Skip to main content

Dynamical Analysis of Nose-Hoover Continuous Chaotic System Based on Gingerbreadman Discrete Chaotic Sequence

  • Conference paper
  • First Online:
  • 539 Accesses

Abstract

Apply the discrete chaotic sequence of Gingerbreadman System to the only one control parameter of Nose-Hoover continuous chaotic system, can get completely different simulation results. Namely, extracting a part of sequence of Gingerbreadman discrete system randomly, and take this sequence to control Nose-Hoover continuous chaotic system, then make analysis of this new system. Dynamic analysis of the new system, which is based on Nose-Hoover continuous chaotic system under the control of the discrete chaotic sequence of Gingerbreadman system. Compared with the original system carefully, find that phase diagram arising from new system produce obvious changes. We also calculate Lyapunov exponents, compared with the Lyapunov exponents computed from original system, find it also changed. It proved that our new system has chaotic characteristics, provide new method for the chaotic system which are used in the fields of cryptography, secure communication and information security etc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hall, D., Proudfoot, L.: Memory and identity among irish migrants in nineteenth-century stawell. Comput. Eng. Appl. 44(3), 47–49 (2008)

    Google Scholar 

  2. Masuda, N., Aihara, K.: Cryptosystems with discretized chaotic maps. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 49(1), 28–40 (2002)

    Article  MathSciNet  Google Scholar 

  3. Habutsu, T., Nishio, Y., Sasase, I., Mori, S.: A secret key cryptosystem by iterating a chaotic map. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 127–140. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_11

    Chapter  Google Scholar 

  4. Bianco M E, Reed D A. Encryption system based on chaos theory: US, US5048086[P] (1991)

    Google Scholar 

  5. Bianco, M.E., Mayhew, G.L.: High speed encryption system and method: US, US 5365588 A[P] (1994)

    Google Scholar 

  6. Deffeyes, K.S.: Encryption system and method. US (1991)

    Google Scholar 

  7. Pecora, L.M., Carroll, T.L.: Paper 9–synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  8. Pecora, L.M., Carroll, T.L.: Driving systems with chaotic signals. Phys. Rev. A 44(4), 2374 (1991)

    Article  Google Scholar 

  9. Carroll, T.L., Pecora, L.M.: A circuit for studying the synchronization of chaotic systems. Int. J. Bifurcat. Chaos 2(3), 659–667 (2011)

    Article  MathSciNet  Google Scholar 

  10. Carroll, T.L., Pecora, L.M.: Cascading synchronized chaotic systems. Phys. D Nonlinear Phenom. 67(1–3), 126–140 (1993)

    Article  Google Scholar 

  11. Pecora, L.M., Carroll, T.L.: System for producing synchronized signals, US5245660[P] (1993)

    Google Scholar 

  12. Pecora, L.M., Carroll, T.L.: Cascading synchronized chaotic systems: US, US5379346[P] (1995)

    Google Scholar 

  13. Carroll, T.L., Pecora, L.M., Heagy, J.F.: Synchronization of nonautonomous chaotic systems: Patent Application Department of the Navy, Washington, DC. US5473694[P] (1995)

    Google Scholar 

  14. Cuomo, K.M., Oppenheim, A.V.: Communication using synchronized chaotic systems: US, US5291555[P] (1994)

    Google Scholar 

  15. Cuomo, K.M., Oppenheim, A.V.: Circuit implementation of synchronized chaos with applications to communications. Controlling Chaos 71(1), 153–156 (1996)

    Article  Google Scholar 

  16. Murali, K., Lakshmanan, M.: Transmission of signals by synchronization in a chaotic Van der Pol-Duffing oscillator. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdisc. Topics 48(3), R1624–R1626 (1993)

    Google Scholar 

  17. Kocarev, L., Halle, K.S., Eckert, K., et al.: Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurcat. Chaos 2(03), 709–713 (1992)

    Article  Google Scholar 

  18. Parlitz, U., Chua, L.O., Kocarev, Lj., et al.: Transmission of digital signals by chaotic synchronization. Int. J. Bifurcat. Chaos 2(2), 973–977 (2011)

    MATH  Google Scholar 

  19. Papadimitriou, S., Bezerianos, A., Bountis, T.: Secure communication with chaotic systems of difference equations. IEEE Trans. Comput. 46(1), 27–38 (1997)

    Article  Google Scholar 

  20. Bernstein, G.M., Lieberman, M.A.: Method and apparatus for generating secure random numbers using chaos: US, US5007087[P] (1991)

    Google Scholar 

  21. Gutowitz, H.: Cryptography with dynamical systems. In: Boccara, N., Goles, E., Martinez, S., Picco, P. (eds.) Cellular Automata and Cooperative Systems. NATO ASI Series (Series C: Mathematical and Physical Sciences), pp. 237–274. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1691-6_21

    Chapter  MATH  Google Scholar 

  22. Gutowitz, H.A.: Method and apparatus for encryption, decryption and authentication using dynamical systems: US, US5365589[P] (1994)

    Google Scholar 

  23. Pichler, F., Scharinger, J.: Ciphering by Bernoulli-shifts in finite abelian groups

    Google Scholar 

  24. Götz, M., Kelber, K., Schwarz, W.: Discrete-time chaotic encryption systems. I. Statistical design approach. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 44(10), 963–970 (1997)

    Article  MathSciNet  Google Scholar 

  25. Kotulski, Z., Szczepański, J., et al.: Application of discrete chaotic dynamical systems in cryptography—DCC method. Int. J. Bifurcat. Chaos 9(06), 1121–1135 (2011)

    Article  MathSciNet  Google Scholar 

  26. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(82), 985 (1975)

    Article  MathSciNet  Google Scholar 

  27. Da, L.H., Guo, F.D.: Composite nonlinare descrete chaotic dynamical systems and stream cipher systems. Acta Electronica Sin. 31(8), 1209–1212 (2003)

    Google Scholar 

  28. Fanzhen, W., Guoyuan, Q., Zengqiang, C., et al.: On a four-winged chaotic attractor. Acta Phys. Sin. 56(6), 3137–3144 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Qi, G., Chen, G., Wyk, M.A.V., et al.: A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system. Chaos, Solitons Fractals 38(3), 705–721 (2008)

    Article  MathSciNet  Google Scholar 

  30. Chua, L.O., Roska, T.: The CNN paradigm. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 40(3), 147–156 (1993)

    Article  Google Scholar 

  31. Suykens, J.A.K., Vandewalle, J.: Generation of n-double scrolls (n = 1, 2, 3, 4…). IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 40(11), 861–867 (1993)

    Article  Google Scholar 

  32. Jinhu, H.F., Yu, X., et al.: Generating 3-D multi-scroll chaotic attractors: a hysteresis series switching method. Automatica 40(10), 1677–1687 (2004)

    Article  MathSciNet  Google Scholar 

  33. Lu, J., Yu, X., Chen, G.: Generating chaotic attractors with multiple merged basins of attraction: a switching piecewise-linear control approach. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 50(2), 198–207 (2003)

    Article  MathSciNet  Google Scholar 

  34. Qi, G., Du, S., Chen, G., et al.: On a four-dimensional chaotic system. Chaos, Solitons Fractals 23(5), 1671–1682 (2005)

    Article  MathSciNet  Google Scholar 

  35. Li, Y.J., Wen, W.Q.: Research of Judging the Chaotic Characteristics with the Lyapunov Exponents. J. Wuhan Univ. Technol. (2004)

    Google Scholar 

  36. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459 (1976)

    Article  Google Scholar 

  37. Huang, Y., Zhang, P., Zhao, W.: Novel grid multiwing butterfly chaotic attractors and their circuit design. IEEE Trans. Circ. Syst. II Express Briefs 62(5), 496–500 (2017)

    Google Scholar 

  38. Ye, X., Mou, J., Luo, C., et al.: Dynamics analysis of Wien-bridge hyperchaotic memristive circuit system. Nonlinear Dyn. 92(3), 923–933 (2018)

    Article  Google Scholar 

  39. Holian, B.L., Hoover, W.G.: Numerical test of the Liouville equation. Phys. Rev. 34(5), 4229–4237 (1986)

    Article  Google Scholar 

  40. Wolf, A., Swift, J.B., Swinney, H.L., et al.: Determining Lyapounov exponents from a time series. Phys. D Nonlinear Phenom. 16(3), 285–317 (1985)

    Article  Google Scholar 

  41. Shui-Sheng, Q.: Study on periodic orbit theory of chaotic attractors (I). J. Circ. Syst. (2003)

    Google Scholar 

  42. Shui-Sheng, Q.: Study on periodic orbit theory of chaotic attractors (II). J. Circ. Syst. (2004)

    Google Scholar 

  43. Qiu, S.S.: A cell model of chaotic attractor. In: IEEE International Symposium on Circuits and Systems. IEEE Xplore, 1997:1033-1036, vol. 2 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuming Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, R., Ma, X. (2019). Dynamical Analysis of Nose-Hoover Continuous Chaotic System Based on Gingerbreadman Discrete Chaotic Sequence. In: Jin, J., Li, P., Fan, L. (eds) Green Energy and Networking. GreeNets 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-21730-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21730-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21729-7

  • Online ISBN: 978-3-030-21730-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics