n−1]
requires only 2dlogne+4 group elements and 5 elements in Zp. Bulletproofs support aggregation, i.e., k range proofs,
possibly over different intervals, can be combined into a single proof with only 2 log k additional group elements.
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Chaum-Pedersen-Signed ElGamal Encryption (CPS-EG) [33] The CPS-EG scheme is a modified version of the
Schnorr-Signed ElGamal encryption that achieves IND-CCA2-security in the random oracle model. pRate uses the
techniques from CPS-EG in generation of rating tokens and ratings. Its IND-CCA2 security provides decryption oracle
that is used in the proof of anonymity of pRate.

5 Our pRate scheme

5.1 Specifications of pRate algorithms and protocols

In the following we provide detailed specifications of the algorithms and protocols behind the proposed pRate scheme
which allows users to advertise their reputation, to rate and be rated by other users in a privacy-friendly way. The
scheme is managed by the reputation manager RM. The communication between a user and the RM is assumed to be
over secure channels.

Initialisation of the scheme. The algorithm Setup(1λ) executed by the RM performs the following steps. Choose

γ, ξ
$←− Z∗p, g0, g1, · · · , gv+3, g, u

$←− G1, w
$←− G2, compute W = wγ and U = uξ. Output the master issuing key

ik = γ, the master opening key ok = ξ, and the public parameters pp = (g0, g1, · · · , gv+3, g, w,W, u, U).

Registration of new users. The interactive protocol (Join(pp, i), Issue(pp, ik, i)) executed between a new user i and
the RM is specified below.
– Join(pp, i):

• User i chooses randoms k, s1
$←− Z∗p. Compute K = gkv+2, S1 = gs1

v+3 and a proof πid = PoK{(k, s1) : K =
gkv+2 ∧ S1 = gs1

v+3} (see Figure 2 for details). User i sends (K,S1, πid) to the RM.
• Upon receiving (n1, · · · , nv, t, e, s2, C) from RM, user i computes s = s1+s2 andR = g0g

n1
1 · · · gnvv gtv+1g

k
v+2g

s
v+3.

Verify if ê(C,W · we) ?= ê(R,w). If successful, set urep[i] = (k, s, e, R,C) and scr[i] = (n1, n2, · · · , nv, t).
– Issue(pp, ik, i): Upon receiving (K,S1, πid) from user i, RM verifies if πid is valid using the verification algo-

rithm in Figure 2. If successful, select initial values n1, · · · , nv and a timestamp t. Choose e, s2
$←− Z∗p. Com-

pute T = gtv+1, S2 = gs2
v+3, R = g0g

n1
1 · · · gnvv TKS1S2 and C = R

1
γ+e . Set reg[i] = (K, e, t, R,C) and send

(n1, · · · , nv, t, e, s2, C) to user i.
We remark that the algorithm Join executed by the user i outputs the initial reputation credential urep[i] = (k, s, e, R,C)
and score scr[i] = (n1, n2, · · · , nv, t) where the star values n1, · · · , nv can all be set to 0 or any other fixed values,
which the system assigns to its new users. The timestamp t initially represents the time at which the reputation cre-
dential was issued. The secret key k stored in the reputation credential is the long-term key of the user i and is chosen
by the user as part of the protocol. Its knowledge is proven in πid along with the knowledge of randomness s1. The
randomness s = s1+s2 which is used to seal the information stored inC is generated jointly by the user and the RM to
ease the proof of advertisement-unforgeability. The algorithm Issue executed by the RM outputs the registration record
reg[i] = (K, e, t, R,C) where K = gkv+2 represents the identity of the new user within the system. Some information
from the user’s reputation credential, i.e., (e,R,C), are stored by the RM and will be used later to compute reputation
updates.

Reputation advertisements and their verification. The algorithm RepAds(pp, urep[i], scr[i],m, P ) outputs a reputa-

tion advertisement (aid, πrep) by computing its identifier aid = (d, dk) using some random d
$←− G1, and the reputation

proof πrep = SoK [m] {(urep[i], scr[i]) : C = (g0g
n1
1 · · · gnvv gtv+1g

k
v+2g

s
v+3)

1
γ+e ∧P (scr[i]) = 1∧ aid = (d, dk)} that

shows the current user’s score scr[i] satisfies some predicate P . In our specification P is left general to show support
for arbitrary predicates with corresponding zero-knowledge proofs. Nonetheless, in Appendix B we show an example
on how to create proofs for predicates P =

∧ζ
i=1
(
ψi ∈ [0, 2`i)

)
involving interval statements computed from the

number of stars n1, · · · , nv and timestamp t in the reputation score, using Bulletproofs [14], a recent zero-knowledge
protocol for range proofs.

The algorithm RepVer(pp, aid, πrep,m, P ) performs verification of the reputation proof πrep and outputs 1 if the
proof is valid, otherwise it outputs 0. Clearly, verification of πrep involves verification of the zero-knowledge proof for
P (scr[i]) = 1 which depends on P (c.f. Appendix B for our example based on Bulletproofs [14]).
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User i0 : Token(pp, urep[i0], aid0, aid1) User i1 : Token(pp, urep[i1], aid1, aid0))
a, r

$←− Z∗p, a′, r′
$←− Z∗p

ct1 = ua, ct2 = gk0
v+2 · U

a, ct = (ct1, ct2) ct′1 = ua
′
, ct′2 = gk1

v+2 · U
a′ , ct′ = (ct′1, ct′2)

Create a proof πenc = SoK[r]{(a, k0) : Create a proof π′enc = SoK[r′]{(a′, k1) :
ct = (ua, gk0

v+2 · U
a) ∧D0 = dk0

0 } ct′ = (ua
′
, gk1
v+2 · U

a′) ∧D1 = dk1
1 }

r,ct,πenc−−−−−−−−−→
r′,ct′,π′enc←−−−−−−−−−−

If π′enc is not valid then return ⊥ If πenc is not valid then return ⊥
sn = gr, sn′ = gr

′
sn = gr, sn′ = gr

′

Create a proof πtok = SoK[sn, sn′, ct′] Create a proof π′tok = SoK[sn′, sn, ct]
{(a, k0) : ct = (ua, gk0

v+2 · U
a)} {(a′, k1) : ct′ = (ua

′
, gk1
v+2 · U

a′)}
πtok−−−−−−−→
π′tok←−−−−−−−

RT = (sn, r, a, ct, ct′, sn′, π′tok) RT′ = (sn′, r′, a′, ct′, ct, sn, πtok)
UT = r′ UT′ = r
Return (sn, sn′,RT,UT) Return (sn′, sn,RT′,UT′)

Fig. 1: Exchange of rating tokens. urep[ib] = (kb, sb, eb, Rb, Cb), aidb = (db, Db), b ∈ {0, 1}.

Exchange of rating tokens. The detailed specification of the Token protocol in which two prospective transaction
partners i0 and i1 exchange their rating tokens is given in Figure 1 with the details of underlying zero-knowledge
proofs πenc and πtok provided in Figure 2. It is assumed that both users have already obtained and verified their
respective advertisements and have setup a secure channel prior to engaging in the Token protocol (cf. Section 5.2 for
the discussion on anonymous advertisements and secure channels). We observe that the protocol is symmetric. User
i0 obtains the rating token RT and the update token UT whereas user i1 obtains the rating-token RT′ and the update-
token UT′. Note that aidb with b = 0, 1 are used to generate ciphertexts ct, ct′ that encrypt the identities K,K ′ of the
users. Only RM can decrypt ct, ct′ with the opening key. The serial number sn = gr resp. sn′ = gr

′
is used to ensure

that each rating token can only be used once. The rating token computed by each user further includes randomness r
resp. r′ which corresponds to the update token retained by the other user.

Rating generation. A user in possession of a rating token received from another user can act as a rater for that user and
prepare their own rating that will be submitted to the RM. The rating generation algorithm RateGen(pp, urep[i],RT, x)
executed by user i with reputation credential urep[i] = (k, s, e, R,C) and the chosen rating value gx with x ∈ [1, v]
performs the following steps. Parse RT = (sn, r, a, ct, ct′, sn′, π′tok). Verify π′tok using the algorithm from Figure 2
to check whether RT is a valid rating token. Compute V = gxg

r
v+3 and a proof πsub = PoK{(r, a, x, k) : V =

gxg
r
v+3 ∧ gx ∈ {g1, · · · , gv} ∧ sn = gr ∧ ct = (ua, gkv+2 · Ua)} using the algorithm from Figure 2. Note that πsub

guarantees that V encrypts a valid rating gx ∈ {g1, · · · , gv} and that user i is authorised to rate. Finally, output a rating
δ = (sn, V, ct, ct′, sn′, π′tok, πsub).

Rating accumulation. Upon receiving a new rating δ, the RM can check its validity, identify the rater and the ratee,
and accumulate the new rating by issuing an update information to the ratee. The algorithm RateAcc(pp, ok, reg, δ)
run by the RM proceeds as follows. Parse δ = (sn, V, ct, ct′, sn′, π′tok, πsub) with ct = (ct1, ct2) and ct′ = (ct′1, ct′2).
Check that the serial number sn has not been used before. Verify π′tok and πsub using the algorithms in Figure 2 to
check the validity of δ. In the last step of verification of πtok and πsub, the opening key ok = ξ is used to compute
K = ct2/ctξ1 and K ′ = ct′2/ct′1

ξ. Find registration records reg[i] and reg[j] such that Ki = K and Kj = K ′ to
identify the user i who is rating user j. To accumulate δ into reg[j] = (Kj , e, t, R,C) with current time t̃, choose

s̃
$←− Z∗p and compute R̃ = R ·gt̃−tv+1 ·V ·gs̃v+3. Create a new reputation credential for user j by choosing a new random

ẽ
$←− Z∗p and computing C̃ = R̃

1
γ+ẽ . Update the registration record reg[j]← (Zj , ẽ, t̃, R̃, C̃), send aux = (δ, ẽ, t̃, s̃, C̃)

to user j, and output (i, j, aux).

Rating update. Upon receiving the update information from the RM users can update their own reputation credential
and score. The algorithm Upd(pp, urep[j], scr[j],UT, aux) executed by user j to update own reputation credential
and score performs the following steps. Parse urep[j] = (k, s, e, R,C), scr[j] = (n1, · · · , nv, t), aux = (δ, ẽ, t̃, s̃,
C̃) with δ = (sn, V, ct, ct′, sn′, π′tok, πsub), and UT = r. Verify validity of the update information aux by checking

the proofs π′tok and πsub, checking gUT ?= sn and ensuring that UT hasn’t been used in any previous update. If all
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successful, compute gx = V/grv+3 and R̃ = R · gt̃−tv+1 · V · gs̃v+3. Check if ê(C̃,W · wẽ) ?= ê(R̃, w). If successful,
update urep[j]← (k, s+ r + s̃, ẽ, R̃, C̃) and scr[j]← (n1, · · · , nx + 1, · · · , nv, t̃) and output 1, otherwise output 0.

πid = PoK
{

(k, s1) : K = gkv+2 ∧ S1 = gs1
v+3
}

– Prv(k, s1, gv+2, gv+3,K, S1):

• rk, rs
$←− Z∗p

• R1 = g
rk
v+2, R2 = grsv+3

• c = H(K,S1, R1, R2)
• %k = rk + c · k, %s = rs + c · s1
• Return πid = (c, %s, %k)

– Ver(gv+2, gv+3,K, S1, πid):
• Parse πid = (c, %s, %k)
• R̂1 = g

%k
v+2/K

c, R̂2 = g%sv+3/S
c
1

• ĉ = H(K,S1, R̂1, R̂2)
• If ĉ = c then return 1 else 0

πenc = SoK[r]{(a, k) : ct = (ua, gkv+2 · Ua)
∧D = dk}

– Prv(a, k, u, gv+2, U, ct, d,D):

• ra, rk
$←− Z∗p

• R1 = ura , R2 = g
rk
v+2U

ra , R3 = drk

• c = H(ct, D,R1, R2, R3)
• %a = ra + c · a, %k = rk + c · k
• Return πenc = (c, %a, %k)

– Ver(u, gv+2, U, ct, d,D, πenc):
• Parse ct = (ct1, ct2) and πenc = (c, %a, %k)
• R̂1 = u%act−c1 , R̂2 = g

%k
v+2U

%act−c2 , R̂3 = d%kD−c

• ĉ = H(ct, D, R̂1, R̂2, R̂3)
• If ĉ = c then return 1 else 0

πtok = SoK [sn, sn′, ct′]
{

(a, k) : ct = (ua, gkv+2 · Ua)
}

– Prv(a, u, U, ct, sn, sn′, ct′):

• ra, rk
$←− Z∗p, R1 = ura , R2 = Ura , R3 = g

rk
v+2, Z = Ua

• c = H(ct, Z,R1, R2, R3, sn, sn′, ct′), %a = ra + c · a, %k = rk + c · k
• Return πtok = (ct, c, %a, %k)

– Ver(ξ, u, U, πtok, sn, sn′, ct′):
• Parse πtok = (ct = (ct1, ct2), c, %a, %k)
• R̂1 = u%act−c1 , R̂2 = R̂ξ1, R̂3 = g

%k
v+2U

%aR̂−1
2 ct−c2 , Ẑ = ctξ1

• ĉ = H(ct, Ẑ, R̂1, R̂2, R̂3, sn, sn′, ct′)
• If c 6= ĉ or U%a 6= R̂2Ẑ

ĉ return ⊥
• Return m = ct2/Ẑ

πdec = PoK{(r′) : H = hr
′
}

– Prv(r′):

• θ $←− Z∗p, R = hθ

• c = H(H,R), % = θ + c · r′
• Return πdec = (c, %)

– Ver(H,πdec):
• Parse πdec = (c, %)
• R̂ = h%/Hc

• ĉ = H(H, R̂)
• If ĉ = c then return 1 else 0

πsub = PoK{(r, a, gx, k) : V = gxg
r
v+3 ∧ gx ∈ {g1, · · · , gv} ∧ sn = gr ∧ ct = (ua, gkv+2 · Ua)}

– Prv(r, a, gx):

• ra, rk
$←− Z∗p, R1 = ura , R2 = Ura , R3 = g

rk
v+2, Z = Ua

• θx, {ej , θj}vj=1,j 6=x
$←− Z∗p

* Ax = gθxv+3, Bx = gθx

* For j 6= x, %j = θj + ej · r, Aj = g
%j
v+3(gj/V )ej and Bj = gθj

• c = H(ct, Z,R1, R2, R3, A1, · · · , Av, B1, · · · , Bv)
• %a = ra + c · a, %k = rk + c · k, ex = c−

∑
j 6=x ej , %x = θx + ex · r

• Return πsub = (ct, %a, %k, {ej , %j}vj=1)
– Ver(ξ, V, sn, πsub):
• Parse πsub = (ct = (ct1, ct2), %a, %k, {ej , %j}vj=1)
• c =

∑v

j=1 ej , R̂1 = u%act−c1 , R̂2 = R̂ξ1, R̂3 = g
%k
v+2U

%aR̂−1
2 ct−c2 , Ẑ = ctξ1

• Âj = g
%j
v+3(gj/V )ej and B̂j = g%j sn−ej for j = [1, v]

• ĉ = H(ct, Ẑ, R̂1, R̂2, R̂3, Â1, · · · , Âv, B̂1, · · · , B̂v)
• If c 6= ĉ or U%a 6= R̂2Ẑ

ĉ then return ⊥
• Return m = ct2/Ẑ

πupd = PoK{(r, r′, x) : V ′ = gxg
r
v+3h

r′ ∧ gx ∈ {g1, · · · , gv}}

– Prv(r, r′, x):

• θx, θ′x,
{
ej , θj , θ

′
j

}v
j=1,j 6=x

$←− Z∗p

* Ax = gθxv+3h
θ′x

* For j 6= x, %j = θj + ej · r, %′j = θ′j + ej · r′ and Aj = g
%j
v+3h

%′j (gj/V ′)ej
• c = H(V ′, A1, · · · , Av), ex = c−

∑
j 6=x ej , %x = θx + ex · r, %′x = θ′x + ex · r′

• Return πupd = (
{
ej , %j , %

′
j

}v
j=1

)
– Ver(V ′, πupd):
• Parse πupd = (

{
ej , %j , %

′
j

}v
j=1

)
• c =

∑v

j=1 ej

• Âj = g
%j
v+3h

%′j (gj/V ′)ej for j ∈ [1, v]
• ĉ = H(V ′, Â1, · · · , Âv)
• If c = ĉ then return 1 else return 0

Fig. 2: Specifications of zero-knowledge proofs utilised in pRate.
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5.2 Further remarks and extensions

In the following we provide several remarks regarding the functionality and design rationale of our scheme.

Timestamps. In pRate, each score includes a timestamp t which indicates when the score was updated last. Upon
advertising the user can choose not to disclose the exact time t but to provide a zero-knowledge proof that their score
is recent. We do not enforce each user to have the most recent reputation credential, otherwise it would significantly
limit the flexibility on when users would need to submit and update their ratings. However, users who have not been
rated for a longer period of time could possibly be disadvantaged because of that. In that case, these users can ask the
RM to update the timestamp in their reputation credential without disclosing or changing their scores. For this, the

RM chooses a fresh timestamp t̃, picks ẽ, s̃ $←− Z∗p, computes C̃ = (R · gt̃−tv+1 · gs̃v+3)
1
γ+ẽ and sends (ẽ, t̃, s̃, C̃) to the

corresponding user.

Anonymous advertisements. The one-time advertisements published by users prior to each new transaction are
anonymous and cannot be linked to the same publisher. Although this provides strong privacy protection, a malicious
user may generate a large amount of advertisements to consume resources of online platforms. The RM can restrict
users to publish no more than n advertisements in some period of time (e.g., one day) by publishing a set of generators
{d1, · · · , dn} that would be valid for that period and requiring users to use these di for generation of their advertising
identifiers aid = (di, dki ) during that period. Note that any user who generates more advertisements than allowed by
the RM would become linkable.

Secure channels for token exchange. We require that rating tokens are exchanged over a secure channel that must
be setup between the two prospective transaction partners. Note that these partners do not know each other identi-
ties since their reputation advertisements are anonymous. For this purpose we can let each user choose a temporary
private-public key pair and include the corresponding public key as part of the published advertisement information
m. These temporary keys can then be used to execute any standard secure channel establishment protocol to create an
authenticated and confidential channel (see [26] for the property of such channels) over which parties would exchange
their tokens. The authentication property in this case would imply that the channel is established between the two
original yet anonymous advertisers. Communication between two anonymous users can be established through the
platform on which the advertisements are published and to which users could connect anonymously via Tor [23] or
with the help of distributed ledger techniques as in [32].

Accountability. In the rating accumulation algorithm RateAcc, the RM learns the identities of the rater and ratee
(without being able to link them to the advertisements containing transaction details). This can be useful in the de-
tection of conventional attacks against reputation systems [25] such as Sybil attacks, self-promotion attacks where a
dishonest user arbitrarily creates rating tokens to increase their own reputation score, and ballot stuffing attacks where
dishonest users collude to conduct fake transactions and ratings to improve their reputation scores. The RM can detect
such malicious behaviours heuristically, for example, when a user gets an unusual large amount of ratings within a
short time period or submits too many ratings. If the RM notices any suspicious activity, the RM can investigate, e.g.,
request users to provide supporting documents to show that these ratings are based on real transactions, and punish
misbehaving users.

Batch accumulation and unlinkability. In the rating accumulation algorithm RateAcc, the RM updates user’s j
reputation credential and sends a update aux to the corresponding user j. We observe that this part does not have to be
performed immediately for each new rating that the RM receives for user j. In our scheme this process can be delayed
and performed in a batch in order to reduce the overhead from the reputation update. More precisely, the RM can
accumulate multiple ratings in a batch by multiplying all ciphertexts into a single product V =

∏
` V` and produce a

single update information.
When updating a single rating V` = gx`g

r`
v+3, the ratee uses the update token UT` = r` to extract gx` from V`.

The update token UT` is linked to the serial number sn` = gr` from the token exchange session. We stress that this
link does not compromise rater’s anonymity because of the anonymous (one-time) advertisement that was used in the
token exchange session. Therefore, the ratee is not able to link any previous or future ratings produced by the same
rater. In practice, there might be scenarios where some side channel information could leak the identity of the user,
e.g., in Airbnb, a guest would meet the home owner in person. For these applications, we can break the link between
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the token exchange session and the submitted rating by using a more sophisticated batch accumulation technique that
applies additional randomisation as described in the following.

The basic idea is to let the RM randomly blind the ratings and give the ratee a decryption key to remove this
randomness from the aggregated ratings. The ratee will no longer be able to learn that a rating value x` is linked to
the serial number sn` and only learn their aggregated value of {x`}`. Below we describe how the RM randomises
the ratings and how the ratee removes this randomness prior to updating its reputation score. The part for updating
reg[j], C,R is the same as before and is omitted here.

– When a user i submits a rating δ` = (sn`, V`, ct`, ct′`, sn′`, π′tok,`, πsub,`) to the RM, the user additionally picks a

randomiser r′`
$←− Z∗p, computes V ′` = V` · hr

′
` and a proof πupd,` = PoK{(r`, r′`, x`) : V ′` = gx`g

r`
v+3h

r′` ∧ gx` ∈
{g1, · · · , gv}} and sends (r′`, V ′` , πupd,`) to the RM. The details of πupd,` are given in Figure 2.

– After the RM receives n ratings (possibly from different raters) for some user j, it can accumulate these ratings
together and update user’s j reputation credential once. For this, the RM computes r′ =

∑
` r
′
`, H = hr

′
,

πdec = PoK{(r′) : H = hr
′}, and sends ({V ′` , πupd,`}`, {sn`}`, H, πdec) to user j. The details of πdec are given in

Figure 2.
– User j computes V ′ =

∏
` V
′
` and eliminates the randomisers {r′`}` by computing V = V ′/H(=

∏
` V`).

Further, user j finds a set of update tokens {UT` = r`}` corresponding to the serial numbers {sn`}` and removes
the randomisers {r`}` by computing r =

∑
` r` and M = V/grv+3(=

∏
` gx`). User j can then use a brute-force

approach to find (m1, · · · ,mv) s.t.M = gm1
1 · · · gmvv and n = m1 + · · ·+mv , and, finally, update own reputation

score as scr[j] = (n1 +m1, · · · , nv +mv, t̃).

We remark that the total number of possible combinations for (m1, · · · ,mv) is Cv−1
n+v−1 which is a polynomial of

degree v and is feasible to brute-force. For example, if n = 20 and v = 5, then Cv−1
n+v−1 = 10626. Since gen-

erators g1, · · · , gv are randomly chosen, the tuple (m1, · · · ,mv) that satisfies the above conditions is unique with
overwhelming probability. Otherwise, if there is another tuple (m′1, · · · ,m′v) for which M = g

m′1
1 · · · gm

′
v

v then the
equation gm1−m′1

1 · · · gmv−m
′
v

v = 1 can be used to find a non-trial relation between g1, · · · , gv and break the DL
assumption.

The above technique achieves unlinkability between the token exchange sessions and submitted ratings based on
the following argument: Let Tb = (pp, x0, x1, r0, r1, V

′
0 = gxbg

r0
v+3h

r′0 , V ′1 = gx1−bg
r1
v+3h

r′1 , H = hr
′
0+r′1) with

r′0, r
′
1

$←− Z∗p for b = 0, 1. In T0, V ′0 encrypts the rating value x0 and V ′1 encrypts the rating value x1, while in T1, V ′0
encrypts the rating value x1 and V ′1 encrypts the rating value x0. We can easily see thatH = V ′0V

′
1/(gx0gx1g

r0
v+3g

r1
v+3)

holds for both T0 and T1. Since r′0, r
′
1 are chosen uniformly at random, T0 and T1 have the same distribution.

5.3 Performance analysis

In the following we evaluate the computational costs of pRate algorithms and sizes of utilized zero-knowledge proofs.
We start with the latter.

Size of zero-knowledge proofs. All zero-knowledge proofs used in pRate are short as can be observed based on the
summary in Table 1, where v is the rating score and ` =

∑
i `i is the size of the intervals in predicate P = ∧i(ψi ∈

[0, 2`i)) (see Appendix B for details), and both can be seen as small constants. Furthermore, the size of the proof πrep
in the advertisement can be further reduced to (v+ 11)Zp + (2dlog `e+ 5)G1 using an inner-product proof according
to [14].

We illustrate with a concrete example based on a five-star rating scheme, i.e. v = 5. Suppose, Alice has a reputation
score scr = (n1, n2, n3, n4, n5, t) = (9, 2, 11, 30, 328, 6940) where t = 6940 is the number of days elapsed from 1
Jan 2000 to 1 Jan 2019. Alice can prove the following statements about her score:

– The number of 1-star, 2-star and 3-star ratings is less than 16, i.e., n1, n2, n3 ∈ [0, 24). The average score is higher
than 4.6, i.e., (n1 + 2n2 + 3n3 + 4n4 + 5n5)/(n1 + n2 + n3 + n4 + n5) > 4.6 which can be proved by showing
n4, n5 ∈ [0, 210) and (−18n1 − 13n2 − 8n3 − 3n4 + 2n5) ∈ [0, 210).

– The score was updated no earlier than 1 Oct 2018, i.e., t > 6848 where 6848 is the number of days elapsed from
1 Jan 2000 to 1 Oct 2018. This can be proved using t ∈ [0, 213) and t− 6848 ∈ [0, 213).

This leads to ` = 4 ∗ 3 + 10 ∗ 3 + 13 ∗ 2 = 68 and dlog `e = 7.
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Zero-knowledge proofs Numbers of group elements
πid 3Zp
πenc 3Zp
πdec 2Zp
πtok 3Zp + 2G1
πsub (2v + 2)Zp + 2G1
πupd (3v)Zp
πrep (v + 2`+ 9)Zp + 3G1

Table 1: Sizes of zero-knowledge proofs in pRate.

Operations Numbers of group operations
Join (v + 4)mulG1 + (v + 8)expG1 + 2pairing
Issue (v + 6)mulG1 + (v + 7)expG1 + 2pairing

RepAds (4`+ 1)mulG1 + (4`+ 3)expG1 + (v + 4)mulGT + (v + 5)expGT
RepVer (v + 2`+ 6)mulG1 + (v + 2`+ 10)expG1 + 1mulGT + 2pairing
Token 12mulG1 + 28expG1

RateGen 9mulG1 + (2v + 15)expG1
RateAcc 18mulG1 + (4v + 21)expG1

Upd 20mulG1 + (4v + 23)expG1 + 2pairing
Table 2: Computational costs of pRate algorithms.

Computational costs. We summarize the amount of computations for each pRate algorithm in Table 2, where mulG1

and mulGT denote scalar multiplications in G1 and GT , respectively; expG1 and expGT are exponentiations in G1 and
GT , respectively; RepAds and RepVer denote time-consuming pairing operations which can be optimized further (as
discussed in Appendix B.1).

6 Security analysis of pRate

pRate is designed to minimize the trust put on the RM. In particular, to ensure that (1) the RM cannot learn any rating
values submitted by the users, (2) the RM cannot link submitted ratings to the published anonymous advertisements,
and (3) all data sent by the RM to the intended recipients is verifiable. The security of our pRate scheme is established
formally in Theorems 1 to 5 based on the properties of anonymity, rating secrecy, and the three flavours of unforge-
ability from Section 3. The formal proofs of all theorems are provided in Appendix C. In the following we provide
only high-level intuition for the security of pRate. We note that all security properties hold in the random oracle model
due to the use of non-interactive zero-knowledge proofs based on the well-known Fiat-Shamir transformation.

Theorem 1. The pRate scheme is anonymous under the XDH assumption.

An advertisement (aid, πrep) created by a user is fully anonymous due to the use of randomly chosen one-time identi-
fiers aid = (d, dk) and the zero-knowledge property of πrep. The token exchange protocol is performed over a secure
channel so that the RM cannot link the exchanged tokens to the ratings that it receives. The ciphertexts ct and ct′
encrypting the identities of participating users can only be decrypted by the RM so that users remain anonymous to
each other. The anonymity holds even when the RM’s issuing key ik becomes compromised. The proofs πtok used in
rating tokens and πsub used in ratings are constructed based on techniques from CPS-EG which allow us to create a
decryption oracle without knowing the RM’s opening key ok.

Theorem 2. The pRate scheme is rating-secret under the XDH assumption.

Each rating is encrypted in V = gxg
r
v+3 using random r that is only known to the rater and the ratee. The zero-

knowledge proof πsub ensures that V is correctly formed without leaking any information about x. The RM accumu-
lates ciphertexts V to the ratee’s reputation credential without learning the value of x. As long as the rater and the ratee
are honest, their rating stays confidential. This holds even if the RM’s issuing and opening keys become compromised.

Theorem 3. The pRate scheme is advertisement-unforgeable under the q-SDH assumption.

Note that only users in possession of valid reputation credentials issued to them by the RM can generate verifiable
advertisements. The unforgeability of advertisements relies on the unforgeability of the BBS+ signature scheme and
holds for honest users, even if the RM’s opening key becomes compromised.

Theorem 4. The pRate scheme is ratee-unforgeable under the DL assumption.
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Unforgeability of rating tokens RT, computed using the long-term secret key k of the ratee, relies on the zero-
knowledge and soundness properties of the proofs πtok used in the token exchange protocol and πid used in the
registration protocol. Note that in case of successful forgery, the forking lemma can be used to extract k. The ratee-
unforgeability property holds for honest ratees, in presence of the possibly corrupted RM.

Theorem 5. The pRate scheme is rater-unforgeable under the DL assumption.

Unforgeability of ratings δ, computed using the long-term secret key k of the rater, relies on the zero-knowledge and
soundness properties of the proofs πsub used in the rating generation algorithm and πid used in the registration protocol.
Note that in case of successful forgery, the forking lemma can be used to extract k. The rater-unforgeability property
holds for honest raters, in presence of the possibly corrupted RM.

7 Other related work

In terms of privacy, pRate is superior to a number of existing reputation schemes where anonymity of users is pro-
vided without considering the secrecy of their reputation scores. The scheme in [22] adopts controlled anonymity and
cluster filtering to leverage against the effects of unfair ratings and discriminating seller. The system relies on a trusted
third party called marketplace to publish the estimated reputation of buyers and sellers and assigns them pseudonyms
to perform transactions. PERM [6] provides reputation-based blacklisting which enables a service provider to score
users’ anonymous sessions and deny access to users with insufficient reputation. A user’s reputation score is uniquely
identified with a serial number which will be revealed after the service provider updates the score and generates a new
serial number. Therefore the rating by the service provider must be performed sequentially, i.e., one session after an-
other. The work in [21] studies relations on several privacy definitions for reputation systems and presents a reputation
function that can satisfy k-anonymity and rating secrecy. An anonymous reputation system based on pseudonymous
system and e-cash is described in [5]. An authority called Bank keeps the record of each user’s reputation score. Two
users communicate with each other under their one-time pseudonyms where one user can rate the other user by trans-
ferring a certain amount of repcoins assigned by the Bank via e-cash. This system lacks accountability since users can
create an arbitrary number of pseudonyms which are not registered with any authority. A reputation framework for
participatory sensing applications is proposed in [20], where a user reports sensor readings to an application server
and the server computes a score by evaluating the accuracy of the readings. Each user uses a pseudonym for reporting
readings within a certain period and transfers the gained score to the next pseudonym when the next time period starts
while preventing attackers from linking these pseudonyms. Reputation systems proposed in [9–11] allow each user to
anonymously rate a product at most once. If a user rates the same product multiple times, his anonymity will be broken
because these ratings are linkable. The system in [11] is based on group signatures with linkability while the scheme
in [9] combines anonymous credentials with a reputation system. These systems focus on protecting anonymity for
the rater but not for the ratee and they do not consider how to manage and protect reputation scores. Similar consid-
erations apply to the scheme in [10] which mainly focuses on the universal composability of reputation systems. An
anonymous reputation system which gives users rewards for submitting useful comments is presented in [15]. Users
can publish their assessment opinions which can then be endorsed by other users such that the original rater receives
some reward upon receiving a threshold number of endorsements.

8 Conclusion

In this paper we introduced pRate, a novel privacy-preserving reputation system, where scores are computed based on
the (aggregated) number(s) of stars that users receive from their raters. The scheme is managed by a possibly untrusted
reputation manager who can register users and assist ratees in updating their reputation scores, yet without learning
these scores. In addition to ensuring the secrecy of the ratings, a distinctive feature of pRate over prior proposals, is
that it hides the identities of raters and ratees from each other during the transaction and rating stages. pRate can be
extended with a randomised batch accumulation technique that will further prevent the ratee from linking the received
ratings to the corresponding transactions, thus offering even stronger privacy protection for the ratee. We note that
pRate is widely independent of the actual transactions that occur between users and eventual payments associated with
these transactions. As such pRate can be used in combination with many other approaches for anonymous transaction
processing and payment.
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A Definitions of correctness and security

The correctness and security properties are formulated via experiments where an adversary is given access to certain
oracles defined in Figure 3.

Correctness The correctness guarantees that 1) an advertisement produced by honest users are accepted by the
verification algorithm RepVer; 2) ratings constructed by honest users are accepted by the accumulation algorithm
RateAcc; 3) updates from honest RM are accepted by the update algorithm Upd. Formally, a pRate scheme is correct
if Advcorr

A (1λ) := Pr[Expcorr
A (1λ) = 1] is negligible, where Expcorr

A (1λ) is defined below:

Expcorr
A (1λ):

– (ik, ok, pp) $←− Setup(1λ)
– HU = BU = ChU = AL = RL = UL = ∅
– (i0, i1,m, P,m′, P ′, x) $←− AAddU,RReg,RepAds,Token,SndTok,RateGen,RateUpd(1λ, pp)
– If i0 /∈ HU or i1 /∈ HU or P (scr[i0]) = 0 or P ′(scr[i1]) = 0 or x /∈ [1, v] then return 0

– (aid, πrep) $←− RepAds(pp, urep[i0], scr[i0],m, P )
– If RepVer(pp, aid, πrep,m, P ) = 0 then return 1

– (aid′, π′rep) $←− RepAds(pp, urep[i1], scr[i1],m′, P ′)

– ((sn, sn′,RT,UT), (sn′, sn,RT′,UT′)) $←− (Token(pp, urep[i0], aid, aid′),Token(pp, urep[i1], aid′, aid))
– δ

$←− RateGen(pp, urep[i0],RT, x)
– θ

$←− RateAcc(pp, ok, reg, δ)
– If θ = ⊥ then return 1
– Parse θ = (i′0, i′1, aux)
– If i′0 6= i0 or i′1 6= i1 then return 1
– If Upd(pp, urep[i1], scr[i1],UT′, aux) = 0 then return 1
– Return 0

Anonymity Following [8], the anonymity is defined in a way that an adversary does not need to recover a user’s
identity but only distinguish which of two users of its choice produced an advertisment, engaged in a token generation
session and generated a rating. A pRate scheme is anonymous if Advanony

A (1λ) := |Pr[Expanony
A (1λ) = 1] − 1

2 | is
negligible, where Expanony

A (1λ) is an experiment defined below.

Expanony
A (1λ):

– (ik, ok, pp) $←− Setup(1λ)
– HU = BU = ChU = AL = RL = UL = ∅
– (i0, i1, j,m, P, x, St) $←− AAddU,WReg,CrptU,RepAds,Token,SndTok,RateGen,RateUpd

0 (1λ, pp, ik)
– If i0 /∈ HU\BU or i1 /∈ HU\BU or P (scr[i0]) = 0 or P (scr[i1]) = 0 or x /∈ [1, v] then return 0
– ChU = ChU ∪ {i0, i1}
– b

$←− {0, 1}
– (aid∗, π∗rep) $←− RepAds(pp, urep[ib], scr[ib],m, P )

– (aid, πrep) $←− RepAds(pp, urep[j], scr[j],m, P )
– ((sn, sn′,RT,UT), (sn′, sn,RT′,UT′)) $←− Token(pp, urep[ib], aid∗, aid),Token(pp, urep[j], aid, aid∗))
– UL[lu++] = (sn′,UT); UL[lu++] = (sn,UT′)
– δ∗

$←− RateGen(pp, urep[ib],RT, x)
– σ∗ = (aid∗, π∗rep, sn′,RT′,UT′, δ∗)

– b̂
$←− AAddU,WReg,CrptU,RepAds,Token,SndTok,RateGen,RateUpd

1 (St, σ∗)
– Return b = b̂
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Rating-secrecy Rating-secrecy is defined in a way that an adversary needs to distinguish which of two rating values of
its choice is encrypted in the rating. Formally, a pRate scheme is rating-secret if Advsecrecy

A (1λ) := |Pr[Expsecrecy
A (1λ) =

1]− 1
2 | is negligible, where Expsecrecy

A (1λ)is an experiment defined below.

Expsecrecy
A (1λ):

– (ik, ok, pp) $←− Setup(1λ)
– HU = BU = ChU = AL = RL = UL = ∅
– (x0, x1, k, St) $←− AAddU,RReg,CrptU,RepAds,Token,RateGen,RateAcc,RateUpd

0 (1λ, pp, ik, ok)
– If x0 /∈ [1, v] or x1 /∈ [1, v] or RL[k] = ⊥
– Parse RL[k] = (i, sn,RT,flag)
– If i /∈ HU or flag = 1 then return ⊥
– b

$←− {0, 1}
– δ∗

$←− RateGen(pp, urep[i],RT, xb)
– RL[k] = (i, sn,RT, 1)
– b̂

$←− AAddU,RReg,Token,RateGen,RateAcc,RateUpd
1 (St, δ∗)

– Return b = b̂

Advertisement-unforgeability This ensures that an adversary cannot produce an advertisement that cannot be traced
back to an active member. The adversary generates an advertisement and wins the experiment if the advertisement
cannot be used to generate a rating token, submit a rating and accumulate a rating for any valid user. Formally,
a pRate scheme is advertisement-unforgeable if Advtrace

A (1λ) := |Pr[Expad-unforge
A (1λ) = 1]| is negligible, where

Expad-unforge
A (1λ) is an experiment defined below.

Expad-unforge
A (1λ):

– (ik, ok, pp) $←− Setup(1λ)
– HU = BU = ChU = AL = RL = UL = ∅
– (aid, πrep,m, P, n, x) $←− AAddU,RReg,CrptU,RepAds,Token,SndTok,RateGen,RateUpd(1λ, pp, ok)
– If RepVer(pp, aid, πrep,m, P ) = 0 or AL[n] = ⊥ or x /∈ [1, v] then return 0
– Parse AL[n] = (j, aid′)
– If @i ∈ HU s.t. θ = (∗, i, ∗) where θ is computed from

• ((sn, sn′,RT,UT), (sn′, sn,RT′,UT′)) $←− (Token(pp, urep[i], aid, aid′),Token(pp, urep[j], aid′, aid))
• δ $←− RateGen(pp, urep[j],RT′, x)
• θ $←− RateAcc(pp, ok, reg, δ)
then return 1 else return 0

Ratee-unforgeability This ensures that an adversary cannot forge a valid rating token that involves an honest user as
ratee unless this user does produce it. A pRate scheme is ratee-unforgeable if Advunforge-ratee

A (1λ) := |Pr[Expratee-unforge
A (1λ) =

1]| is negligible, where Expratee-unforge
A (1λ) is an experiment defined below.

Expratee-unforge
A (1λ):

– (ik, ok, pp) $←− Setup(1λ)
– HU = BU = ChU = AL = RL = UL = ∅
– δ

$←− AAddU,RReg,CrptU,RepAds,Token,SndTok,RateGen,RateAcc,RateUpd(1λ, pp, ik, ok)
– θ

$←− RateAcc(pp, ok, reg, δ)
– If θ = ⊥ then return 0
– Parse θ = (i, j, aux)
– If the following are all true then return 1 else return 0
• j ∈ HU\BU
• A does not query SndTok(n, ∗) with AL[n] = (j, ∗), or Token(j0, j1) with AL[j0] = (j, ∗) or AL[j1] = (j, ∗)
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AddU(i)
– If i ∈ HU then return ⊥
– HU = HU ∪ {i}; deciIssue = cont
– StiJoin = (pp, i); StiIssue = (pp, ik, i)
– (StiJoin,MIssue, deciJoin) $←− Join(StiJoin)
– While (deciIssue = cont and deciJoin = cont) Do

• (StiIssue,MJoin, deciIssue)
$←− Issue(StiIssue,MIssue)

• (StiJoin,MIssue, deciJoin) $←− Join(StiJoin,MJoin)
– If deciIssue = accept then reg[i] = StiIssue
– If deciJoin = accept then (urep[i], scr[i]) = StiJoin

RepAds(i,m, P )
– Return ⊥ if i /∈ HU\ChU
– (aid, πrep) $←− RepAds(pp, urep[i], scr[i],m, P )
– AL[la++] = (i, aid)
– Return σ

CrptU(i)
– Return ⊥ if i /∈ HU\(BU ∪ ChU)
– BU $←− BU ∪ {i}
– Return (urep[i], scr[i])

RateGen(k, x)
– Return ⊥ if x /∈ [1, v]
– Parse RL[k] = (i, sn,RT,flag)
– If flag = 1 then return ⊥
– δ

$←− RateGen(pp, urep[i],RT, x)
– RL[k] = (i, sn,RT, 1)
– Return (sn, δ)

RReg(i):
– Return reg[i]

WReg(i, val):

– WReg[i] $←− val

RateUpd(sn, δ,Min)
– θ

$←− RateAcc(pp, ok, reg, δ)
– If θ = ⊥ return ⊥
– Parse θ = (i, j, aux)
– Find k s.t. UL[k] = (sn,UT′)
– If such k exists then return Upd(pp, urep[j], scr[j],

UT′, aux)
– Return Upd(pp, urep[j], scr[j],Min, aux)

SndTok(j,Min)
– Parse Min = (aid′, π′rep,m, P,M)
– If RepVer(pp, aid′, π′rep,m, P ) = 0 or AL[j] = ⊥ then return ⊥
– Parse AL[j] = (i, aid)
– If StjToken is undefined then StjToken = (pp, urep[i],

aid, aid′)
– (StjToken,Mout, decjToken) $←− Token(StjToken,M)
– If decjToken = accept then
• Parse StjToken = (sn, sn′,RT,UT)
• RL[lt++] = (i, sn,RT, 0)
• UL[lu++] = (sn′,UT)

– Return (Mout, decjToken)

Token(j0, j1)
– Return ⊥ if AL[j0] = ⊥ or AL[j1] = ⊥
– Let AL[j0] = (i0, aid0) and AL[j1] = (i1, aid1)
– ((sn, sn′,RT,UT), (sn′, sn,RT′,UT′)) $←− (Token(pp, urep[i0], aid0, aid1),Token(pp, urep[i1], aid1, aid0))
– RL[lr++] = (i0, sn,RT, 0); UL[lu++] = (sn′,UT)
– RL[lr++] = (i1, sn′,RT′, 0); UL[lu++] = (sn,UT′)

Fig. 3: Oracles used in security games. The oracles manipulate the following global variables: a set HU of honest users, a set BU of users whose
reputation credentials and scores have been revealed to the adversary, a set ChU of users chosen by the adversary in defining anonymity, a list AL of user
id and advertising identifier , a list TL of rating and updating-tokens. The sets HU,BU are initially empty and all the entries of the lists AL,RL,UL are
initialised to be ⊥. The length of AL (or RL,UL) is recorded using a global variable la (or lr, lu) which is initially la = 0 (lr = lu = 0).

Rater-unforgeability This ensures that an adversary cannot forge a valid rating that involves an honest user as rater
unless this user does produce it. A pRate scheme is rater-unforgeable if Advunforge-rater

A (1λ) := |Pr[Exprater-unforge
A (1λ) =

1]| is negligible, where Exprater-unforge
A (1λ) is an experiment defined below.

Exprater-unforge
A (1λ):

– (ik, ok, pp) $←− Setup(1λ)
– HU = BU = ChU = AL = RL = UL = ∅
– δ

$←− AAddU,RReg,CrptU,RepAds,Token,SndTok,RateGen,RateAcc,RateUpd(1λ, pp, ik, ok)
– θ

$←− RateAcc(pp, ok, reg, δ)
– If θ = ⊥ then return 0
– Parse θ = (i, j, aux)
– If the following are all true then return 1 else return 0
• i ∈ HU\BU
• A does not query RateGen(k, ·) with RL[k] = (i, ∗, ∗, ∗)

B Reputation advertisements using Bulletproofs

We can integrate Bulletproofs [14] into reputation advertisements of pRate to prove a predicateP consisting of multiple
interval statements of the form ψ ∈ [0, 2` − 1]. This is sufficient for expressing most of the common measurements
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used in a star rating system, for example, the average score is above a certain value avg ≥ v̂ and the score is updated
no earlier than a certain time point t ≥ t̂. An advantage of using Bulletproofs [14] is that it enables us to aggregate
multiple interval proofs into one proof with only logarithmic extra overhead. Below we describe how to prove a
general form of predicate P =

∧ζ
i=1
(
ψi ∈ [0, 2`i)

)
where ψi =

∑v
j=0 βijnj for i ∈ [1, ζ − 1] and βij are small

integer coefficients and n0 = 1 and ψζ = t− t̃. Let ` =
∑ζ
i=1 `i.

B.1 Advertisement generation and verification (RepAds, RepVer)

The RM adds auxiliary public parameters h $←− G1,g,h
$←− G`1 which are independent generators for range proof. We

use the following notations from Bulletproofs [14]:

– Bold font denotes vectors, e.g., a ∈ F` is a vector with ` elements a1, · · · , a` ∈ F;
– 〈a,b〉 =

∑`
i=1 ai · bi is the inner product between two vetors and a ◦ b = (a1 · b1, · · · , an · bn) is the Hadamard

product (entry wise multiplication of two vectors);
– Given g = (g1, · · · , g`) ∈ F` and a = (a1, · · · , a`) ∈ Z∗p, we write ga =

∏`
i=1 g

ai
i ;

– For y ∈ Z∗p, y` = (1, y, y2, · · · , y`−1) is a vector containing the first ` powers of y;
– For a vector a ∈ F`, a[i,j] = (ai+1, · · · , aj) denotes slices of the vector.

Advertisement generation RepAds(pp, urep[i], scr[i],m, P ):

– Parse urep[i] = (k, s, e, R,C) and scr[i] = (n1, n2, · · · , nv, t)
– Choose α, re, rt, rk, rα, rρ, rn1 , · · · , rnv , rt

$←− Z∗p, d $←− G1. Compute E = Cgαv+3, D = dk, aid = (d,D),
R1 = drk ,

R2 = ê(E,w)re ê(gv+1, w)rt ê(gv+2, w)rk ê(gv+3, w)rρ ê(gv+3,W )rα
v∏
i=1

ê(gi, w)rni

– Generate a range proof to show P =
∧ζ
i=1
(
ψi ∈ [0, 2`i)

)
holds on scr[i]. Compute

aL ∈ {0, 1}` s.t.
〈
aL,[`i−1,`i],2

`i
〉

= ψi for i ∈ [1, ζ], aR = aL − 1`

η1, η2
$←− Z∗p, sL, sR

$←− Z`p, A = hη1gaLhaR , S = hη2gsLhsR

y1 = H(A,S), y2 = H(A,S, y1), y3 = H(A,S, y1, y2)

τ1, τ2
$←− Z∗p

τ = τ1 · y3 + τ2 · y2
3 +

ζ∑
i=1

yi+1
2 · rψi with rψi =

v∑
j=1

βijrnj for i ∈ [1, ζ − 1] and rψζ = rt

l = aL − y2 · 1` + sL · y3

r = y1
` ◦ (aR + y2 · 1` + sR · y3) +

ζ∑
i=1

yi+1
2 · (0`1+···+`i−1 ‖ 2`i ‖ 0`i+1+···+`ζ )

f = 〈l, r〉, η = η1 + η2 · y3

Construct two degree 1 polynomials l(X) and r(X) in Z`p[X] and compute f0, f1, f2 such that:

l(X) = aL − y2 · 1` + sL ·X

r(X) = y1
` ◦ (aR + y2 · 1` + sR ·X) +

ζ∑
i=1

yi+1
2 · (0`1+···+`i−1 ‖ 2`i ‖ 0`i+1+···+`ζ )

f(X) = 〈l(X), r(X)〉 = f0 + f1X + f2X
2

– Compute c = H(aid, R1, R2, E,A, S, y1, y2, y3, τ, η, f, l, r,m),

ze = e · c− re zk = k · c+ rk zt = t · c+ rt zρ = (s+ αe) · c+ rρ
zf1 = f1 · c+ τ1 zf2 = f2 · c+ τ2 zα = α · c+ rα for j ∈ [1, v] : znj = nj · c+ rnj

16



– Output (aid, πrep) where πrep = (E,A, S, η, c, ze, zt, zk, zα, zρ,
{
znj
}v
j=1, zf1 , zf2 , l, r)

Remark 1. Note that the vectors l, r ∈ Z`p contain 2` elements in Z∗p. The transmission of l and r can be replaced with
an inner-product proof for statement f = 〈l, r〉 as stated in [14]. The inner-product proof only consists of 2dlog `e
elements in G1 and 2 elements in Zp. The proof is only for avoiding transmitting l, r and there is no need to keep l, r
secure. For simplicity, we ignore this optimisation in our discussion.

Advertisement verification RepVer(pp, aid, πrep,m, P ):

– Parse aid = (d,D) and πrep = (E,A, S, η, c, ze, zt, zk, zα, zρ,
{
znj
}v
j=1, zf1 , zf2 , l, r).

– Compute

R̃1 = dzkD−c (1)

R̃2 =
(

ê(g0, w)
ê(E,W )

)c
ê(E,w)−ze ê(gv+1, w)zt ê(gv+2, w)zk ê(gv+3, w)zρ ê(gv+3,W )zα ·

v∏
i=1

ê(gi, w)zni (2)

f̃ = 〈l, r〉 (3)
ỹ1 = H(A,S), ỹ2 = H(A,S, ỹ1), ỹ3 = H(A,S, ỹ1, ỹ2) (4)

µ = ỹ2 ·
〈
1`, ỹ`1

〉
− ỹ2

2 ·
〈
1`, ỹ`1

〉
−

ζ∑
i=1

ỹi+2
2 ·

〈
1`i ,2`i

〉
(5)

τ̃ =
ζ−1∑
i=1

ỹi+1
2 (

v∑
j=1

βijznj ) + ỹζ+1
2 (zt − t̂ · c) + µ · c+ zf1 · y3 + zf2 · y2

3 − f̃ · c (6)

h′i = h
ỹ−i+1

1
i for i ∈ [1, `] (7)

ASỹ3g−ỹ2h′ỹ2·ỹ`1+
∑ζ

i=1
ỹi+1

2 (0`1+···+`i−1‖2`i‖0`i+1+···+`ζ ) ?= hηglh′r (8)

c̃ = H(R̃1, R̃2, E,A, S, ỹ1, ỹ2, ỹ3, τ̃ , η, f̃ , l, r,m) (9)

– If c = c̃ then output 1 otherwise output 0.

Remark 2. We can optimise RepAds to be pairing-free and reduce the number of pairing operations in RepVer. For
RepAds, the computation of R2 can be transformed as

R2 = ê(E,w)re ê(gv+1, w)rt ê(gv+2, w)rk ê(gv+3, w)rρ ê(gv+3,W )rα
v∏
i=1

ê(gi, w)rni

= ê(C,w)re ê(gv+1, w)rt ê(gv+2, w)rk ê(gv+3, w)αre+rρ ê(gv+3,W )rα
v∏
i=1

ê(gi, w)rni

The pairings ê(C,w), ê(gv+3,W ) and {ê(gi, w)}v+3
i=1 can be pre-computed and are reusable since they do not depend

on any variables generated in the advertising phase. For RepVer, the number of pairing operations can be reduced to
two by modifying

R̃2 = (ê(g0, w)/ê(E,W ))cê(E,w)−ze ê(gv+1, w)zt ê(gv+2, w)zk ê(gv+3, w)zρ ê(gv+3,W )zα
v∏
i=1

ê(gi, w)zni

= ê(gc0E−zeg
zt
v+1g

zk
v+2g

zρ
v+3g

∑v

i=1
zni

i , w) ê(E−cgzαv+3,W )

B.2 Security analysis of advertising protocol

In the following we prove that our advertising protocol (RepAds,RepVer) fulfills the properties of completeness,
zero-knowledge and proof-of-knowledge.

Lemma 1. The advertising protocol is complete.
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Proof. When a proof is generated honestly following the specification of the protocol, we shall verify that R̃1 = R1,
R̃2 = R2, f̃ = f , ỹ1 = y1, ỹ2 = y2, ỹ3 = y3, and τ̃ = τ .

R̃1 =
(

ê(g0, w)
ê(E,W )

)c
ê(E,w)−ze ê(gv+1, w)zt ê(gv+2, w)zk ê(gv+3, w)zρ ê(gv+3,W )zα ·

v∏
i=1

ê(gi, w)zni

=
(

ê(g0, w)
ê(E,W )

)c
ê(E,w)−e·c+re ê(gv+1, w)t·c+rt ê(gv+2, w)k·c+rk ê(gv+3, w)ρ·c+rρ ê(gv+3,W )α·c+rα

v∏
i=1

ê(gi, w)ni·c+rni

= R1 ·
(

ê(g0, w)
ê(E,W )

)c
ê(E,w)−e·cê(gv+1, w)t·cê(gv+2, w)k·cê(gv+3, w)ρê(gv+3,W )α·c ·

v∏
i=1

ê(gi, w)ni·c

= R1 ·

(
ê(g0g

n1
1 · · · gnvv gtv+1g

k
v+2g

s+(γ+e)α
v+3 , w)

ê(Eγ+e, w)

)c
= R1

R̃2 = dzkD−c = dk·c+rkD−c = dk·c

Dc
R2 = R2

It is easy to see that f̃ = f, ỹ1 = y1, ỹ2 = y2 and ỹ3 = y3. To verify τ̃ = τ , we first compute the value of f0. Since

〈l, r〉 =

〈
aL − y2 · 1` + sL · y3, y1

` ◦ (aR + y2 · 1` + sR · y3) +
ζ∑
i=1

yi+1
2 · (0`1+···+`i−1 ‖ 2`i ‖ 0`i+1+···+`ζ )

〉

we can compute f0 as

f0 = 〈aL − y2 · 1`, y1
` ◦ (aR + y2 · 1`) +

ζ∑
i=1

yi+1
2 · (0`1+···+`i−1 ‖ 2`i ‖ 0`i+1+···+`ζ )〉

=
〈
aL,y1

` ◦ (aR + y2 · 1`)
〉

+
〈

aL,
ζ∑
i=1

yi+1
2 · (0`1+···+`i−1 ‖ 2`i ‖ 0`i+1+···+`ζ )

〉

−
〈
y2 · 1`,y1

` ◦ (aR + y2 · 1`)
〉
−

〈
y2 · 1`,

ζ∑
i=1

yi+1
2 · (0`1+···+`i−1 ‖ 2`i ‖ 0`i+1+···+`ζ )

〉

=
〈
aL,y1

` ◦ aR
〉

+
〈
aL − aR, y2 · y1

`
〉

+
ζ∑
i=1

yi+1
2 ψi − y2

2 ·
〈
1`,y1

`
〉
−

ζ∑
i=1

yi+2
2 ·

〈
1`i ,2`i

〉
= (

ζ∑
i=1

yi+1
2 ψi) + y2 ·

〈
1`,y1

`
〉
− y2

2 ·
〈
1`,y1

`
〉
−

ζ∑
i=1

yi+2
2 ·

〈
1`i ,2`i

〉
= (

ζ∑
i=1

yi+1
2 ψi) + µ

Therefore

τ̃ =
ζ−1∑
i=1

yi+1
2 (

v∑
j=1

βijznj ) + yζ+1
2 (zt − t̂ · c) + µ · c+ zf1 · y3 + zf2 · y2

3 − f · c

=
ζ−1∑
i=1

yi+1
2 (

v∑
j=1

βij(nj · c+ rnj )) + yζ+1
2 (t · c+ rt − t̂ · c) + µ · c+ (f1 · c+ τ1) · y3 + (f2 · c+ τ2) · y2

3 − f · c

=
ζ−1∑
i=1

(yi+1
2 · ψi · c) +

ζ−1∑
i=1

yi+1
2 (

v∑
j=1

βijrnj ) + yζ+1
2 · ψζ · c

+ yζ+1
2 · rζ + µ · c+ f1 · c · x+ f2 · c · y2

3 − f · c+ τ1 · y3 + τ2 · y2
3
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=
ζ∑
i=1

(yi+1
2 · ψi · c) + µ · c+ f1 · c · y3 + f2 · c · y2

3 − f · c+ τ1 · y3 + τ2 · y2
3 +

ζ∑
i=1

yi+1
2 · rψi

= f0 · c+ f1 · c · y3 + f2 · c · y2
3 − f · c+ τ = τ

Equation 8 holds because:

ASy3 · g−y2 · h′y2·y1
`+
∑ζ

i=1
yi+1

2 ·(0`1+···+`i−1‖2`i‖0`i+1+···+`ζ )

= hη1gaLhaR(hη2gsLhsR)y3 · g−y2 · h′y2·y1
`+
∑ζ

i=1
yi+1

2 ·(0`1+···+`i−1‖2`i‖0`i+1+···+`ζ )

= hη1+η2·y3gaL+sL·y3−y2·1` · h′(aR+sR·y3+y2·1`)◦y1
`+
∑ζ

i=1
yi+1

2 ·(0`1+···+`i−1‖2`i‖0`i+1+···+`ζ )

= hηglh′r

Lemma 2. The advertising protocol can be simulated.

Proof. We describe how to simulate (aid, πrep). Choose all the elements and challenges in the proof uniformly at

random, i.e., d,D,E,A $←− G1 and y1, y2, y3, η, c, ze, zt, zk, zα, zρ, zf1 , zf2
$←− Z∗p and znj

$←− Z∗p for j ∈ [1, v] and

l, r $←− Z`p. Compute f = 〈l, r〉 and R1, R2, τ according to the verification equations and

S = (hηglh′r(A · g−y2 · h′y2·y1
`
ζ∏
i=1

h′y
i+1
2 ·2`i

[`1+···+`i−1,`1+···+`i])
−1)y

−1
3

The output is aid = (d,D) and πrep = (E,A, S, η, c, ze, zt, zk, zα, zρ,
{
znj
}
j∈[1,v], zf1 , zf2 , f, l, r). The simulated

(aid, πrep) is distributed identically to the real proof.

Lemma 3. There exists an extractor for the advertising protocol.

Proof. Suppose that an extractor can rewind a prover to the point just before the challenge c. To challenge c′, the prover
generates z′e, z

′
t, z
′
k, z
′
α, z
′
ρ,
{
z′nj

}
j∈[1,v]

, z′f1
, z′f2

. Let ∆e = ze−z′e
c−c′ , and similarly for ∆t,∆k,∆α,∆ρ, {∆nj}j∈[1,v],

∆f1, ∆f2. Let ∆s = ∆ρ−∆α∆e.

– Consider (2) in the verification equation. Dividing the two instances of this equation, we obtain(
ê(g0, w)
ê(E,W )

)
ê(E,w)−∆eê(gv+1, w)∆tê(gv+2, w)∆k ê(gv+3, w)∆ρê(gv+3,W )∆α

v∏
i=1

ê(gi, w)∆ni = 1

This can be rearranged as

ê(E,W )ê(E,w)∆e = ê(g0, w)ê(gv+1, w)∆t ê(gv+2, w)∆k ê(gv+3, w)∆ρ ê(gv+3,W )∆α
v∏
j=1

ê(gj , w)∆nj

= ê(g0, w)ê(gv+1, w)∆t ê(gv+2, w)∆k ê(gv+3, w)∆s+∆α∆e ê(gv+3, w)γ∆α
v∏
j=1

ê(gj , w)∆nj

= ê
((

g0g
∆n1
1 · · · g∆nvv g∆tv+1g

∆k
v+2g

∆s
v+3

) 1
γ+∆e

g∆αv+3, w

)γ+∆e

Since ê(E,W )ê(E,w)∆e = ê(E,w)γ+∆e, we can deduce that

ê(E,w) = ê
((

g0g
∆n1
1 · · · g∆nvv g∆tv+1g

∆k
v+2g

∆s
v+3

) 1
γ+∆e

g∆αv+3, w

)
ê(Eg−∆αv+3 , w) = ê

((
g0g

∆n1
1 · · · g∆nvv g∆tv+1g

∆k
v+2g

∆s
v+3

) 1
γ+∆e

, w

)
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LetC∗ = Eg−∆αv+3 =
(
g0g

∆n1
1 · · · g∆nvv g∆tv+1g

∆k
v+2g

∆s
v+3

) 1
γ+∆e

. The algorithm extracts the tuple (C∗, ∆n1, · · · , ∆nv,
∆t,∆k,∆s,∆e).

– Consider (1) in the verification equation. Dividing the two instances of this equation, we obtain 1 = dzk−z
′
kD−c+c

′

and therefore D = d∆k.
– Assume two valid proofs with different challenges y3, y

′
3. To challenge y′3, the extractor generates l′, r′, η′. Let

∆η2 = η−η′
y3−y′3

, ∆sL = l−l′
y3−y′3

, ∆sR = (r−r′)◦y1
`

y3−y′3
, ∆η1 = η − ∆η2 · y3, ∆aL = l + y2 · 1` − ∆sL · y3 and

∆aR = r ◦ y1
−` − y2 · 1` − ∆sR · y3 −

∑ζ
i=1 y

i+1
2 · (0`1+···+`i−1 ‖ 2`i ‖ 0`i+1+···+`ζ ) ◦ y1

−`. Consider (8)
in the verification equation and divide the two instances of this equation, we obtain Sy3−y′3 = hη−η

′gl−l′h′r−r′

which means

S = h
η−η′

y3−y′3 g
l−l′
y3−y′3 h

(r−r′)◦y1
`

y3−y′3 = h∆η2g∆sLh∆sR

Using (8) to compute A

A = hηglh′r

Sy3 · g−y2 · h′y2·y1` ·
∏ζ
i=1 h′ỹ

i+1
2 ·2`

i

[`1+···+`i−1,`1+···+`i]

= hη−∆η2·y3gl+y2·1`−∆sL·y3hr◦y1
−`−y2·1`−∆sR·y3−

∑ζ

i=1
ỹi+1

3 ·(0`1+···+`i−1‖2`i‖0`i+1+···+`ζ )◦y1
−`

= h∆η1g∆aLh∆aR

and

l = ∆aL +∆sL · y3 − y2 · 1`

r = (∆aR + y2 · 1` +∆sR · y3) ◦ y1
` +

ζ∑
i=1

yi+1
2 · (0`1+···+`i−1 ‖ 2`i ‖ 0`i+1+···+`ζ )

The values of ∆aL, ∆aR, ∆sL, ∆sR are unique and the equalities hold for all challenges and l, r from the tran-
script, otherwise we have two distinct representations of the same group element using a set of independent
generators which breaks the discrete logarithm assumption.

– Let F (X) = 〈l(X), r(X)〉 = F0 + F1X + F2X
2 and f = 〈l, r〉. Using two different challenges c, c′ and

subtracting two instances of (6), we obtain

0 =
ζ−1∑
i=1

µi+1(
v∑
j=1

βij(znj − z′nj )) + yζ+1
2 (zt − z′t − t̂ · (c− c′))

+ µ · (c− c′) + (zf1 − z′f1
) · y3 + (zf2 − z′f2

) · y2
3 − f · (c− c′)

=⇒

f =
ζ−1∑
i=1

µi+1(
v∑
j=1

βij∆nj) + yζ+1
2 (∆t− t̂) + µ+∆f1 · y3 +∆f2 · y2

3

Using 3 different values of y3, we can see that F0 =
∑ζ−1
i=1 y

i+1
2 (

∑v
j=1 βij∆nj) + yζ+1

2 (∆t− t̂) + µ. Therefore,

ζ−1∑
i=1

yi+1
2 (

v∑
j=1

βij∆nj) + yζ+1
2 (∆t− t̂) + µ

=
〈
∆aL − y2 · 1`, y1

` ◦ (∆aR + y2 · 1`) +
ζ∑
i=1

yi+1
2 · (0`1+···+`i−1 ‖ 2`i ‖ 0`i+1+···+`ζ )

〉
=
〈
∆aL, y1

` ◦∆aR
〉

+ y2 ·
〈
∆aL −∆aR,y1

`
〉

+
ζ∑
i=1

yi+1
2 ·

〈
∆aL, (0`1+···+`i−1 ‖ 2`i ‖ 0`i+1+···+`ζ )

〉
+ µ− y2 ·

〈
1`,y1

`
〉
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Removing µ from both sides of the equation, we obtain

ζ−1∑
i=1

yi+1
2 (

v∑
j=1

βij∆nj) + yζ+1
2 (∆t− t̂) =

〈
∆aL,y1

` ◦∆aR
〉
+

y2 ·
〈
∆aL −∆aR − 1`,y1

`
〉

+
ζ∑
i=1

yi+1
2 ·

〈
∆aL, (0`1+···+`i−1 ‖ 2`i ‖ 0`i+1+···+`ζ )

〉
Using ` y1 challenges and 4 y2 challenges, we can infer the following:

∆aL ◦∆aR = 0` ∆aR = ∆aL − 1`
v∑
j=1

βij∆nj =
〈
∆aL, (0`1+···+`i−1 ‖ 2`i ‖ 0`i+1+···+`ζ )

〉
for i = 1, · · · , ζ − 1

∆t− t̂ =
〈
∆aL,0`1+···+`ζ−1 ‖ 2`ζ

〉
The first two equations imply that ∆aL ∈ {0, 1}`. The last two equations imply that

∑v
j=1 βij∆nj ∈ [0, 2`i ] and

∆t− t̂ ∈ [0, 2`ζ ].

C Formal proofs of correctness and security

Theorem 6. The pRate scheme is correct.

Proof. RepVer is correct because of Lemma 1. RateAcc is correct because c2/c
ξ
1 = zk0 · Ua0/(ua0)ξ = zk0 = Zi0

and c′2/c
′
1
ξ = zk1 ·Ua1/(ua1)ξ = zk1 = Zi1 . Upd is correct because ê(C ′,W ·we′) = ê((R ·gt̃−tv+1 ·V ·gs̃v+3)

1
γ+e′ , wγ ·

we
′) = ê(R · gt̃−tv+1 · V · gs̃v+3, w).

Theorem 1. The pRate scheme is anonymous under the XDH assumption.

Proof. The proof proceeds with a sequence of games.

Game 0. Let Game 0 be the original game Expanony
A (1λ). Let S0 be the event that b = b̂ in this game. Clearly we have

Advanony
A (1λ) = |Pr[S0]− 1

2 |.
Game 1. Let Game 1 be the same as Game 0, except ct2

$←− G1 for user ib in the challenge σ∗ is chosen uniformly at
random and the corresponding proofs πenc, πtok, πsub that involve the ct2 are simulated. For updating queries RateUpd
which involve verification and decryption of such simulated proofs πtok, πsub, B maps the result of decryption to user
ib’s identity Kib . Let S1 be the event that b = b̂ in this game. We shall prove that |Pr[S1] − Pr[S0]| ≤ negl(λ) under
the XDH assumption in the random oracle model. Assume an adversaryA breaks the anonymity of the pRate scheme.
We shall construct an adversary B which breaks the XDH assumption.
Let (G1, p, g

′, g′
X
, g′
Y
, g′
Z) be an XDH problem given to B where G1 is assumed to be associated with a bi-

linear map ê : G1 × G2 → GT . B’s goal is to decide whether Z = XY . B generates parameters for pRate

scheme as follows: γ $←− Z∗p, g0, g1, · · · , gv+3, g, u
$←− G1, w $←− G2. Compute W = wγ . Let u = g′ and

U = g′
X . The master issuing key is ik = γ. The master opening key is ok = X that is unknown to B. The pub-

lic parameters are pp = (g0, g1, · · · , gv+3, g, w,W, u, U). B gives pp and ik to A. B can easily answer queries
AddU,WReg,CrptU,RepAds,Token,SndTok,RateGen. Below we describe how B answers hash oracle queries and
creates simulated proofs πenc, πtok, πsub in the challenge σ∗ and answers RateUpd queries.

– On a hash query m ∈ {0, 1}∗ to H, if m has not been queried before, then choose c $←− Z∗p and set H(m) = c.
ReturnH(m) to A.

– The challenge σ∗ = (aid∗, π∗rep, sn′,RT′,UT′, δ∗) is constructed in the same way as in Game 0 except that ct =
(ct1, ct2) = (gY ,Kib · gZ) in RT and RT′ and δ∗. Since B does not know the value of Y , B simulates πenc, πtok and
πsub as below:
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• To simulate πenc, choose c, %a, %k
$←− Z∗p, compute R1, R2, R3 according to the verification equations in Figure 2

and setH(ct, D,R1, R2, R3) = c.

• To simulate πtok, choose c, %a, %k
$←− Z∗p, let Z = gZ , R1 = u%a/ctc1, R2 = U%a/(gZ)c, R3 = g%kv+2U

%aR−1
2 ct−c2

andH(ct, Z,R1, R2, R3, sn, sn′, ct′) = c. The proof πtok = (ct, c, %a, %k).

• To simulate πsub, choose %a, %k
$←− Z∗p and ej , %j

$←− Z∗p for j ∈ [1, v]. Let Z = gZ , c =
∑v
j=1 ej , Aj =

g
%j
v+3(gj/V )ej , Bj = g%j/snej for j ∈ [1, v] and R1 = u%a/ctc1, R2 = U%a/(gZ)c, R3 = g%kv+2U

%aR−1
2 ct−c2 and

H(ct, Z,R1, R2, R3, A1, · · · , Av, B1, · · · , Bv) = c. The proof πsub = (ct, %a, %k, {ej , %j}vj=1).
– On a RateUpd(sn, δ,Min) query, if sn has been used before then return⊥. Otherwise, B has to simulate the checking

of proofs in δ since B does not have the master opening key ok. To check if δ = (sn, V, ct, ct′, sn′, π′tok, πsub) is valid,
B checks the validity of π′tok and πsub as below:
• To check π′tok: parse π′tok = (ct′ = (ct′1, ct′2), c, %a, %k), look throughoutH for a query (ct′, Z,R1, R2, R3, sn′, sn, ct)

that maps to c. If there is no such query, it returns ⊥. B checks if R1
?= u%act′1

−c, R3
?= g%kv+2U

%aR−1
2 ct−c2 and

U%a
?= R2Z

c. If the check fails, B returns ⊥. Next we prove Z = ctX1 and R2 = RX1 with overwhelming proba-
bility. Assume Z = ctξ1

1 and R2 = Rξ2
1 with ξ1 6= X or ξ2 6= X . Assume R1 = ura and ct′1 = ua for some ra and

a. From R1 = u%act′1
−c, we have ura = u%au−c·a which means ra = %a − c · a. From U%a = R2Z

c, we have
uX·(ra+c·a) = ura·ξ2ua·ξ1·c which gives usX ·(ra+c·a) = ra ·ξ2+a·ξ1 ·c. This implies (X−ξ2)ra = (ξ1−X )ac.
If ξ1 = X then ξ2 = X and vice versa, which contradicts the assumption that ξ1 6= X or ξ2 6= X . Hence we know
ξ1 6= X and ξ2 6= X . This gives us c = (X−ξ2)ra(ξ1−X )−1a−1. However, since c is chosen uniformly at random
and is independent from Z,R1, R2, u, U, ct′, the equation on c only holds with negligible probability. Therefore
Z = ctX1 and R2 = RX1 with overwhelming probability. B returns M = ct′2/Z.

• To check πsub: parse πsub = (ct = (ct1, ct2), %a, %k, {ej , %j}vj=1). Similarly, B looks throughout H to find the
unique query (ct, Z,R1, R2, R3, A1, · · · , Av, B1, · · · , Bv) that satisfies all the equality tests in the verification. B
returns M = ct2/Z.

A outputs a guess bit b̂ and B outputs b ?= b̂. In this simulation, whenZ = XY , fromA’s point of view,A plays against
Game 0 and therefore Pr[S0] = Pr[B(G1, p, g

′, g′
X
, g′
Y
, g′
XY) = 1]. When Z is a uniform random, ct2 is uniformly

distributed andA plays against Game 1. Hence Pr[B(G1, p, g
′, g′
X
, g′
Y
, g′
Z) = 1] = Pr[S1]. By XDH assumption, we

have that |Pr[S1]−Pr[S0]| = |Pr[B(G1, p, g
′, g′
X
, g′
Y
, g′
Z) = 1]−Pr[B(G1, p, g

′, g′
X
, g′
Y
, g′
XY) = 1]| ≤ negl(λ).

Game 2. Let Game 2 be the same as Game 1, except (aid∗, π∗rep) in the challenge σ∗ is simulated as described in
Lemma 2. Let S2 be the event that b = b̂ in this game. We shall prove that |Pr[S2]−Pr[S1]| ≤ negl(λ) under the XDH
assumption in the random oracle model. Assume an adversary A breaks the anonymity of the pRate scheme. We shall
construct an adversary B which breaks the XDH assumption.
Let (G1, p, g

′, g′
X
, g′
Y
, g′
Z) be an XDH problem given to B where G1 is assumed to be associated with a bilin-

ear map ê : G1 × G2 → GT . B’s goal is to decide whether Z = XY . B generates parameters for pRate scheme

as follows: γ, ξ $←− Z∗p, g0, g1, · · · , gv+1, gv+3, g, u
$←− G1, w $←− G2. Compute W = wγ and U = uξ. Let

gv+2 = g′. The master issuing key is ik = γ and the master opening key is ok = ξ. The public parameters are
pp = (g0, g1, · · · , gv+3, g, w,W, u, U). B gives pp and ik toA. SupposeA queries to add at most qA users. B chooses

i∗0, i
∗
1

$←− {1, · · · , qA}. B fixes i∗0 as the challenge query. Below we describe how B answers the queries on i∗0 and the
other queries can be easily answered.
– On a AddU(i∗0) query, B sets K = g′

X in Join and Issue protocol. Since B does not know X , B sets urep[i∗0] =
(nil, s, e, R,C).

– On a RepAds(i∗0,m, P ) query, B has to simulate (aid, πrep) since it does not know X . B chooses a $←− Z∗p and
computes aid = (g′a,Ka). The proof π∗rep is simulated as described in Lemma 2.

– On Token and SndTok queries that are related to user i∗0, since B does not know X , B sets ct = (ua, g′X · Ua) for
user i∗0 and simulates the corresponding proofs πenc and πtok as described in Game 1.

– On the challenge query, A submits two indices i0, i1. Then B chooses a random bit b $←− {0, 1}. If ib 6= i∗0 or
i1−b 6= i∗1 then B aborts and outputs Fail. Otherwise B creates a challenge σ∗ = (aid∗, π∗rep, sn′,RT′,UT′, δ) in the
same way as in Game 1 except that aid∗ = (g′Y , g′Z) and π∗rep is simulated as described in Lemma 2.

A outputs a guess bit b̂ and B outputs b ?= b̂. Since i∗0, i
∗
1 are uniformly and independently drawn, the probabil-

ity that Fail does not occur is 1/q2
A. In this simulation, when Z = XY , A plays against Game 1 and therefore

Pr[B(G1, p, g
′, g′
X
, g′
Y
, g′
XY) = 1] = Pr[S1]/q2

A. When Z is a uniform random, aid∗ is uniformly distributed and
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A plays against Game 2. Hence Pr[B(G1, p, g
′, g′
X
, g′
Y
, g′
Z) = 1] = Pr[S2]/q2

A. By XDH assumption, we have
that |Pr[S2] − Pr[S1]| = q2

A|Pr[B(G1, p, g
′, g′
X
, g′
Y
, g′
Z) = 1] − Pr[B(G1, p, g

′, g′
X
, g′
Y
, g′
XY) = 1]| ≤ negl(λ).

Moreover, B’s answers to all of A’s queries contain no info about b, hence we have Pr[S2] = 1/2.

Finally, from Advanony
A (1λ) = |Pr[S0]− 1

2 |, |Pr[S1]−Pr[S0]| ≤ negl(λ), |Pr[S2]−Pr[S1]| ≤ negl(λ) and Pr[S2] = 1/2,
we have Advanony

A (1λ) = |Pr[S0]− 1
2 | = |Pr[S0]−Pr[S1]+Pr[S1]−Pr[S2]| ≤ |Pr[S0]−Pr[S1]|+ |Pr[S1]−Pr[S2]| ≤

negl(λ).

Theorem 2. The pRate scheme is rating-secret under the XDH assumption.

Proof. The proof proceeds with a sequence of games.

Game 0. Let Game 0 be the original game Expsecrecy
A (1λ) and let S0 be the event that b̂ = b in this game. Clearly we

have Advsecrecy
A (1λ) := |Pr[S0]− 1

2 |.
Game 1. Let Game 1 be the same as Game 0 except V, sn $←− G1 and πsub is simulated in the challenge δ∗. Let S1 be
the event that b = b̂ in this game. We shall prove that |Pr[S1] − Pr[S0]| ≤ negl(λ) under the XDH assumption in the
random oracle model.
Assume an adversaryA breaks the anonymity of the pRate scheme. We shall contruct an adversary B which breaks the
XDH assumption. Let (G1, p, g

′, g′
X
, g′
Y
, g′
Z) be an XDH problem given to B where G1 is assumed to be associated

with a bilinear map ê : G1 × G2 → GT . B’s goal is to decide whether Z = XY . B generates parameters for pRate

scheme as follows: γ, ξ $←− Z∗p, g0, g1, · · · , gv+3, u
$←− G1 and w $←− G2. Compute W = wγ and U = uξ. Let g = g′

and gv+3 = g′
X . The master issuing key is ik = γ and the master opening key is ok = ξ. The public parameters are

pp = (g0, g1, · · · , gv+3, g, w,W, u, U). B gives pp, ik, ok to A. Suppose A’s queries lead to at most qA items in the

list RL. B chooses k∗ $←− {1, · · · , qA} and fixes k∗ as the challenge query. Since B has ik and ok, B can easily answer
the queries AddU,RReg,CrptU,RepAds,Token,RateGen,RateUpd. Below we describe how B answers the query for
generating RL[k∗] and the challenge δ∗.
– Assume Token(j0, j1) is the query that creates the k∗th item in RL. Let AL[j0] = (i0, aid0) and AL[j1] = (i1, aid1).

W.l.o.g., assume i0 will be put in RL[k∗]. Since B does not know the value of Y , B simulates the running of
(Token(pp, urep[i0], aid0, aid1),Token(pp, urep[i1], aid1, aid0)) by setting sn = g′

Y and RT = (sn, nil, a, ct,
ct′, sn′, π′tok) and UT′ = nil. B sets RL(k∗) = (i0, sn,RT, 0).

– On the challenge query, A submits (x0, x1, k). If k 6= k∗ then B aborts and outputs Fail. To create the challenge

δ∗, B chooses b $←− {0, 1} and simulates RateGen by setting V = gxb · g′
Z and δ∗ = (sn, V, ct, ct′, sn′, π′tok, πsub),

where RT = (sn, nil, a, ct, ct′, sn′, π′tok) and πsub is a simulated proof.

A outputs a guess bit b̂ and B outputs b ?= b̂. Since k∗ is chosen uniformly at random, the probability that Fail does
not occur is 1/qA. In this simulation, when Z = XY , from A’s point of view, A plays against Game 0. Therefore
Pr[B(G1, p, g

′, g′
X
, g′
Y
, g′
XY) = 1] = Pr[S0]/qA. When Z is chosen uniformly at random, sn, V are randomly dis-

tributed and thus V contains no information of b. ThereforeA plays against Game 1 and Pr[B(G1, p, g
′, g′
X
, g′
Y
, g′
Z) =

1] = Pr[S1]/qA. Moreover, B’s answers to all of A’s queries contain no info about b, hence we have Pr[S1] =
1/2. By XDH assumption, we have |Pr[S0] − Pr[S1]| = |Pr[S0] − 1/2| = qA|Pr[B(G1, p, g

′, g′
X
, g′
Y
, g′
XY)] −

B(G1, p, g
′, g′
X
, g′
Y
, g′
Z) = 1| ≤ negl(λ).

Theorem 3. The pRate scheme is advertisement-unforgeable under the q-SDH assumption.

Proof. Assume an adversary A breaks the traceability of pRate scheme. We shall construct an adversary B which
breaks the q-SDH assumption, where q is the upper bound of the number of reputation credentials generated by
A through the oracle queries. Let (g′, g′γ , · · · , g′γ

q

, g′2, g
′
2
γ) be a random instance of the q-SDH problem. The

goal of B is to find a pair (g′
1
γ+e , e) for some e ∈ Z∗p. B generates the parameters of pRate scheme as follows:

ξ, ζ1, · · · , ζv+3, e1, · · · , eq, z1, · · · , zq, θ, θ1, · · · , θq
$←− Z∗p, g, u $←− G1, w $←− G2. Define polynomials

F (X) =
q∏
i=1

(X + ei) =
q∑
j=0

ajX
j
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Fi(X) = F (X)/(X + ei) =
q∏

j=1,j 6=i
(X + ei) =

q−1∑
j=0

ai,jX
j

Fi,j(X) = F (X)
(X + ei)(X + ej)

=
q∏

ι=1,ι6=i,j
(X + ej) =

q−2∑
ι=0

ai,j,ιX
ι for i 6= j

Set

g0 = (
q∏
i=0

g′1
aiγ

i

)θ
q∏
i=1

(
q−1∏

j=0,j 6=i
g′1
ai,jγ

j

)θizi = g′1
θF (γ)+

∑q

i=1
θiziFi(γ)

H =
q∏
i=1

(
q−1∏

j=0,j 6=i
g′1
ai,jγ

j

)θi = g′1

∑q

i=1
θiFi(γ)

g1 = H−ζ1 , g2 = H−ζ2 , · · · , gv+3 = H−ζv+3 , w = g′2,W = g′2
γ and U = uξ

The master issuing key is ik = γ which B does not have, and the master opening key ok = ξ. The public parameters
are pp = (g0, g1, · · · , gv+3, g, w,W, u, U). We shall describe how to answer AddU,RateUpd queries and the other
queries can be easily answered.

– For an AddU(i) query, B chooses unselected ei′ ∈ {e1, · · · , eq} and zi′ ∈ {z1, · · · , zq}, ki′
$←− Z∗p, a timestamp t

and initial values n1, · · · , nv . Compute

s = (zi′ − (n1 · ζ1 + · · ·+ nv · ζv + t · ζv+1 + ki′ · ζv+2))/ζv+3

R = g0H
−zi′ = g0g

n1
1 · · · gnvv gtv+1g

ki′
v+2g

s
v+3 = g′1

θF (γ)+
∑j 6=i′

j∈[1,q]
θj(zj−zi′ )Fj(γ)

Ci′ = (
q−1∏
j=0

g′1
ai′,jγ

j

)θ
j 6=i′∏
j∈[1,q]

(
q−2∏
ι=0

g′1
aj,i′,ιγ

ι

)θj(zj−zi′ ) = g′1
θFi′ (γ)+

∑j 6=i′

j∈[1,q]
θj(zj−zi′ )Fj,i′ (γ) = R

1
γ+e

i′

Set reg[i] = (K, ei′ , t, R,Ci′), urep[i] = (ki′ , s, ei′ , R, Ci′), scr[i] = (n1, · · · , nv, t) where K = g
ki′
v+2.

– For RateUpd(sn, δ,Min) query with δ = (sn, V, ct, ct′, sn′, π′tok, πsub), B checks the validity of π′tok, πsub and ex-
tracts the identities of rater and ratee from ct and ct′. If successful, B goes through UL and find ι s.t. UL[ι] =
(sn,UT′) and gUT′ = sn. If no such ι, B checks if gMin ?= sn. If not, B aborts. Otherwise set UT′ = Min.
B uses UT′ to extract the rating in V by computing gx = V/gUT′

v+3. Suppose the rater is i and the ratee is
j. Let reg[j] = (K, e, t, R,C), urep[j] = (k, s, e, R,C) and scr[j] = (n1, · · · , nv, t). B chooses unselected
ei′ ∈ {e1, · · · , eq}, zi′ ∈ {z1, · · · , zq} and a new timestamp t′. Compute

s′ = (zi′ − (n1 · ζ1 + · · ·+ (nx + 1) · ζx + · · ·+ nv · ζv + t′ · ζv+1 + k · ζv+2))/ζv+3

R′ = R · gt
′−t
v+1 · V · g

s′−s−UT′
v+3 = g0g

n1
1 · · · gnx+1

x · · · gnvv gt
′

v+1g
k
v+2g

s′

v+3

= g0H
−zi′ = g′1

θF (γ)+
∑q

j=1,j 6=i′
θj(zj−zi′ )Fj(γ)

Ci′ = (
q−1∏
ι=0

g′1
ai′,ιγ

ι

)θ
q∏

j=1,j 6=i′
(
q−2∏
ι=0

g′1
aj,i′,ιγ

ι

)θj(zj−zi′ )

= g′1
θFi′ (γ)+

∑q

j=1,j 6=i′
θj(zj−zi′ )Fj,i′ (γ) = R′

1
γ+e

i′

Update user j’s reputation credentials as scr[j] = (n1, · · · , nx + 1, · · · , nv, t′), reg[j] = (K, e′, t′, R′, Ci′) and
urep[j] = (k, s′, e′, R′, Ci′).

A outputs (aid, πrep,m, P, n, x). Parse πrep = (E,A, S, η, c, ze, zt, zk, zα, zρ, zs,
{
znj
}v
j=1, zf1 , zf2 , l, r). As de-

scribed in Lemma 3,B rewindsA to the point just before the challenge c and obtainB extracts the tuple (C∗, ∆n1, · · · ,

∆nv, ∆t,∆k,∆s,∆α,∆e) such that C∗ = Eg−∆αv+3 =
(
g0g

∆n1
1 · · · g∆nvv g∆tv+1g

∆k
v+2g

∆s
v+3

) 1
γ+∆e

. Let∆z = ∆n1 ·ζ1 +

· · ·+∆nv ·ζv+∆t·ζv+1+∆k ·ζv+2+∆s·ζv+3. Then we haveC∗ = (g0H
−∆z)

1
γ+∆e = g′1

θF (γ)+
∑q

j=1
θj(zj−∆z)Fk(γ)

γ+∆e .
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Assume the indices {i1, i2, · · · , iq′} are chosen for the queries to the oracle AddU with q′ ≤ q. In the experiment
of defining advertisement-unforgeability, since there is no i ∈ {i1, i2, · · · , iq′} s.t. the output of RateAcc equals to
(∗, i, ∗) after running Token,RateGen, this means∆k /∈

{
ki1 , · · · , kiq

}
. Note that the RateUpd queries do not modify

these kij . Therefore there is no such j ∈ {1, · · · , q} s.t. ∆e = ej and C∗ = Cj and (∆n1, · · · , ∆nv, ∆t,∆k,∆s) =
(n1,j , · · · , nv,j , tj , kj , sj).

• If∆e /∈ {e1, · · · , eq}, B can obtain a new q-SDH pair as follows. LetQ(X) = θF (X)+
∑q
j=1 θj(zj−∆z)Fk(X).

We can compute Q′(X) s.t. Q(X) = (X + ∆e)Q′(X) + Q(−∆e) with Q(−∆e) ∈ Z∗p. Since ∆e /∈ {e1, · · · , eq}
and θ, θ1, · · · , θq are chosen uniformly at random, we know that Q(−∆e) = 0 with only negligible probability. Let

Q′(X) =
∑q−1
i=0 βiX

i. Compute S = (C∗g′1
−
∑q−1

i=0
βiγ

i

)
1

Q(−∆e) = g′1
1

γ+∆e . B outputs (S,∆e) as a solution to the
q-SDH instance.
• If ∆e = ei but C∗ 6= Ci for some i ∈ {1, · · · , q}. This means ∆z 6= zi. We can obtain a new q-SDH pair as

follows. We have C∗ = g′1

θF (γ)+
∑q

j=1
θj(zj−∆z)Fj(γ)

γ+∆e = g′1
θFi(γ)+

(∑q

j=1,j 6=i
θj(zj−∆z)Fj,i(γ)

)
+ θi(zi−∆z)Fi(γ)

γ+ei . We can
compute Q(X) s.t. Fi(X) = (X + ei)Q(X) + Fi(−ei). Let a∗ = θi(zi −∆z)Fi(−ei). Since ∆z 6= zi and θi is a
uniform random, we know that a∗ 6= 0. Let Q(X) =

∑q−1
j=0 βjX

j . Compute

S = (C∗g′1
−θ
∑q−1

j=0
ai,jγ

j

g′1
−
∑q

j=1,j 6=i
θj(zj−∆z)

∑q−2
ι=0

aj,i,ιγ
ι

g′1
−θi(zi−∆z)

∑q−1
j=0

βjγ
j

) 1
a∗ = g′1

1
γ+ei

B outputs (S, ei) as a solution to the q-SDH instance.
• If ∆e = ei and C∗ = Ci for some i ∈ {1, · · · , q} but (∆n1, · · · , ∆nv, ∆t,∆k,∆s) 6= (n1, · · · , nv, t, k, s) where

Ci =
(
g0g

n1
1 · · · gnvv gtv+1g

k
v+2g

s
v+3
) 1
γ+ei . Then we can deduce obtain a non-trivial relation ζ1(n1 − ∆n1) + · · · +

ζv(nv −∆nv) + ζv+1(t−∆t) + ζv+2(k−∆k) + ζv+3(s−∆s) = 0 on ζ1, · · · , ζv+3. Since ζ1, · · · , ζv+3 are chosen
independently and randomly, this breaks DL-assumption.

Theorem 4. The pRate scheme is ratee-unforgeable under the DL assumption.

Proof. Assume an adversary A breaks the unforgeability on rating-token of pRate scheme. We shall construct an
adversary B which breaks the DL assumption.

Let (G1, p, g
′, g′
X ) be a DL problem given to B. The goal of B is to find out the value of X . G1 is assumed to be

associated with a bilinear map ê : G1 ×G2 → GT . B generates parameters for pRate scheme as follows: γ, ξ $←− Z∗p,

g0, g1, · · · , gv+1, gv+3, g, u
$←− G1, w $←− G2, W = wγ and U = uξ. Let gv+2 = g′. The master issuing key is ik = γ

and the master opening key is ok = ξ. The public parameters are pp = (g0, g1, · · · , gv+3, g, w,W, u, U). B gives

pp, ik, ok to A. Suppose A queries to add at most qA users. B chooses j∗ $←− {1, · · · , qA}. Below we describe how B
answers the queries on j∗ and the other queries can be easily answered.
– On a AddU(j∗) query, B sets K = g′

X in Join and Issue protocol. Since B does not know X , B sets urep[j∗] =
(nil, s, e, R,C).

– On a RepAds(j∗,m, P ) query, B has to simulate (aid, π∗rep) since it does not know X . B chooses a $←− Z∗p and
computes aid = (g′a,Ka). The proof π∗rep is simulated as described in Lemma 2.

Since A is not allowed to query Token and SndTok on user j∗, there is no item in RL that is related to j∗. Finally

A outputs δ. Parse δ = (sn, V, ct, ct′, sn′, π′tok, πsub). B runs θ $←− RateAcc(pp, ok, reg, δ) which checks the validity
of π′tok, πsub and extracts the identities of rater and ratee and accumulates ratings. Parse θ = (i, j, aux). If j 6= j∗

then B outputs Fail. Since j∗ is uniformly and independently drawn, the probability that Fail does not occur is 1/qA.
Parse π′tok = (ct′ = (ct′1, ct′2), c, %a, %k). From θ = (i, j, aux), we know that ct′2/ct′1

ξ = g′
X . Hence π′tok is a valid

proof and B never simulates such a proof. B uses Forking Lemma on π′tok and rewinds A to the point just before the
challenge c. To challenge c′, supposeA generates %′a, %

′
k. Let ∆a = (%a− %′a)/(c− c′) and ∆k = (%k − %′k)/(c− c′).

Using the equations in the verification algorithm of π′tok, we obtain that u∆a = ct′1 and g∆kv+2U
∆a = ct′2. Therefore,

ct′2/ct′1
ξ = g∆kv+2 = gXv+2 which means B finds a solution X = ∆k to the DL problem.

Theorem 5. The pRate scheme is rater-unforgeable under the DL assumption.
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Proof. Assume an adversary A breaks the unforgeability on rating-token of pRate scheme. We shall construct an
adversary B which breaks the DL assumption.

Let (G1, p, g
′, g′
X ) be a DL problem given to B. The goal of B is to find out the value of X . G1 is assumed to be

associated with a bilinear map ê : G1 ×G2 → GT . B generates parameters for pRate scheme as follows. γ, ξ $←− Z∗p,

g0, g1, · · · , gv+1, gv+3, g, u
$←− G1, w $←− G2. Compute W = wγ and U = uξ. Let gv+2 = g′. The master issuing key

is ik = γ and the master opening key is ok = ξ. The public parameters are pp = (g0, g1, · · · , gv+3, g, w,W, u, U). B
gives pp, ik, ok to A. Suppose A queries to add at most qA users. B chooses i∗ $←− {1, · · · , qA}. Below we describe
how B answers the queries on i∗ and the other queries can be easily answered.
– On a AddU(i∗) query, B sets K = g′

X in Join and Issue protocol. Since B does not know X , B sets urep[i∗] =
(nil, s, e, R,C).

– On a RepAds(i∗,m, P ) query, B has to simulate (aid, πrep) since it does not know X . B chooses a $←− Z∗p and
computes aid = (g′a,Ka). The proof π∗rep is simulated as described in Lemma 2.

– On Token and SndTok queries that are related to user i∗, B sets ct = (ua, g′X · Ua) for user i∗ and simulates the
proofs πenc and πtok since B does not know X .

A outputs δ. Parse δ = (sn, V, ct, ct′, sn′, π′tok, πsub). B runs θ $←− RateAcc(pp, ok, reg, δ) which checks the validity
of π′tok, πsub and extracts the identities of rater and ratee and accumulates ratings. Parse θ = (i, j, aux). If i 6= i∗

then B outputs Fail. Since i∗ is uniformly and independently drawn, the probability that Fail does not occur is 1/qA.
Parse πsub = (ct, %a, %k, {ej , %j}vj=1). From θ = (i, j, aux), we know that ct2/ct1

ξ = g′
X . Note that πsub is a valid

proof and B never simulates such a proof. B uses Forking Lemma on πsub and rewinds A to the point just before the
challenge c. To challenge c′, supposeA generates %′a, %

′
k, e
′
x, %
′
x. Let∆a = (%a−%′a)/(c−c′),∆k = (%k−%′k)/(c−c′)

and ∆r = (%x − %′x)/(ex − e′x). Using the equations in the verification algorithm of πsub, we obtain that u∆a = ct1
and g∆kv+2U

∆a = ct2. Therefore, ct2/ctξ1 = g∆kv+2 = gXv+2 which means B finds a solution X = ∆k to the DL problem.
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