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Abstract. Diabetes in pregnancy (DIP) is an increasing public health
priority in the Australian Capital Territory, particularly due to its im-
pact on risk for developing Type 2 diabetes. While earlier diagnostic
screening results in greater capacity for early detection and treatment,
such benefits must be balanced with the greater demands this imposes
on public health services. To address such planning challenges, a multi-
scale hybrid simulation model of DIP was built to explore the interaction
of risk factors and capture the dynamics underlying the development of
DIP. The impact of interventions on health outcomes at the physiologi-
cal, health service and population level is measured. Of particular central
significance in the model is a compartmental model representing the un-
derlying physiological regulation of glycemic status based on beta-cell
dynamics and insulin resistance. The model also simulated the dynamics
of continuous BMI evolution, glycemic status change during pregnancy
and diabetes classification driven by the individual-level physiological
model. We further modeled public health service pathways providing di-
agnosis and care for DIP to explore the optimization of resource use
during service delivery. The model was extensively calibrated against
empirical data.

Keywords: Gestational diabetes mellitus · Agent based model · System
dynamic model · Discrete event model

1 Introduction

Gestational diabetes mellitus (GDM) is an increasing public health priority in the
Australian Capital Territory (ACT), particularly on account of its impact on the
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risk of Type 2 Diabetes (T2DM) across the population [11,19]. The increase of
GDM is associated with increasing prevalence of risk factors including advanced
maternal age [18], obesity [6], and sedentary behavior, growing GDM risk factors
in those with family history of diabetes, and a growing number of residents whose
ethnic background has traditionally been subject to elevated rates [11].

Mathematical models characterizing diabetes progression, glucose hemosta-
sis, pancreatic physiology and complications related to diabetes have been built
by many researchers [5,27]. De Gaetano et al. [8] formulated a model representing
the pancreatic islet compensation process, related to insulin resistance, beta-cell
mass and glycemia (G) of a diabetic individual. Hardy et al. [13] proposed a
model, characterizing mechanisms of anti-diabetic intervention and the corre-
sponding impact on glucose homeostasis. Lehmann and Deutsch [20] modeled
the physiology underlying the interaction between insulin sensitivity (KxgI) and
G of an individual with Type 1 diabetes (T1DM).

Health simulation models commonly apply one of three types of modeling
techniques: system dynamics modeling (SDM), agent based modeling (ABM)
and discrete event simulation (DES). SDM captures and describes complex pat-
terns of feedback and accumulation by solving sets of differential equations.
While SDM can be applied at different scales [25], it is most commonly applied
at the aggregated level, and its core components include the accumulation of ele-
ments (stocks), rate (flows), causal loops involving stocks (feedback), and delays
[15,17]. By contrast, ABM simulates complex social dynamics by characterizing
emergent system behavior as the result of within-environment interactions be-
tween individual elements in a system that are referred to as agents. ABM readily
captures heterogeneous characteristics of agents, including agent history, situ-
ated decision making, structured interaction between agents typically evolving
along multiple aspects of states and transitions and aggregation of individual
outcomes [25,21]. DES characterizes individual-level, resource-limited progres-
sion through structured workflows which often associated with service delivery,
queuing processes, waiting times and lists and resource utilization [22].

Previous studies examining the health burden of GDM and its risk factors
have predominantly relied upon cohort studies, administrative data or clinical
trials [29,16,10]. While filling a key set of research needs, given the dynamically
complex nature of the interactions including feedback, accumulations, delays,
heterogeneity, and interacting factors across many levels, it is difficult to use
such studies to answer “what-if” question related with the risk factors and ef-
fects of interventions, particularly counter-factual whose outcomes have not yet
been observed. Given the long time scales involved, cost, logistics, and ethical
concerns, clinical trial studies may not be feasible for providing timely evaluation
of novel portfolios of clinical-level and population-level interventions (PLI).

In this work, we built a multi-scale hybrid model in AnyLogic (version 8.3.3)
including SDM, ABM, and DES, to describe the dynamics of glycemic regula-
tion (DGR), weight status and pregnancy, and to evaluate impacts of the inter-
ventions on DGR. While leaving most aspects of examination of model health
findings to other forthcoming contributions, this paper introduces the design and
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structure of the model, provides illustrations of some of the types of interventions
that the model can capture and simulation outputs.

The structure of the remainder of the paper is as follows: Model overview
section describes the model structure and the simulation description. The next
section briefly discusses model calibration and assumption. The model formula-
tion section then describes the statecharts, DGR, weight dynamics, interventions,
service delivery and offspring outcomes by hyperglycemia. Part 3 and 4 illustrate
and discuss some of the model outputs and limitations of the model.

2 Methods

Model Overview The Person class of the ABM includes the individual level
characteristics such as evolving states, actions that change them, and the rules
to trigger those actions (all captured in statecharts), parameters and functions.
The ABM further represents family structure, weight at birth and evolution
over the adult life course, individual history, inter-generational family context,
pregnancy and diabetes classification, and implementation of the PLI. The SDM
describing the DGR forms a sub-model encapsulated in the Person class. By
encapsulating this SDM in the ABM structure, the model can capture side-by-
side both individual characteristics and their evolution and continuous dynamics
of the glucose-insulin system. The clinical service pathway for pregnant women in
the ACT is described by a shared (global) DES, building on top of the ABM. The
model will be discussed in its essentials in the following sections. Added elements
of detail, the technical description associated with the model, are listed in the
supplementary material, https://www.cs.usask.ca/faculty/ndo885/GDM-ACT, other
material will be available later.

The model simulates a population of 200,000 female agents, each an in-
stance of Person class. During the simulation, the agents can become pregnant,
thereby experiencing the risk of GDM, and subsequently give birth, influenc-
ing the weight status and DGR of their descendants. The second generation
agents also have their life-course shaped thoroughly by model dynamics. The
information available for the descendants is, therefore, richer than in the initial
population. Thus, the simulation requires a burn time of 60 years.

Model Calibration To estimate poorly- or non-measured parameters and to
support the projection of status quo future incidence of DIP using model out-
puts, we calibrated a baseline model without interventions against the following
historical data: the incidence of DIP of each ethnicity in ACT from 2008-2016,
the prevalence of macrosomia by DIP status of in ACT from 2010-2016. To fur-
ther capture the effects of inter-generational transfer of risk for GDM and T2DM
which has been recognized from multi-generational epidemiological studies [12,7],
and occurrence of later-life diabetes, we drew on data related to developing di-
abetes by age 30 of offspring by their mother’s G status (e.g., GDM, T2DM)
and birth weight from population-wide administrative data from Saskatchewan,
Canada. Birth weight can serve as an important marker of control of G in utero,

https://www.cs.usask.ca/faculty/ndo885/GDM-ACT
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and epidemiological studies suggest that it further influences the tendency to-
wards GDM. The details of model calibration, e.g., objective function, will be
available in other contributions.

Model Formulation We discuss here several aspects of model formulation,
particularly concentrating on statecharts, which encapsulate a discrete set of
collectively exhaustive and mutually exclusive (lowest-level) states with respect
to particular concerns, the actions by which the individual transitions between
such states, and the rules under which such actions take place.

Pregnancy statechart (Figure 1) indicates whether an agent is pregnant or
not, and their transitions through different stages of pregnancy. Female agents
with ages between 15 and 50 can transit between the notPregnat, planPregnant,
and pregnant states. Agents in the pregnant hierarchical state will be in one of
three substates, corresponding to trimesters of pregnancy. notPregnant agents
will either be in the fertile or PostPartum state. PostPartum agent will either be
in the breastFeeding or notBreastFeeding state. Of these, two of seven state tran-
sitions are memoryless transitions driven by a hazard rate (henceforth known
as rate transitions), becomePregnant and leaveBreastFeeding; the hazard rate for
becomePregnant is an age-ethnicity-specific fertility rate [3]. While the others are
timeout transitions triggered after a specified residence time. The timeout tran-
sition birthTransition is particularly notable, as it introduces a new agent into
the model.

Population statechart separates the population into three categories, initial
female population, female descendant and male descendant. Agents are initial-
ized with different ages [1], and assigned their ethnicity according to ACT de-
mographic information taken from the 2011 Australian Census and National
Health Survey. Type of ethnicity includes Australian Born, Australasian Dia-
betes in Pregnancy Society at risk group (ADIPS) [24], Aboriginal and Torres
Strait Islander (ATSI) and Other. All male descendants are excluded during
simulation, and female agents leave the model upon reaching age 50. The female
agents aged less than 50 leave the model by the age-specific death rate [4].

Dysglycemia classification statechart (Figure 2) divides the G of an agent
into four categories: T1DM, NormoglycemicAndIGR, T2DM and GDM states, according to
clinical classification categories. Agents can occupy one of four states, and switch
states by checking whether the G of agents exceed the threshold of each state
(known as condition transition). Reflecting the fact that residence in the GDM

state is only an option during pregnancy, pregnancy status is also considered.
The GDM agents will either be in NormoglycemicAndIGR or T2DM state after pregnancy.
Thresholds for T2Dm and GDM state are denoted as GT2DM and Ggdm, which are
calculated by CT2DM×Gt and Gt×CT2DM×Cgdm, respectively, where CT2DM ,
Cgdm and Gt are calibrated and equal to 1.636, 0.642 and 5.504, respectively.

DGR, the interaction between beta-cells, G and KxgI, is represented as an
SDM based on the ordinary differential equation models of diabetes progression
by De Gaetano et al. [9,8] and Hardy et al. [13]. To improve model scalability, a
cyclic timeout event with time interval (dt) is used to solve the compartmental
equations in SDM [9,8,13]. Another cyclic timeout event with a time interval of
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Fig. 1: Pregnancy statechart

Fig. 2: Dysglycemia classifica-
tion statechart

5 and 30 days during pregnant and non-pregnant periods, respectively, updates
G and KxgI using the Newton-Raphson method and other components in SDM.
Parameter and function details are listed in the supplementary material.

To capture dynamics of KxgI in different trimesters of pregnancy, postpartum
and different weight status, respectively, we modified the (exogenous) equations
giving KxgI over time introduced by De Gaetano et al. [9,8], The model assumes
the diminished KxgI in pregnancy will gradually recover during the postpartum
period to the value it would have held absent the pregnancy. The model fur-
ther assumes the KxgI of overweight and obese agents would decline faster over
age than that of agents with normal weight. In addition to the modification of
equations giving KxgI, we modified the equation giving the spontaneous recovery
rate of pancreas (Tη) for ADIPS. While ADIPS represents agents from a recog-
nized high risk group with respect to GDM, the empirical data revealed that the
ADIPS group actually had a higher proportion of healthy weight agents than
that were present in the other groups, indicating that weight as a risk factor
did not fully account for the higher risk levels. Therefore, to capture the high
incidence of GDM of ADIPS, the model assumes the Tη of ADIPS declines faster
than that of other ethnic groups. Furthermore, to investigate effects on various
types of intervention on the DGR, we incorporated the mechanism introduced
by Hardy et al. [13] for the impact of lifestyle change (LC), metformin treatment
(MT) and insulin treatment (IT) on KxgI. Elements of interventions making use
of the LC, IT and MT are discussed in the next sections.

Weight dynamics are characterized as a continuous variable of BMI value, and
a variable of Z-score of a BMI distribution (BMID), representing the position of
BMI within the age group (AG) specific BMID. Upon entry to adulthood, agents
are assigned a BMI value based on an AG specific BMID introduced by Hayes
et al. [14], and its corresponding Z-score calculated by the BMI and mean of the



6 Qin, Y. et al.

BMID. Hayes et al. [14] reported that the BMID of the population within AG
move toward higher BMI value through their life course. Applying an identical
Z-score into the BMID of different AGs may position the agents into different
weight categories. Therefore, for simplicity, the Z-score of agents are assumed to
stay the same as they age, unless intervention or pregnancy [16] changes their
BMI value and assigns a new Z-score to them. When an agent transfers from
one AG to another, the BMI value of next AG of the agent will be calculated by
applying the Z-score to the BMID of next AG in an event with a cyclic timeout of
10 years. As a continuous variable, another cyclic timeout event with an interval
of 1 year is used to make the BMI of current AG change towards the BMI of next
AG gradually. With this BMI-Z-score mechanism, we also captured BMI change
following pregnancy; due to space considerations, the interested reader is referred
to the supplemental material. Time-Varying weight distribution is required in
light of the simulation burn time. We, therefore, employed importance sampling
using an alternative BMID of female adults aged 25 to 64 years in 1980 and 2000
[2] and AG specific BMID in 1995 and 2008 [14], to estimate the AG specific
BMID in 1980.
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Fig. 3: Illustration of the individual trajectory of BMI change (A) and KxgI

change (B) over age without PLIs and Services. Green and red dots are the
start and end of the GDM period, respectively. Orange and blue stars are the
beginning and the end of the pregnancy, respectively.

ACT clinical service pathway, Services, is modeled using DES. And in Person,
a statechart reflects type of health care that an agent is currently being deliv-
ered, which is separated as the InPrimaryCare state reflecting that a non-pregnant
woman is receiving usual health care services through a general practitioner,
and the InACTHealthService state reflecting that a pregnant woman is moving
through the Services. The DES and statechart not only models the effects of LC
and IT in reducing the risk of progression to T2DM after delivery and imple-
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Fig. 4: Illustration of the individual trajectory of BMI change (A) and KxgI

change (B) over age with DRI. Color Labels of GDM and pregnancy are same
with Figure 3. Yellow and brown bars are the start and the end of the DRI,
respectively.

mented PLIs in the InPrimaryCare, but also leave room for investigating resource
use and costs associated with service provision. The blocks (i.e. dipAssessment,
antenatalCare, dieticianReview and lifestyleOrInsulinTreatment) in the Services

form a sequence of operations, providing pregnant agents the DIP assessment
test, education of LC, IT for the agents with DIP, and further deliver postpartum
checks to agents. Details of the DES are described in the supplemental material.

PLI includes consideration of a public health messaging and mobile app sup-
port intervention (PHMMASI), health professional support intervention (HPSI),
diet review intervention (DRI), and public health messaging and support inter-
vention (PHMSI). The difference between the Services and the PLI is that PLIs
are initiated during the non-pregnant period, while the Services is triggered dur-
ing pregnancy. All PLIs share a similar mechanism of taking optional LC and
BMI reducing. Specifically, overweight and obese agents reduce their BMI, draw-
ing the extent of that reduction from a normal distribution, while the normal
weight agents keep their BMI invariant. The interventions are variants of each
other with respect to who they are target, the intervention triggering time, and
the length and strength of adherence of the LC. In detail, the agents with age
between 20-35 take the PHMMASI and retake it according to certain probability
[23]. The HPSI takes place at the planPregnant state, and works on women with
risk factors, e.g., BMI > 28, age > 30, ADIPS ethnicity [28]. DRI and PHMSI
both take place between pregnancies, and target on women who had DIP in
previous pregnancies and on women who have given birth, respectively. For the
HPSI and PHMSI, the adherence and length of LC are flexible, whereas the
agents who are subject to DRI take mandatory, lifelong, strongly adherent LC.

The outcomes for baby and mother including birth weight (e.g., macrosomia),
type of birth (e.g., Caesarean section), NICU admission, and shoulder injury,



8 Qin, Y. et al.

are triggered in birthTransition of the pregnancy statechart. The probability of
occurrence of baby outcomes was calculated based on the study by The HAPO
Study Cooperative Research Group [26]. Furthermore, information of the mother
is passed on to the new child, including DIP status, age, weight status and
ethnicity. The mother’s DIP status influences the KxgI of the child by multiplying
a coefficient to the KxgI calculated by the modified equations giving KxgI over
time.

3 Results

We show here several scenarios that demonstrate the functioning of the model at
the level of an individual’s health history. Figure 3 A and B show the individual
trajectories of BMI changes and KxgI over age without the PLIs and the Services,
respectively. Figure 3 A illustrates the agent entered adulthood with a BMI of
30.75, and her BMI reduced over one BMI unit after the first and third pregnancy
and three BMI units after the second pregnancy. Other than pregnancy, Figure
3 A also demonstrates continuous BMI change over age. The KxgI remained
constant under the age of 18 but declined over time according to the value of
BMI after the age of 18. The agent developed GDM at the third pregnancy, as
shown by the dots in Figure 3. Furthermore, Figure 3 B reflects the decreasing
KxgI during pregnancy and recovery in postpartum. We can see from Figure 3
that KxgI is declining in parallel to, and, in fact, in response to the increase in
BMI.

From Figure 4, we can see that the agent increased over one BMI unit after
the first pregnancy, and KxgI was decreased in response to this BMI increase.
At the second pregnancy, the agent developed GDM but retained their BMI and
corresponding Z-score after pregnancy. But the DRI reduced that agent’s BMI
and significantly increased KxgI from 20 to 116 at the end of BMI reduction
period (6 months), following which the KxgI continued to increase due to strong
adherence in LC, as shown by the bar labels in Figure 4 A and B.

4 Discussion

This paper has described a novel multi-scale model that utilizes three types of
system simulation methods to provide a versatile, powerful and general platform
for examining interventions to address the growing epidemic of GDM and T2DM
in the ACT. The model achieves such versatility by virtue of maintaining a core
underlying physiological representation that captures the common generative
pathways mediating diverse needs in the model, to capture effects of lifestyle and
clinical interventions, to capture clinical categorization, to represent the effects
of each of pregnancy, aging and BMI change, and the longer term-effects of one
pregnancy (via beta-cell mass and function) on later pregnancies and subsequent
material risk of T2DM, and outcomes of interest. Such a representation can also
flexibly capture the impacts of maternal status on the offspring.
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A high level of heterogeneity at the individual level, e.g., family context, risk
factors for diabetes and life course trajectories motivated the use of ABM as
the core component of this hybrid model. The ABM permits a high-resolution
representation of relevant dynamics of individual objects and further allows the
implementation of finely targeted interventions. Compared to ABM, SDM simu-
lates a system in a more abstract and general way. The high level of abstraction
of DGR makes it a suitable candidate for SDM. The Services can be described
as a sequence of operations, DES, therefore, was selected to model the Services,
and to study the resource allocation and effect of clinical interventions.

While empirical models of necessity represent simplifications of processes in
the world, the model here includes a requisite degree of detail to capture a
remarkably broad set of factors. Nonetheless, they remain important limitations
in the model that are ripe for addressing. These notably include a lack of detail
with regards to childhood dynamics (including weight change), neglect to social
network effects on behavior, and an overly simple representation of changes in
KxgI and behavior change. Extensions of the model to capture such effects, and to
capture cost and resource components of scenarios, remain an important priority.
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