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Abstract. Chemotherapy is the main treatment commonly used for
treating cancer patients. However, chemotherapy usually causes side ef-
fects some of which can be severe. The effects depend on a variety of
factors including the type of drugs used, dosage, length of treatment
and patient characteristics. In this paper, we use a data extraction from
an oncology department in Scotland with information on treatment cy-
cles, recorded toxicity level, and various observations concerning breast
cancer patients for three years. The objective of our paper is to com-
pare several different techniques applied to the same data set to predict
the toxicity outcome of the treatment. We use a Markov model, Hid-
den Markov model, Random Forest and Recurrent Neural Network in
our comparison. Through analysis and evaluation of the performance of
these techniques, we can determine which method is more suitable in
different situations to assist the medical oncologist in real-time clinical
practice. We discuss the context of our work more generally and further
work.

Keywords: Breast Cancer Data· Toxicity Prediction · Modelling · Ma-
chine Learning

1 Introduction

Cancer is a vast medical problem and a major cause of mortality in the UK
and worldwide. Each year, one in every 250 men and one in every 300 women
get diagnosed with cancer [12]. Cancer itself includes more than 200 different
diseases which are characterised by the uncontrolled proliferation of cells. The
rapid and abnormal reproduction of the cells can happen in several different
organs and tissues within the human body (e.g., breast, lungs, bone, etc.) [12].
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In this paper, we focus on chemeotherapy-based treatments for patients with
breast cancer.

Chemotherapy in breast cancer is considered one of the major therapeutic
treatments. Although introduced only fairly recently, it has gained increasing
use both in primary management (also known as adjuvant therapy) and for
patients with metastatic disease (for palliative care). Since the treatments are
toxic and expensive, it is important to gain further insight into the consequences
of their use when treating patients with cancer. One methodology to obtain
knowledge about chemotherapy is by using a digital system (e.g., trained model
or simulation). This system can evaluate the treatments applied to patients
throughout several cycles.

Today, machine learning enables us to create a system which can be used to
observe the outcome of the chemotherapy by feeding the data into several differ-
ent learning algorithms [3]. With the right combination of data and techniques,
we can improve the performance of the system and gain new insights that can
guide and improve patient treatment in the future.

In this paper, we compare several different techniques, including Markov
model (MM), Hidden Markov model (HMM), Random Forest (RF) and Recur-
rent Neural Network (RNN), to predict the outcome (e.g., toxicity) of chemother-
apy treatments for breast cancer. The toxicity level is a scale obtained by mea-
suring the condition of a patient based on several side effects of chemotherapy
treatments (e.g., vomiting, diarrhoea, constipation, hand/foot and skin condi-
tions). By comparing the result of several different techniques, we can find the
connection between the treatment and its side effect. Finding this correlation
among the recorded patient data can help guide clinicians and patients to de-
cide which treatment is the most suitable for them when treating breast cancer.

This paper is structured as follows. We present related work in Section 2,
describe the data and its features in Section 3, and our models in Section 4. We
discuss our results in Section 5, and conclude with suggestions for further work
in Section 6.

2 Related Work

In the past decade, many multivariate programs have been used to help diagnose
and stage cancers, such as prostate cancer, as well as forecast the prognoses of
patients [5]. As more facts about cancer are known, some cancer experts argue
that every patient cancer is unique which explains why treating cancer is so
difficult.

Motivated by this issue, there has been a lot of ongoing research to develop
a multivariate system for personalised cancer treatment, e.g., IBM Watson [7],
Microsoft Research [11], NHS [13]. Most of these approaches treat cancer as a
data problem and should only be used for guidance.

Hui-Ling Chen et al. [2] used the Breast Cancer Wisconsin (Diagnostic) Data
Set, which describes characteristics of the cell nuclei in an image of a fine needle
aspirate (FNA) of a breast mass [1], to train a support vector machine classifier
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for breast cancer diagnosis. Other studies by Nguyen et al. [10] used random
forest to predict breast cancer diagnosis and prognostic. By using another ma-
chine learning technique, namely Bayesian logistic regression, Subramani et al.
[8] investigated the application of machine learning techniques to imaging data
for predicting the eventual therapeutic response of breast cancer patients after
a single cycle of neoadjuvant chemotherapy.

In our case, our data extraction consists of sequence data, and that makes
it possible to explore other techniques commonly used in Natural Language
Processing (NLP) such as Hidden Markov Model (HMM) [6] and Recurrent
Neural Network (RNN) [4].

HMM is a sequence model for part-of-speech tagging. A sequence model, aka
sequence classification-sequence model, is one whose job is to assign a label or
class to each unit in a sequence, thus mapping a sequence of observations to a
sequence of labels. Given a sequence of units (words, letters, morphemes, sen-
tences, and so on), a HMM computes the probability distribution over possible
sequences of labels and chooses the best label sequence [6].

RNN is an enhancement to a neural network. There is a known limitation
with artificial neural networks (ANNs) and convolution neural networks (CNNs)
that constrain their API. Both CNN and ANN only accept a fixed size of input
or output (one sequence) [3]. RNN instead consists of several layers of ANNs,
which allows us to process sequence data for which the input can be longer than
one sequence [4].

In this paper, we adjust our data extraction, which is time series data, to
create models using HMM and RNN and then we compare the result with the
other machine learning classifiers to predict the toxicity level of a patient.

3 Data Analysis

3.1 Data Characteristics

In this paper, we use a data extraction from an oncology department in Scotland
with information on treatment cycles, recorded side effects (here, toxicity level),
and various observations concerning breast cancer patients for three years (from
2014 to 2016).

The extraction has data for 51661 treatments of which 13030 are of breast
cancer treatments. There are 933 unique patients, and some patients have two
or three different treatments/regimes during the time period. Each regime has
several cycles ranging from one to more than 50 cycles (e.g., 85). Table 1 shows
the number of patients for different intentions. We exclude the Curative regime
because we do not have enough data for training our model.

Along with an extraction of general patient characteristics, we received the
toxicity level and measurement of the patients in separate flat files. We combine
the data by connecting the treatment appointment date with the date when
the toxicity and other measurements (i.e., weight, height, surface area) were
obtained. In this paper, we ignore patient data with no toxicity information.
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Table 1: The treatment’s Intentions

Intention Total patients

Adjuvant 620
Neo-Adjuvant 427
Palliative 483
Curative 17

After we performed data cleansing, we are left with 2752 instances (i.e., 213
patients) for the palliative treatment, 1855 instances (i.e., 382 patients) for the
adjuvant treatment, and 1209 instances (i.e., 205 patients) for the neo-adjuvant
treatment.

3.2 Feature Analysis

Before we feed the data into the model, we analyse our datasets. First, we order
the data by the cycles to make sequences. We then determine the target an-
swer (i.e., toxicity) and predictors. After we categorised the fields, we check the
relation between each predictor in the dataset to the toxicity outcome. Fig. 1
(a) shows that at the beginning of the treatment, most of the patients have low
toxicity which is to be expected.

Fig. 1: Features analysis and correlation: (a) Patients’ proportion against low toxicity
(b) Adjuvant therapies fields’ correlation map

Next, we calculate the correlation between all the predictors to the target
answers as shown in Fig. 1(b). High correlation implies that there is a relation-
ship between the variable and the target class. We want to include variables
with high correlation because they are the ones with higher predictive power
(signal), and leave out variables with low correlation because they are likely less
relevant [9]. Even though including more relevant features during the training
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helps to improve the prediction power, we still include all features in the model
training and then gradually exclude the irrelevant features as it is not always
possible to know the features that have high predictive influence in advance.

Finally, we clean the data by replacing the missing/invalid data in our pre-
dictors. We use the mean average for fields like age or body mass index (BMI)
while we use regression for the performance status (PS). To avoid the class im-
balance problem, when some regime has more data than the others, we create a
new dataset by duplicating some of the data. We perform this only for the RF
model training because, unlike for the other models used (in our case HMM and
RNN), our RF model is not dependent on the previous observation. For exam-
ple, we have 141 patients treated with FEC (D) while only 80 patients treated
with PACLITAX. Here, we duplicate some of the data from the PACLITAX to
match the number of patients treated with FEC (D).

4 Model Creation

As usual after analysis, we split the data into training and evaluation subset. The
split ratio is 90% for training and 10% for evaluation. Hence, we randomly choose
20 patients as the test data for both adjuvant and neo-adjuvant treatments and
30 patients for the palliative treatments. All others are used to train the models.

4.1 Markov Model (MM)

A Markov model is a stochastic model with the assumption that a future state
only depends on the current state [6]. Based on the toxicity in the data extrac-
tions, we created a discrete time Markov chain shown in Fig. 2 where the states
represent the different levels of toxicity (e.g., T0 corresponds to no toxicity, and
T3 is very high toxicity) and transitions reflect the treatment effects over time.

Fig. 2: The diagram representing the Markov chain for patients’ toxicity outcome

Table 2 denotes the transition probability matrix for Fig. 2. From our data
extraction, we calculate both the transition probability matrix and the initial
probability distribution.
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Table 2: The transition probability for all adjuvant treatment regimes

T0 T1 T2 T3

T0 0.06177606 0.4980695 0.40926641 0.03088803
T1 0.03555556 0.63407407 0.30962963 0.02074074
T2 0.00524934 0.44356955 0.51968504 0.03149606
T3 0 0.32142857 0.64285714 0.03571429

We have three different Markov models for each Intention (i.e., adjuvant,
neo-adjuvant, palliative). We have the model for all regimes, individual regimes,
and the patient’s body mass index (BMI).

4.2 Hidden Markov Model (HMM)

A HMM is based on augmenting a Markov chain to observe the hidden states
of events. In our case, we want to infer/predict the toxicity level based on the
patient’s characteristics. Table 3 specifies the components of our HMM.

Table 3: The HMM components for predicting the toxicity outcome

Component Description

States The toxicity level of the patients (i.e., T0, T1, T2, T3)
Transition probabilities The transition from one toxicity level to another toxicity

level (e.g., from T0 to T1, from T1 to T3, etc).
Observations The observed events obtained from the data extraction

(i.e., cycle, age, BMI, regime). We categorise the value of
each observation to simplify the process of training our
HMM. For example, 1-2-3-1 denotes the observation for
an overweight patient who gets the FEC-D (D) in their
first cycle and is aged less than 50 years old.

Emission Probabilities Each member represents the probability of the observa-
tions generated from the toxicity state.

To predict the toxicity from the sequence of the patients’ events, and as
is usual for HMM, we use the Viterbi algorithm. The Viterbi algorithm is a
dynamic programming algorithm used for finding the most likely sequence of
hidden states (aka path) [6].

Table 4: The HMM classification result example

Observed events Toxicity Outcome

1-2-3-2/1-2-3-2/2-2-3-2 T0/T1/T1
1-2-3-4/1-2-3-4/2-2-3-4 T3/T3/T2
1-2-3-4/1-2-3-4/2-2-3-4/2-2-3-4 T3/T3/T2/T2
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Table 4 shows an example of using HMM to predict the toxicity outcome
for patients.

4.3 Random Forest (RF)

Random forest (RF) is an ensemble of decision trees for solving classification
problems. The random forest classifier uses several features to predict the out-
come [3]. For our RF model, we use the following features: age, BMI, cycle,
Regime, previous performance status, previous toxicity level to predict the tox-
icity outcome of the treatment. We created three RF models for each treat-
ment intention (i.e., adjuvant, neo-adjuvant, palliative), and categorised most
of the features (except age) for training our model. After we created our first
RF model, we manipulate the hyperparameters to get a better prediction re-
sult. Those hyperparameters are number of estimators, minimum sample leafs,
minimum sample splits, and the maximum depth of each tree.

Lastly, we observe the feature importance of each field. We get an estimate of
the importance of a feature by computing the average depth at which it appears
across all trees in the forest [3]. The RF libraries we used for this work allowed us
to compute the feature importance automatically for every feature after training.
Fig. 3 shows the graph of the feature importance for the fields used to predict
the toxicity outcome.

Fig. 3: The feature importance in neo-adjuvant treatments

4.4 Recurrent Neural Network (RNN)

The RNN models we created take several inputs and produce one output for
each input based on the treatment cycle. During the training, we used similar
features as for our RF model. However, we do not use the previous performance
status and previous toxicity fields because an RNN model preserves states across
time steps (in other words, has memory cells) [3]. For both models, we use the
Long short-term memory (LSTM) [4] units.
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5 Model Evaluation

For the MM, we observe the general pattern of the treatment outcome for each
cycle and then compare it with the outcome distribution obtained from the
data extraction. Fig. 4 shows both datasets plotted together. The dashed line
represents the value obtained from the Markov chain. From that we get the
steady-state probability after 5/6 cycles. The distribution obtained from the
MM resembles the distribution obtained from the real data.

Fig. 4: The Distributions for Chemotherapy treatments: (a) Adjuvant treatments (b)
Palliative treatments

We measure the performance of our classifier models by using several met-
rics (i.e., precision, recall, accuracy, and f1-score) after performing the cross-
validation test [3]. We choose 5-fold cross validation (instead of 10-fold CV) to
get more records for the validation (i.e., around 20% of total records). By du-
plicating the data for tackling the class imbalance issues, our model, especially
the Random Forest model, is susceptible to overfitting. Here, we need more sam-
ple in the validation set to evaluate our models confidently. We do not perform
the cross-validation for the HMM because the performance measured with the
splitting train-test method is much lower compared to the RF or RNN models.
Table 5 shows the result of the evaluation for all classifier models.

We need more data to train the corner cases (i.e., initial and end of the treat-
ments) for the HMM models. The accuracy for the corner cases is significantly
lower than the middle/transition case because the dataset has more transition
cases than the initial (cycle 1) or end cases. Similarly, we can see the same char-
acteristic for the F1-score for each treatment outcome. The T1 and T2 have
higher F1-score compared to the extreme case, T0 and T3 because our datasets
have more data with T1/T2 as its outcome. The RNN models outperform the
RF models because, unlike RF, the RNN has LSTM units which allow the model
to consider all the observations since the first treatment. Since our datasets are
given as a time series, the previous treatments may affect the result of the cur-
rent treatment. Hence, the RNN has an advantage compared to the RF that only
considers the current state and limited information about the previous treatment
result.
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Table 5: Model test result (mean-std)

Model Regime Accuracy Precision Recall F1-score

RF Adjuvant 0.81(+/-0.11) T0:0.55(+/-0.50) 0.92(+/-0.32) 0.65(+/-0.46)
T1:0.85(+/-0.15) 0.83(+/-0.09) 0.84(+/- 0.09)
T2:0.82(+/-0.09) 0.78(+/-0.20) 0.80(+/-0.13)
T3:0.57(+/-0.52) 0.83(+/-0.67) 0.67(+/-0.55)

Neo-Adjuvant 0.72(+/-0.09) T0:0.53(+/-0.80) 0.60(+/-0.88) 0.52(+/-0.74)
T1:0.77(+/-0.11) 0.80(+/-0.08) 0.79(+/-0.07)
T2:0.63(+/-0.16) 0.61(+/-0.22) 0.62(+/-0.17)
T3:0.33(+/-0.77) 0.23(+/-0.61) 0.23(+/-0.49)

Palliative 0.78(+/-0.08) T0:0.43(+/-0.23) 1.00(+/-0.00) 0.60(+/-0.24)
T1:0.96(+/-0.03) 0.73(+/-0.09) 0.83(+/-0.06)
T2:0.56(+/-0.17) 0.88(+/-0.10) 0.68(+/-0.15)
T3:0.55(+/-0.81) 0.70(+/-0.92) 0.61(+/-0.83)

RNN Adjuvant 0.85(+/-0.09) T0:0.70(+/-0.22) 0.96(+/-0.08) 0.80(+/-0.15)
T1:0.87(+/-0.11) 0.86(+/-0.14) 0.86(+/-0.10)
T2:0.94(+/-0.10) 0.79(+/-0.16) 0.85(+/-0.11)
T3:0.85(+/-0.64) 0.72(+/-0.63) 0.77(+/-0.61)

Neo-Adjuvant 0.81(+/-0.09) T0:0.58(+/-0.35) 0.82(+/-0.25) 0.67(+/-0.31)
T1:0.84(+/-0.10) 0.84(+/-0.11) 0.84(+/-0.09)
T2:0.85(+/-0.17) 0.77(+/-0.12) 0.81(+/-0.13)
T3:0.95(+/-0.30) 0.78(+/-0.47) 0.82(+/-0.34)

Palliative 0.85(+/-0.09) T0:0.67(+/-0.94) 0.24(+/-0.44) 0.33(+/-0.57)
T1:0.85(+/-0.12) 0.94(+/-0.05) 0.89(+/-0.07)
T2:0.83(+/-0.17) 0.75(+/-0.20) 0.79(+/-0.15)
T3:0.53(+/-0.96) 0.56(+/-0.99) 0.54(+/-0.97)

HMM (corner) Adjuvant 0.53(+/-0.00) NA NA NA
HMM (middle) 0.70(+/-0.00) NA NA NA
HMM (corner) Neo-Adjuvant 0.62(+/-0.00) NA NA NA
HMM (middle) 0.70(+/-0.00) NA NA NA
HMM (corner) Palliative 0.4(+/-0.00) NA NA NA
HMM (middle) 0.72(+/-0.00) NA NA NA

6 Conclusion

The real value of predicting outcome/toxicity for individual patients in real-time
is to help the patient and clinician understand the potential consequences of the
treatment, where the patient needs to make a decision on whether to undergo
treatment or not. Whereas attempts have been made to predict mortality from
cancer, prediction of toxicity is much less common in the literature and where it
has taken place has used simple logistic regression. The novelty of our approach
is to explore the use of machine learning for these purposes.

With our classifiers, we can predict the toxicity outcome of the chemother-
apy with around 0.8/0.85 accuracy. The RNN model performed better overall,
because it considers all patient’s treatments. Both RF and HMM only have lim-
ited observations (one previous state). However, RF has advantages because it
does not differentiate between corner cases (first/last treatment) and the middle
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cases. Furthermore, the datasets we use for our RF models have a less class-
imbalance problem than HMM. In comparison to the MM, the classifiers are
more tailored for an individual patient. The MM shows the general pattern of
the treatment while the classifiers can help predict the toxicity outcome of the
patient. Both the MM and the classifiers complement each other.

We can improve the accuracy of our models further with more data regarding
cancer characteristics or comorbidities. In our datasets, the information regard-
ing the cancer stage is limited. We presently lack crucial information (e.g., TNM,
ER/HER2 status [13]), which makes it difficult to reliably recommend suitable
regimes for different patients, as we need both the toxicity outcome and cancer
TNM to evaluate the treatment efficacy. For instance, some treatments might
more effectively inhibit cancer growth but give higher toxicity in the short term.
We are currently retraining our models with richer data extractions for more
informed results on the suitability of different regimes for individual patients.
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