Skip to main content

Inferring Temporal Phenotypes with Topological Data Analysis and Pseudo Time-Series

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2019)

Abstract

Temporal phenotyping enables clinicians to better under-stand observable characteristics of a disease as it progresses. Modelling disease progression that captures interactions between phenotypes is inherently challenging. Temporal models that capture change in disease over time can identify the key features that characterize disease subtypes that underpin these trajectories. These models will enable clinicians to identify early warning signs of progression in specific sub-types and therefore to make informed decisions tailored to individual patients. In this paper, we explore two approaches to building temporal phenotypes based on the topology of data: topological data analysis and pseudo time-series. Using type 2 diabetes data, we show that the topological data analysis approach is able to identify trajectories representing different temporal phenotypes and that pseudo time-series can infer a state space model characterized by transitions between hidden states that represent distinct temporal phenotypes. Both approaches highlight lipid profiles as key factors in distinguishing the phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dagliati, A.: Temporal electronic phenotyping by mining careflows of breast cancer patients. J. Biomed. Inf. 66, 136–147 (2017)

    Google Scholar 

  2. Hripcsak, G., Albers, D.J.: Next-generation phenotyping of electronic health records. J. Am. Med. Inform. Assoc. 20(1), 117–121 (2012)

    Google Scholar 

  3. Offroy, M., Duponchel, L.: Topological data analysis: a promising big data exploration tool in biology, analytical chemistry and physical chemistry. Anal. Chim. Acta 910, 1–11 (2016)

    Google Scholar 

  4. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Google Scholar 

  5. Shortliffe, E.H., Sepúlveda, M.J.: Clinical decision support in the era of artificial intelligence. JAMA – J. Am. Med. Assoc. 320(21), 2199–2200 (2018)

    Google Scholar 

  6. Li, L.L., et al.: Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med. 7(311), 311ra174–311ra174 (2015)

    Google Scholar 

  7. Nielson, J.L., et al.: Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nat. Commun. 6, 8581 (2015)

    Google Scholar 

  8. Torres, B.Y., Oliveira, J.H.M., Thomas Tate, A., Rath, P., Cumnock, K., Schneider, D.S.: Tracking resilience to infections by mapping disease space. PLoS Biol. 14(4), e1002436 (2016)

    Google Scholar 

  9. Tucker, A., Garway-Heath, D.: The pseudotemporal bootstrap for predicting glaucoma from cross-sectional visual field data. IEEE Trans. Inf. Technol. Biomed. 14(1), 79–85 (2010)

    Google Scholar 

  10. Magwene, P.M., Lizardi, P., Kim, J.: Reconstructing the temporal ordering of biological samples using microarray data. Bioinformatics 19(7), 842–850 (2003)

    Google Scholar 

  11. Campbell, K.R., Yau, C.: Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data. Nat. Commun. 9(1), 2442 (2018)

    Google Scholar 

  12. Gupta, A., Bar-Joseph, Z.: Extracting dynamics from static cancer expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(2), 172–182 (2008)

    Google Scholar 

  13. Li, Y., Swift, S., Tucker, A.: Modelling and analysing the dynamics of disease progression from cross-sectional studies. J. Biomed. Inform. 46(2), 266–274 (2013)

    Article  Google Scholar 

  14. Tucker, A., Li, Y., Garway-Heath, D.: Updating Markov models to integrate cross-sectional and longitudinal studies. Artif. Intell. Med. 77, 23–30 (2017)

    Google Scholar 

  15. Nicolau, M., Levine, A.J., Carlsson, G.: Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc. Natl. Acad. Sci. 108(17), 7265–7270 (2011)

    Article  Google Scholar 

  16. Lum, P.Y., et al.: Extracting insights from the shape of complex data using topology. Sci. Rep. 3, 1236 (2013)

    Google Scholar 

  17. Brandes, U., et al.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008)

    Google Scholar 

  18. Teliti, M., et al.: Risk factors for the development of micro-vascular complications of type 2 diabetes in a single-centre cohort of patients. Diabetes Vasc. Dis. Res. 15(5), 424–432 (2018). p. 1479164118780808

    Google Scholar 

  19. Dagliati, A., et al.: A dashboard-based system for supporting diabetes care. J. Am. Med. Inform. Assoc. 25(5), 538–547 (2018)

    Article  Google Scholar 

  20. Dagliati, A., et al.: Machine learning methods to predict diabetes complications. J. Diabetes Sci. Technol. 12(2), 295–302 (2017)

    Google Scholar 

  21. Dagliati, A., Tibollo, V., Cogni, G., Chiovato, L., Bellazzi, R., Sacchi, L.: Careflow mining techniques to explore type 2 diabetes evolution. J. Diabetes Sci. Technol. 12(2), 251–259 (2018)

    Google Scholar 

  22. Batal, I., Fradkin, D., Harrison, J., Moerchen, F., Hauskrecht, M.: Mining recent temporal patterns for event detection in multivariate time series data (2012)

    Google Scholar 

  23. Batal, I., Valizadegan, H., Cooper, G.F., Hauskrecht, M.: A temporal pattern mining approach for classifying electronic health record data. ACM Trans. Intell. Syst. Technol. 4(4), 63 (2013)

    Google Scholar 

  24. Moskovitch, R., Shahar, Y.: Fast time intervals mining using the transitivity of temporal relations. Knowl. Inf. Syst. 42(1), 21–48 (2015)

    Google Scholar 

  25. Moskovitch, R., Shahar, Y.: Classification of multivariate time series via temporal abstraction and time intervals mining. Knowl. Inf. Syst. 45(1), 35–74 (2015)

    Google Scholar 

Download references

Acknowledgement

This work was co-funded by the Medical Research Council and the Engineering and Physical Sciences Research Council grant MR/N00583X/1 “Manchester Molecular Pathology Innovation Centre (MMPathIC): bridging the gap between biomarker discovery and health and wealth” and the NIHR Manchester Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Dagliati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dagliati, A. et al. (2019). Inferring Temporal Phenotypes with Topological Data Analysis and Pseudo Time-Series. In: Riaño, D., Wilk, S., ten Teije, A. (eds) Artificial Intelligence in Medicine. AIME 2019. Lecture Notes in Computer Science(), vol 11526. Springer, Cham. https://doi.org/10.1007/978-3-030-21642-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21642-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21641-2

  • Online ISBN: 978-3-030-21642-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics