
Evaluation of Random Forest and Ensemble Methods at 

Predicting Complications Following Cardiac Surgery 

Abstract. Cardiac patients undergoing surgery face increased risk of postopera-

tive complications, due to a combination of factors, including: higher risk sur-

gery, their age at time of surgery and the presence of co-morbid conditions. They 

will therefore require high levels of care and clinical resources throughout their 

perioperative journey (i.e. before, during and after surgery). Although surgical 

mortality rates in the UK have remained low, postoperative complications on the 

other hand are common and can have a significant impact on patients’ quality of 

life, increase hospital length of stay and healthcare costs. In this study we used 

and compared several machine learning methods – random forest, adaboost, gra-

dient boosting model and stacking – to predict severe postoperative complica-

tions after cardiac surgery based on preoperative variables obtained from a sur-

gical database of a large acute care hospital in Scotland. Our results show that 

adaboost has the best overall performance (AUC=0.731), however random forest 

(Sensitivity = 0.852, negative predictive value = 0.923) and gradient boosting 

model (Sensitivity = 0.875 and negative predictive value = 0.920) have the best 

performance at predicting severe postoperative complications based on sensitiv-

ity and negative predictive value. 

Keywords: Postoperative Complications, Machine Learning, Cardiac Surgery. 

1 Introduction 

The 2011 National Confidential Enquiry into Patient Outcome and Death (NCEPOD) 

estimated that there are between 20,000-25,000 deaths among people undergoing a sur-

gical procedure every year in the UK [1]. Approximately 80% of these deaths occur 

amongst a minority of ‘high risk’ patients, who make up approximately 10% of the 

overall surgical population. In addition to facing higher mortality rates, these patients 

also have increased risk of postoperative complications, and therefore require high lev-

els of care and clinical resources before, during and after surgery [1].  

Over the last two decades, an increasing number of hospitals have developed pre-

operative clinics and services [2] designed to triage patients well in advance of their 

surgery into ‘low risk patients’, suitable for day-care surgery, and ‘high-risk patients’, 

requiring additional management and admission as inpatients [3]. Data-driven risk scor-

ing systems are now an integral component of these surgical pre-assessment clinics, 

and most of these generally focus specifically on predicting patients’ risks of mortality 

[4]. 

According to the Society of Cardiothoracic Surgery in Great Britain and Ireland, the 

in-hospital mortality rate after cardiac surgery has remained low: i.e. under 3% over the 

past five years [5]. Although surgical mortality rates are low, complications after sur-

gery are common, and can have an important impact on patients’ quality of life [6,7]. 



2 

Surgical complications can also increase hospital length of stay [8–10] and healthcare 

costs [11–13]. Hence, a robust and reliable predictive model for postoperative compli-

cations would prove extremely useful for managing patient flows and clinical resources 

in surgical care.  

There are currently no validated surgical risk scoring systems available which can 

predict generic surgical complications and their severity [4,14]. In order to explore the 

feasibility of developing such a scoring system, we have previously explored various 

machine learning methods, such as logistic regression, random forest, naïve Bayes and 

bootstrap aggregated classification and regression trees at predicting severe postopera-

tive complications in our patient population. As the percentage of patients with severe 

postoperative complications is relatively small compared to no or other complications, 

we are facing an imbalanced classification problem, which is one of the biggest chal-

lenges in prediction modeling due to its presence in many real-world classification tasks 

[15]. There are various methods available to approach this, including modifying exist-

ing algorithms to take into account the significance of positive examples [16] and using 

methods to balance datasets, such as Synthetic Minority Over-sampling Technique 

(SMOTE) [17].  

In this paper we are presenting our results from another approach: the use of ensem-

bles of classifiers, which has been shown to have a better performance when approach-

ing class imbalance problems [18]. Ensembles are designed to increase the accuracy of 

a single classifier by training several different classifiers and combining their decisions 

to output a single class label [19]. The range of methods which were evaluated and 

compared include: random forest and ensemble methods. 

This paper is structured as follows: we describe our methods in Section 2, provide 

our results in Section 3 and discuss the relevance of our findings in Section 4. 

2 Methods 

2.1 Study Setting, Cardiac Surgery Data and Categorization of Complications 

Setting. This project was conducted with the Golden Jubilee National Hospital 

(GJNH)1, Clydebank, Scotland. GJNH is a state-of-the art tertiary referral center, car-

rying out a range of major surgical procedures (general, cardiac, orthopedic and tho-

racic surgery) with a commitment to reducing patient national waiting times across the 

National Health Service (NHS) in Scotland, while striving to deliver the highest quality 

of care. The hospital has 15 operating theatres. In 2016/17 GJNH carried out a total of 

40,929 inpatients, day cases and diagnostic examinations. 

Study Ethics & Data. This study was approved by our Institution's Research and De-

velopment Review Board and classified as an anonymized data study covered by Cald-

icott status. Data about cardiac procedures were obtained from a clinical audit database 

                                                           
1 https://www.nhsgoldenjubilee.co.uk/ 
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called the Cardiac, Cardiology and Thoracic Health Information system (CaTHI). The 

database consists of cardiac, cardiology and thoracic patients' diagnostics, surgical pro-

cedures and discharge information. All admissions in cardiac surgery between 1st April 

2012 and 31st March 2016 were recorded in the CATHI database, adding up to a total 

of n=3838 admissions. All patients reported in the CaTHI database received a treat-

ment. In the analysis, only patients undergoing coronary artery bypass graft (CABG), 

valve and combined CABG and valve surgery were included in the study, the final 

study sample being n=3700 clinical records. 

Being a clinical audit database, most variables in the CaTHI database were consist-

ently recorded. In cases where categorical variables had missing data, the blank fields 

were coded as “Unknown”. The variables with “Unknown” entries included renal im-

pairment (43.38% unknown), rhythm (7.97%), smoking status (36.24%), and left main 

stem disease (48.76%). If a numerical variable was not recorded consistently, the vari-

able was excluded from the analysis. The only variable excluded for that reason was 

preoperative hemoglobin level. 

Therefore, the final dataset used for our analysis consists of 25 preoperative varia-

bles2, including patient characteristics, preoperative variables about patients’ cardiac 

status and comorbidities, as well as other surgical variables. Three of the variables (age, 

preoperative serum creatinine and body mass index (BMI)) are numerical variables, the 

rest of them are categorical.  

Categorization of Complications. With the assistance of a panel of consultant cardiac 

anesthetists and surgeons in GJNH, we categorized complications reported in the 

CaTHI database into four discreet categories (no/mild/moderate/severe) based on their 

impact on hospital length of stay, patients’ quality of life and cost of care. The catego-

rization was subsequently cross-referenced with findings from a literature review we 

have conducted in relation to risk scoring of perioperative complications. The catego-

rization task resulted in 3 categories of complications (mild/moderate/severe), includ-

ing: 17 types of mild complications, 42 moderate complications and 19 severe compli-

cations.  

2.2 Model Development 

In this study, we have focused on developing a predictive model for solving a binary 

classification task: i.e. whether or not a patient is likely to have a severe postoperative 

                                                           
2 Variables include: age, sex, diabetes, body mass index, smoking, neurological dysfunction, 

congestive cardiac failure, previous myocardial infarction, active endocarditis, hypertension 

history, New York Heart Association grade, angina status, rhythm of the heart, left ventricular 

function, left main stem disease, extra-cardiac arteriopathy, pulmonary disease, creatinine lev-

els, renal function, surgical priority, critical preoperative state, surgical procedure, previous 

operations, previous percutaneous coronary intervention. 
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complication (‘yes’ or ‘no or other’) 3. The reason why we chose to focus on predicting 

sever complications in the first instance is due to the fact that these have the most det-

rimental impact to patients and on the use of clinical resources (e.g. such as requiring 

additional procedures to manage the complication or increasing hospital length of stay). 

As this is an imbalanced classification problem involving both categorical and nu-

merical variables, we used machine learning methods appropriate for this kind of data 

analysis: random forest, adaboost, gradient boosting model and two stacked models.  

All analysis was conducted with statistical package R version 3.5.0.  

Random Forest, Adaboost and Gradient Boosting. The random forest, adaboost and 

gradient boosting models were developed using k-fold cross-validation, where the train-

ing data (n=2479 records) was randomly partitioned into k sub-sets of approximately 

equal sizes. At each k iteration one of the folds is chosen as the test set and the remaining 

k-1 are used for the training.  

This method often results in a less biased and less optimistic estimate of the model 

than other methods. In this study we use 5-fold cross-validation, as is generally recom-

mended in the literature [20]. 

For random forest, the package ‘randomForest’ version 4.6-14 [21] was used with 

the number of trees set at n=200. The adaboost model was developed using the package 

‘fastAdaboost’ version 1.0.0 [22], which implements Freund and Schapire’s Ada-

boost.M1 algorithm [23], and for which we conducted n=40 iterations. For the gradient 

boosting model, the package ‘gbm’ version 2.1.5 [24] was used, which uses the Fried-

man’s gradient boosting algorithm [25]. The number of trees was chosen to be n=1000 

and the shrinkage parameter as 0.01. For these three models, we evaluated the perfor-

mance using a separate set of testing data (n=1221 records). 

Stacked Models. The appropriate base learners for our data that were included in our 

stacked models were generalized linear model [26], random forest [27], naïve Bayes 

[28] and bootstrap aggregated classification and regression trees (Bagging CART) 

[29]. We firstly generated k-fold cross-validated predicted values from the base learners 

to generate the training data for the metalearner algorithm. The training set (n=1850 

records) was used to develop our base learners. Then a validation set (n=925 records) 

was used to create the level one dataset. The base learners and the ensemble were then 

evaluated using the testing dataset (n=925 records). In this study we compared two 

different metalearner algorithms: random forest and generalized linear model. All anal-

ysis for the stacked models was done using the package ‘caret’ version 6.0-81 [30]. 

                                                           
3 Severe complications in this study include: Acute renal failure, deep sternal wound infection, 

septicemia, transient stroke, tracheostomy, cardiac arrest, permanent stroke, severe heart fail-

ure, adult respiratory distress syndrome, multi-organ failure, mesenteric infarction, required 

laparotomy, severe pulmonary edema, left ventricular wall dissection, hepatic failure, reopen-

ing requiring coronary artery bypass graft, paraparesis, and amputation. 
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2.3 Model Evaluation and Performance Measures 

The models were evaluated based on the area under the receiver operating characteristic 

(ROC) curve (AUC), sensitivity (a.k.a. recall), specificity (a.k.a. true negative rate), 

and positive (PPV) and negative predictive value (NPV). As this is an imbalanced clas-

sification problem, where the prevalence of severe postoperative complications is small 

compared to ‘no or other’ complications, using these performance measures help us 

avoid the accuracy paradox [31]. 

As the aim of this study is to predict severe complications, we are aiming for the 

highest sensitivity and negative predictive value as possible. This is to ensure that the 

model recognizes as many patients with severe complications as possible (i.e. sensitiv-

ity) and in case of negative testing: to ensure that the probability that the patient actually 

does not have a severe complication is high (i.e. negative predictive value).  

3 Results 

3.1 Population Characteristics 

In our study sample of n=3700 clinical records and using the classification of compli-

cations described earlier in section 2.1, 48.65% of the patients had  a recorded postop-

erative complications. Of these: 7.05% had mild complications, 36.65% moderate com-

plications, and 4.95% severe complications after cardiac surgery.  

As the prevalence for severe complications in our patient population is 4.95%, this is a 

highly imbalanced classification task. 

Of all patients, 59.65% had a CABG, 26.49% had a valve surgery, and 13.86% had 

a combined CABG and valve surgery. The mean age was 66.7, with a median of 68 

years. The majority of the patients were men (73.22%). Overall, 26.51% of the patients 

had diabetes. Based on body mass index, 42.46% of the patients were obese, 40.22% 

were overweight, 16.47% had a normal weight and 0.85% were underweight. Slightly 

less than a quarter of the patients (22.71%) had never smoked, 11.70% were current 

smokers, 29.35% were ex-smokers and for 36.24% of the patients the smoking status 

was unknown. The patient characteristics for patients with severe and no or other com-

plications can be found from Table 1. 

Table 1. Patient characteristics for patients with ‘severe’ and ‘no or other’ complications. For 

numerical variables: median, mean and standard deviation are provided, for categorical varia-

bles: frequencies and percentages are provided. 

Variable Severe 

N=183 

No or Other 

N=3517 

Age (median, mean ± SD) 71.5, 69.7 ± 11.1 68, 66.5 ± 10.7 

Sex: Female (%) 71 (38.80) 920 (26.16) 

Diabetes (%) 65 (35.52) 916 (26.04) 

BMI (median, mean ± SD) 29.7, 29.9 ± 5.3 29.0, 29.5 ± 5.1 

Smoking Status: Ex-smoker (%) 63 (34.43) 1023 (29.09) 
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Variable Severe 

N=183 

No or Other 

N=3517 

Current smoker 17 (9.29) 416 (11.83) 

Unknown 66 (36.07) 1275 (36.25) 

Neurological Dysfunction (%) 5 (2.73) 74 (2.10) 

Congestive Cardiac Failure:                   

At admission (%) 

21 (11.48) 61 (1.73) 

Past 19 (10.38) 188 (5.35) 

Previous MI (%) 81 (44.26) 1276 (36.28) 

Active Endocarditis (%) 7 (3.83) 20 (0.57) 

Hypertension History (%) 150 (81.97) 2556 (72.68) 

NYHA Grade: II (%) 80 (43.72) 1841 (52.35) 

III 69 (37.70) 941 (26.76) 

IV 13 (7.10) 84 (2.39) 

Angina Status: I (%) 18 (9.84) 483 (13.73) 

II 66 (36.07) 1333 (37.90) 

III 34 (18.58) 572 (16.26) 

IV 8 (4.37) 173 (4.92) 

Rhythm of the Heart: Abnormal (%) 141 (77.05) 287 (8.16) 

Unknown 15 (8.20) 280 (7.96) 

LV Function: Moderate (%) 37 (20.22) 556 (15.81) 

Poor  16 (8.74) 86 (2.45) 

Left Main Stem Disease (%) 23 (12.57) 451 (12.82) 

Unknown 88 (48.09) 1716 (48.79) 

Extracardiac Arteriopathy (%) 34 (18.58) 457 (12.99) 

Pulmonary Disease (%) 47 (25.68) 651 (18.51) 

Creatinine level (median, mean ± SD) 90.0, 101.0 ± 64.5 84.0, 91.3 ± 56.1 

Renal Impairment: Moderate (%) 41 (22.40) 699 (19.87) 

Severe 14 (7.65) 172 (4.89) 

Unknown 92 (50.27) 1513 (43.02) 

Surgical Priority: Emergency (%) 5 (2.73) 21 (0.60) 

Prioritised 9 (4.92) 268 (7.62) 

Urgent 31 (16.94) 497 (14.13) 

Critical Preoperative State (%) 7 (3.83) 35 (1.00) 

Surgical Procedure: CABG (%) 82 (44.81) 2125 (60.42) 

Valve 62 (33.88) 918 (26.10) 

Valve and CABG 40 (21.86) 473 (13.45) 

Previous Cardiac Surgery (%) 164 (89.62) 73 (2.08) 

Previous PCI (%) 36 (19.67) 445 (12.65) 

3.2 Performance of the Models 

Table 2 shows that in terms of AUC, adaboost outperforms random forest, gradient 

boosting and the stacked models with an AUC of 0.731. However, as our end goal is to 
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develop a clinical decision support system predicting severe postoperative complica-

tions, our aim is to have the highest possible sensitivity and negative predictive value. 

Based on that, the GBM has the highest sensitivity of 0.875, meaning that the model 

recognizes patients with severe complications 87.5% of the time. The GBM also has a 

very high negative predictive value of 0.920, which means that if the test is negative, 

the probability that the patient actually does not have a severe complication is 92.0%. 

 Table 2. Area under the curve (AUC), sensitivity, specificity, positive (PPV) and negative pre-

dictive value (NPV) for the models. 

Algorithm AUC Sensitivity Specificity PPV NPV 

Random Forest 0.724 0.852 0.462 0.017 0.923 

Adaboost 0.731 0.738 0.629 0.021 0.905 

Gradient Boosting 0.718 0.875 0.465 0.014 0.920 

Stacked with RF 0.648 0.321 0.944 0.044 0.721 

Stacked with GLM 0.655 0.643 0.639 0.035 0.897 

 

Surprisingly, both stacked models had a considerably worse performance in terms 

of AUC compared to the other models. In addition, the stacked model with RF has a 

very low sensitivity and very high specificity, which would not be useful in clinical 

applications. 

As the random forest and gradient boosting models have the highest sensitivities and 

negative predictive values, we further investigated these two models. To assess which 

variables are the most important, for random forest we calculated at the Gini importance 

measure and for gradient boosting model we calculated the relative influence (Table 3).  

Both of these models show ─ with some differences in ordering ─ that preoperative 

creatinine, BMI, age, angina status and smoking are the most important variables when 

predicting severe complications. These results are also supported by findings from the 

literature: elderly patients are at a greater risk of postoperative complications, especially 

for bleeding, infections, neurologic and renal problems [32].  

Table 3. The importance measures for the top five variables of Gradient Boosting Model 

(GBM) and Random Forest (RF). 

Variable 

GBM  

(relative influence) 

RF  

(Gini importance) 

Pre.Op. Creatinine 17.93 31.89 

BMI 16.41 35.24 

Age 10.25 28.90 

Angina Status 6.90 13.27 

Smoking 6.57 12.04 

Patients with a higher BMI have increased risk of wound infection, blood loss and 

acute kidney injury [33]. Angina status is shown to be a significant predictor of long-
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term mortality [34]. Persistent smokers have a higher incidence of pulmonary compli-

cations [35] and also slower wound healing following CABG surgery [36]. 

4 Discussion  

Our study found that postoperative complications are common (48.65% in our study 

population) and the most severe of these ─ although less frequent at 4.95% ─ can have 

a significant impact on episodes of care and use of clinical resources as well as being 

potentially devastating for patients’ quality of life after surgery. It is therefore essential 

that adequate systems are developed within clinical care in order to better plan and 

mitigate these instances of severe perioperative complications.  

Our findings from the literature identified five cardiac preoperative risk prediction 

models commonly used in clinical practice. These include: logistic European System 

for Cardiac Operative Risk Evaluation (EuroSCORE) [37], EuroSCORE II [38], the 

Initial Parsonnet Score [39], the Society of Thoracic Surgeons (STS) score [40,41] and 

the Cleveland Clinic Score [42]. The first three were developed to predict 30-day mor-

tality, and the latter two were developed to predict mortality as well as some complica-

tions. All of these models were developed using logistic regression. In spite of these 

scores being initially developed to predominantly predict postoperative mortality, some 

studies have been carried out to assess the use of these scoring systems to predict com-

binations of postoperative complications [32,43–50]. 

Looking at the AUC, our adaboost model outperforms all aforementioned studies, 

apart from Parsonnet score in one study [43] and STS score another study [50], where 

these scores have a similar performance with the adaboost model (AUC=0.73). Our 

random forest model has a similar performance to EuroSCORE and EuroSCORE II in 

one study (AUC=0.72 for both) [50]. Even though our GBM model has the lowest per-

formance out of these three in our study, it still outperforms the commonly used risk 

models in most aforementioned studies, apart from EuroSCORE, EuroSCORE II, STS 

[50] and Initial Parsonnet [43] in two studies. 

Performance Measures. Even though the adaboost model has the highest AUC, the 

performance of sensitivity and negative predictive value are the most important for the 

purpose of developing a decision support application for severe complications. A model 

with a high specificity can be used to rule out patients who do not need specific treat-

ment [51]. However, our aim is to develop a model which can identify which patients 

are more likely to develop severe postoperative complications, in order to improve care 

planning, management and monitoring. Having a higher negative predictive value, 

meaning the patient probably does not have the disease when the test is negative, reas-

sures the provider of the treatment to do no harm.  

Some of the previously mentioned papers evaluating the commonly used preopera-

tive risk tools predicting complications have similar results based on AUC as our mod-

els. However, these studies have not reported other performance measures such as sen-

sitivity, specificity, PPV and NPV.  
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Current Challenges in Predicting Postoperative Complications. At present a major 

obstacle in predicting postoperative complications is that there is currently no single 

nomenclature of surgical complications; unlike for clinical diagnosis (i.e. the Interna-

tional Statistical Classification of Diseases, ICD-104). Due to that, when comparing our 

results with the literature, all of the aforementioned studies have a different definition 

for “morbidity”, which includes a different set of combined complications. The report-

ing of different complication outcomes in the scientific literature therefore prevents the 

objective comparison of the performance of these predictive risk models.   

It is also worth mentioning that common risk scoring systems were developed using 

logistic regression. Logistic regression based models have demonstrated very good per-

formance when applied at the population level [37,38], i.e.: their prediction accuracy 

generally performs well when applied to broad group or categories of patients. How-

ever, the prediction performance of these models at the ‘individual’ level is in fact far 

less satisfactory [53]. 

Conclusion and Future Work. In this study, we have highlighted how the use of ma-

chine learning techniques could be applied to the problem of predicting postoperative 

complications and compared the performance of several approaches.   

Through our analysis we found two machine learning models suitable for predicting 

severe postoperative complications: random forest and gradient boosting model based 

on sensitivity (0.852 and 0.875, respectively) and negative predictive value (0.923 and 

0.920, respectively). Either of these models could help a clinician to identify patients 

who are at risk of having severe postoperative complications in order to allocate re-

sources or avoid high-risk treatments. In order to develop a usable clinical decision 

support system that relies on the models developed in this study, a further validation 

study needs to be undertaken. 

References 

 

1. Findlay GP, Goodwin APL, Protopapa K, Smith NCE, Mason M. Knowing the 

Risk: A Review of the Peri-Operative Care of Surgical Patients. London, 2011. 

2. Bouamrane M-M, Mair FS. Implementation of an integrated preoperative care 

pathway and regional electronic clinical portal for preoperative assessment. BMC 

Medical Informatics and Decision Making 2014; 14. 

3. Bouamrane M-M, Mair FS. A study of clinical and information management 

processes in the surgical pre-assessment clinic. BMC Medical Informatics and Decision 

Making 2014; 14. 

4. Moonesinghe SR, Mythen MG, Das P, Rowan KM, Grocott MP. Risk 

stratification tools for predicting morbidity and mortality in adult patients undergoing 

major surgery: qualitative systematic review. Anesthesiology 2013; 119: 959–81. 

5. SCTS. Blue Book Online. Blue Book Online, 2016. http://bluebook.scts.org/. 

                                                           
4 http://apps.who.int/classifications/icd10/browse/2010/en  

http://apps.who.int/classifications/icd10/browse/2010/en


10 

6. Maillard J, Elia N, Haller CS, Delhumeau C, Walder B. Preoperative and early 

postoperative quality of life after major surgery - A prospective observational study. 

Health and Quality of Life Outcomes 2015; 13: 12. 

7. Pinto A, Faiz O, Davis R, Almoudaris A, Vincent C. Surgical complications and 

their impact on patients’ psychosocial well-being: A systematic review and meta-

analysis. BMJ Open 2016; 6. 

8. Al-Sarraf N, Thalib L, Hughes A et al. The effect of preoperative renal dysfunction 

with or without dialysis on early postoperative outcome following cardiac surgery. 

International Journal of Surgery 2011; 9: 183–7. 

9. Knapik P, Ciesla D, Borowik D, Czempik P, Knapik T. Prolonged ventilation post 

cardiac surgery - tips and pitfalls of the prediction game. Journal of Cardiothoracic 

Surgery 2011; 6: 158. 

10. Ruel M, Chan V, Boodhwani M et al. How detrimental is reexploration for 

bleeding after cardiac surgery? The Journal of Thoracic and Cardiovascular Surgery 

2018; 154: 927–35. 

11. Eappen S, Lane BH, Rosenberg B et al. An Electronic Reprint Relationship 

Between Occurrence of Surgical Complications and Hospital Finances Relationship 

Between Occurrence of Surgical Complications and Hospital Finances. JAMA 2013; 

309: 1599–606. 

12. Wang FD, Chang CH. Risk factors of deep sternal wound infections in coronary 

artery bypass graft surgery. The Journal of cardiovascular surgery 2000; 41: 709–13. 

13. Salehi Omran A, Karimi A, Ahmadi SH et al. Superficial and deep sternal wound 

infection after more than 9000 coronary artery bypass graft (CABG): incidence, risk 

factors and mortality. BMC infectious diseases 2007; 7: 112. 

14. Barnett S, Moonesinghe SR. Clinical risk scores to guide perioperative 

management. Postgraduate Medical Journal 2011; 87: 535–41. 

15. Yang Z, Tang WH, Shintemirov A, Wu QH. Association Rule Mining-Based 

Dissolved Gas Analysis for Fault Diagnosis of Power Transformers. IEEE Transactions 

on Systems, Man and Cybernetics, Part C (Applications and Reviews) 2009; 39: 597–

610. 

16. Zadrozny B, Elkan C. Learning and making decisions when costs and 

probabilities are both unknown. Proceedings of the Seventh ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining. 2001: 204–13. 

17. Chawla N V., Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic 

Minority Oversampling Technique. Journal of Artificial Intelligence Research 2002; 

16. 

18. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A Review on 

Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based 

Approaches. IEEE Transaction on Systems, Man, and Cybernetics - Part C: 

Applications and Reviews 2012; 42: 463–84. 

19. Polikar R. Ensemble based systems in decision making. IEEE Circuits and 

Systems Magazine 2006; 6: 21–45. 

20. Bischl B, Mersmann O, Trautmann H, Weihs C. Resampling methods for meta-

model validation with recommendations for evolutionary computation. Evolutionary 

computation 2012; 20: 249–75. 



11 

21. Breiman L, Cutler A, Liaw A, Wiener M. Package “randomForest.” 2018.  

22. Chatterjee S. Package “fastAdaboost.” 2016.  

23. Freund Y, Schapire RE. Experiments with a new boosting algorithm. The 

Thirteenth International Conference on Machine Learning. 1996: 148–56. 

24. Greenwell B, Boehmke B, Cunningham J. Package “gbm.” 2019.  

25. Friedman JH. Greedy Function Approximation: A Gradient Boosting Machine. 

Annals of Statistics 2001; 29: 1189–232. 

26. Walker SH, Duncan DB. Estimation of the Probability of an Event as a Function 

of Several Independent Variables. Biometrika 1967; 54: 167–79. 

27. Ho TK. The random subspace method for constructing decision forests. IEEE 

Transactions on Pattern Analysis and Machine Intelligence 1998; 20: 832–44. 

28. Zhang H. The Optimality of Naive Bayes. In FLAIRS2004 Conference. 2004. 

29. Breiman L. Bagging Predictors. Machine Learning 1996; 24: 123–40. 

30. Kuhn M. Package “caret.” 2018. https://cran.r-

project.org/web/packages/caret/caret.pdf. 

31. Valverde-Albacete FJ, Pelaez-Moreno C. 100% classification accuracy 

considered harmful: the normalized information transfer factor explains the accuracy 

paradox. PLoS ONE2014; doi https://doi.org/10.1371/journal.pone.0084217. 

32. Wang TK, Li AY, Ramanathan T, Stewart RA, Gamble G, White HD. 

Comparison of four risk scores for comtemporary isolated coronary artery bypass 

grafting. Heart, lung and circulation 2014; 23: 469–74. 

33. Reis C, Barbiero SM, Ribas L. The effect of the body mass index on 

postoperative complications of coronary artery bypass grafting in elderly. Revista 

brasileira de cirurgia cardiovascular 2008; 23: 524–9. 

34. Kaul P, Naylor CD, Armstrong PW, Mark DB, Theroux P, Dagenais GR. 

Assessment of activity status and survival according to the Canadian Cardiovascular 

Society angina classification. The Canadian journal of cardiology 2009; 25: e225-31. 

35. Ji Q, Zhao H, Mei Y, Shi Y, Ma R, Ding W. Impact of smoking on early clinical 

outcomes in patients undergoing coronary artery bypass grafting surgery. Journal of 

Cardiothoracic Surgery 2015; 10. 

36. Sharif-Kashani B, Shahabi P, Mandegar M-H et al. Smoking and wound 

complications after coronary artery bypass grafting. Journal of Surgical Research 

2016; 200: 743–8. 

37. Roques F, Michel P, Goldstone AR, Nashef SAM. The logistic EuroSCORE. 

European Heart Journal 2003; 24: 1–2. 

38. Nashef SA, Roques F, Sharples LD et al. EuroSCORE II. European Journal of 

Cardio-Thoracic Surgery 2012; 41: 734–44. 

39. Parsonnet V, Dean D, Bernstein AD. A method of uniform stratification of risk 

for evaluating the results of surgery in acquired adult heart disease. Circulation 1989; 

79: I3-12. 

40. Shroyer AL, Coombs LP, Peterson ED et al. The Society of Thoracic Surgeons: 

30-day operative mortality and morbidity risk models. The annals of thoracic surgery 

2003; 75: 1856–64. 

41. Shahian DM, O’Brien SM, Fillardo G et al. The Society of Thoracic Surgeons 

2008 cardiac surgery risk models: part 1-- coronary artery bypass grafting surgery. The 



12 

annals of thoracic surgery 2009; 88: S2-22. 

42. Higgins TL, Estafanous FG, Loop FD, Beck GJ, Blum JM, Paranandi L. 

Stratification of morbidity and mortality outcome by preoperative risk factors in 

coronary artery bypass patients. JAMA 1992; 267: 2344–8. 

43. Dupuis J-Y, Wang F, Nathan H, Lam M, Grimes S, Bourke M. The cardiac 

anesthesia risk evaluation score: a clinically useful predictor of mortality and morbidity 

after cardiac surgery. Anesthesiology 2001; 94: 194–204. 

44. Gabrielle F, Roques F, Michel P et al. Is the Parsonnet’s score a good predictive 

score of mortality in adult cardiac surgery: assessment by a French multicentre study. 

European journal of cardio-thoracic surgery 1997; 11: 406–14. 

45. Geissler HJ, Holzl P, Marohl S et al. Risk stratification in heart surgery: 

comparison of six score systems. European journal of cardio-thoracic surgery 2000; 

17: 400–6. 

46. Hirose H, Inaba H, Noguchi C et al. EuroSCORE predicts postoperative 

mortality, certain morbidities, and recovery time. Interactive CardioVascular and 

Thoracic Surgery 2009; 9: 613–7. 

47. Pitkänen O, Niskanen M, Rehnberg S, Hippelainen M, Hynynen M. Intra-

institutional prediction of outcome after cardiac surgery: comparison between a locally 

derived model and the EuroSCORE. European journal of cardio-thoracic surgery : 

official journal of the European Association for Cardio-thoracic Surgery 2000; 18: 

703–10. 

48. Scolletta S, Giomarelli P, Cevenini G, Biagioli B. Estimation of morbidity risk 

factors in intensive care unit: a Bayesian discriminant approach: 028. European journal 

of anaesthesiology 2004; 21: 14. 

49. Syed AU, Fawzy H, Farag A, Nemlander A. Predictive value of EuroSCORE 

and Parsonnet scoring in Saudi population. Heart, lung and circulation 2004; 13: 384–

8. 

50. Wang TKM, Harmos S, Gamble GD, Ramanathan T, Ruygrok PN. Performance 

of contemporary surgical risk scores for mitral valve surgery. Journal of cardiac 

surgery 2017; 32: 172–6. 

51. Lutkenhoner B, Basel T. Predictive modeling for diagnostic tests with high 

specificity, but low sensitivity: a study of the glycerol test in patients with suspected 

meniere’s disease. PLoS ONE 2013; 8. 

52. Harty J. Prevention and Management of Acute Kidney Injury. Ulster Medical 

Journal 2014; 83: 149–57. 

53. Alaa AM, Yoon J, Hu S, van der Schaar M. Individualized Risk Prognosis for 

Critical Care Patients: A Multi-task Gaussian Process Model. 2017: 1–10. 

 


