
Logical Methods in Computer Science
Volume 17, Issue 2, 2021, pp. 13:1–13:67
https://lmcs.episciences.org/

Submitted Oct. 01, 2019
Published May 10, 2021

PARAMETRIC UPDATES IN PARAMETRIC TIMED AUTOMATA

ÉTIENNE ANDRÉ a, DIDIER LIME b, AND MATHIAS RAMPARISON c

a Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France; JFLI, CNRS, Tokyo, Japan;
and National Institute of Informatics, Tokyo, Japan

b École Centrale de Nantes, LS2N, CNRS, UMR 6004, Nantes, France

c Université Sorbonne Paris Nord, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France; University
of Luxembourg, Luxembourg; and Univ. Grenoble Alpes, CNRS, UMR 5104, Grenoble INP,
VERIMAG, Grenoble, France

Abstract. We introduce a new class of Parametric Timed Automata (PTAs) where we
allow clocks to be compared to parameters in guards, as in classic PTAs, but also to
be updated to parameters. We focus here on the EF-emptiness problem: “is the set of
parameter valuations for which some given location is reachable in the instantiated timed
automaton empty?”. This problem is well-known to be undecidable for PTAs, and so it
is for our extension. Nonetheless, if we update all clocks each time we compare a clock
with a parameter and each time we update a clock to a parameter, we obtain a syntactic
subclass for which we can decide the EF-emptiness problem and even perform the exact
synthesis of the set of rational valuations such that a given location is reachable. To the
best of our knowledge, this is the first non-trivial subclass of PTAs, actually even extended
with parametric updates, for which this is possible.

1. Introduction

Timed automata (TAs) are a powerful formalism to model and verify timed concurrent
systems, both expressive enough to model many interesting systems and enjoying several
decidability properties. In particular, the reachability of a discrete state is decidable and
PSPACE-complete [AD94]. In TAs, clocks can be compared with constants in guards, and
can be updated to 0 (“reset”) along edges.

Timed automata may turn insufficient to verify systems where the timing constants
themselves are subject to some uncertainty, or when they are simply not known at the
early design stage. Parametric timed automata (PTAs) [AHV93] address this drawback by
allowing parameters (unknown constants) in the timing constraints; this high expressive

Key words and phrases: parametric timed automata, parametric updates, decidability, timed automata,
clock regions, parametric difference bound matrix.

This work is partially supported by the ANR national research program PACS (ANR-14-CE28-0002)

and by the ANR-NRF French-Singaporean research program ProMiS (ANR-19-CE25-0015). É. André was
partially supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603),
JST.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-17(2:13)2021
© É. André, D. Lime, and M. Ramparison
CC© Creative Commons

https://lmcs.episciences.org/
https://www.loria.science/ProMiS
http://creativecommons.org/about/licenses

13:2 É. André, D. Lime, and M. Ramparison Vol. 17:2

power comes at the cost of the undecidability of most interesting problems (see e.g. [And19]).
In particular, the basic problem of EF-emptiness (“is the set of valuations for which a given
location is reachable in the instantiated timed automaton empty?”) is “robustly” undecidable:
even for a single rational-valued [Mil00] or integer-valued parameter [AHV93, BBLS15], or
when only strict constraints are used [Doy07]. A famous syntactic subclass of PTAs that
enjoys limited decidability is L/U-PTAs [HRSV02], where the parameters set is partitioned
into lower-bound and upper-bound parameters, i. e., parameters that can only be compared
to a clock as a lower-bound (resp. upper-bound). The EF-emptiness problem is decidable
for L/U-PTAs [HRSV02, BL09] and for PTAs under several restrictions [BO14]; however,
most other problems are undecidable (e.g. [BL09, Qua14, JLR15, ALR16, AL17, ALM20])
(see [And19] for a survey).

Recall that the EF-emptiness problem is decidable for L/U-PTAs [HRSV02, BL09] and
for PTAs under several restrictions [BO14]; however, most other problems are undecidable
(e.g. [BL09, Qua14, JLR15, ALR16, AL17]) (see [And19] for a survey).

1.1. Contribution. We investigate parametric updates, which can model an unknown
timing configuration in a system where processes need to synchronize together on common
events, as in e.g. programmable controller logic programs with concurrent tasks execution.
We show that the EF-emptiness problem is decidable for PTAs augmented with parametric
updates (i. e., U2P-PTA), with the additional condition that whenever a clock is compared
to a parameter in a guard or updated to a parameter, all clocks must be updated (possibly
to parameters)—this gives R-U2P-PTA. This result holds when the parameters are bounded
rationals in guards, and possibly unbounded rationals in updates. Non-trivial decidable
subclasses of PTAs are a rarity (to the best of our knowledge, only L/U-PTAs [HRSV02]
and integer-points (IP-)PTAs [ALR16]); this makes our positive result very welcome. In
addition, not only the emptiness is decidable, but exact synthesis for bounded rational-valued
parameters can be performed—which contrasts with L/U-PTAs and IP-PTAs for which
synthesis was shown to be intractable [JLR15, ALR16].

About this manuscript. This is the extended version of [ALR19]. In addition to additional
explanations and all proofs of our results, we added the whole new Section 7 adding
stopwatches to our formalism.

1.2. Related work. Our construction is reminiscent of the parametric difference bound
matrices (PDBMs) defined in [QSW17, section III.C] where the authors in this paper revisit
the result of the binary reachability relation over both locations and clock valuations in TAs;
however, parameters of [QSW17] are used to bound in time a run that reaches a given location,
while we use parameters directly in guards and resets along the run, which make them active
components of the run specifically for intersection with parametric guards, a key point not
tackled in [QSW17]. Related DBMs with an additional parameter have been studied, such
as shrunk DBMs [SBM14, BMRS19] and infinitesimally enlarged DBMs [San15].

Allowing parameters in clock updates is inspired by the updatable TA formalism defined
in [BDFP04] where clocks can be updated not only to 0 (“reset”) but also to rational constants
(“update”). In [ALR18], we extended the result of [BDFP04] by allowing parametric updates
(and no parameter elsewhere, e.g. in guards): the EF-emptiness is undecidable even in
the restricted setting of bounded rational-valued parameters, but becomes decidable when
parameters are restricted to (unbounded) integers.

Vol. 17:2 INSTRUCTIONS 13:3

Synthesis is obviously harder than EF-emptiness: only three results have been proposed
to synthesize the exact set of valuations for subclasses of PTAs, but they are all concerned
with integer -valued parameters [BL09, JLR15, ALR18]. More precisely, it is possible to
synthesize unbounded integers for L- or U-PTAs (L/U-PTAs with only lower-bound, or only
upper-bound, parameters) [BL09]; bounded integers for PTAs [JLR15] unbounded integers
for timed automata with parametric updates [ALR18].

In contrast, we deal here with (bounded) rational-valued parameters—which makes this
result the first of its kind. The idea of updating all clocks when compared to parameters
comes from our class of reset-PTAs briefly mentioned in [ALR16], but not thoroughly
studied.

Finally, updating clocks on each transition in which a parameter appears is reminiscent
of the initialized rectangular hybrid automata formalism defined in [HKPV98], which remains
one of the few decidable subclasses of hybrid automata. Indeed, timed automata can be
defined as a subclass of initialized rectangular hybrid automata where clocks evolve at the
same fixed rate, in which diagonal constraints are allowed but not systematically used in
practice. However, besides the fact that in PTAs variables (clocks) evolve at the same rate,
in initialized rectangular hybrid automata variables are reset whenever one of the derivatives
of those variables changes, which is not at all the condition we use for global updates in our
R-U2P-PTA.

1.3. Outline. Section 2 recalls preliminaries. Section 3 presents R-U2P-PTA along with
our decidability result. Sections 4 and 5 introduce operations on our p–PDBMs and our
extended region automaton. Section 6 proves the main decidability result. Section 7 extends
our results to stopwatches. Section 8 gives a concrete application of our result. Section 9
concludes the paper.

2. Preliminaries

Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers, non-negative rational
numbers and non-negative real numbers respectively.

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i. e., real-valued

variables evolving at the same rate. A clock valuation is a function w : X→ R+. We write ~0
for the clock valuation that assigns 0 to all clocks. Given d ∈ R+, w+d (resp. w−d) denotes
the valuation such that (w + d)(x) = w(x) + d (resp. (w − d)(x) = w(x)− d if w(x)− d > 0,
0 otherwise), for all x ∈ X. We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown
constants. A parameter valuation v is a function v : P→ Q+. We identify a valuation v with
the point (v(p1), . . . , v(pM)) of QM

+ . Given d ∈ N, v + d (resp. v − d) denotes the valuation
such that (v + d)(p) = v(p) + d (resp. (v − d)(p) = v(p)− d if v(p)− d > 0, 0 otherwise), for
all p ∈ P.

In the following, we assume / ∈ {<,≤} and ./ ∈ {<,≤,≥, >}.
A parametric guard g is a constraint over X∪P defined as the conjunction of inequalities

of the form x ./ z, where x is a clock and z is either a parameter or a constant in Z. A
non-parametric guard is a parametric guard without parameters (i. e., over X).

Given a parameter valuation v, v(g) denotes the constraint over X obtained by replacing
in g each parameter p with v(p). We extend this notation to an expression: a sum or
difference of parameters and constants. Likewise, given a clock valuation w, w(v(g)) denotes
the expression obtained by replacing in v(g) each clock x with w(x). A clock valuation w

13:4 É. André, D. Lime, and M. Ramparison Vol. 17:2

satisfies constraint v(g) (denoted by w |= v(g)) if w(v(g)) evaluates to true. We say that v
satisfies g, denoted by v |= g, if the set of clock valuations satisfying v(g) is nonempty. We
say that g is satisfiable if ∃w, v s.t. w |= v(g).

A parametric update is a partial function u : X⇀ N ∪ P which assigns to some of the
clocks an integer constant or a parameter. For v a parameter valuation, we define a partial
function v(u) : X⇀ Q+ as follows: for each clock x ∈ X, v(u)(x) = k ∈ N if u(x) = k and
v(u)(x) = v(p) ∈ Q+ if u(x) = p a parameter. A non-parametric update is unp : X ⇀ N.
The term reset has been used for clock updates to values different from 0 in [BY03].For a
clock valuation w and a parameter valuation v, we denote by [w]v(u) the clock valuation

obtained after applying v(u). We first define a new class of parametric timed automata and
then define plain parametric timed automata and timed automata as special cases.

Definition 2.1. An update-to-parameter PTA (U2P-PTA) A is a tuple

A = (Σ, L, `0,X,P, ζ),

where:

(1) Σ is a finite set of actions,
(2) L is a finite set of locations,
(3) `0 ∈ L is the initial location,
(4) X is a finite set of clocks,
(5) P is a finite set of parameters,
(6) ζ is a finite set of edges e = 〈`, g, a, u, `′〉 where `, `′ ∈ L are the source and target

locations, g is a parametric guard, a ∈ Σ and u : X ⇀ N ∪ P is a parametric update
function.

An U2P-PTA is depicted in Figure 1. Note that all clocks are updated whenever there is a
comparison with a parameter (as in newBlock) or a clock is updated to a parameter (as in
blockSolutionx).

Given a parameter valuation v, we denote by v(A) the structure where all occurrences
of a parameter pi have been replaced by v(pi). If v(A) is such that all constants in guards
and updates are integers, then v(A) is a updatable timed automaton [BDFP04] but will
be called timed automaton (TA) for the sake of simplicity in this paper. In the following,
we may denote as a timed automaton any structure v(A), by assuming a rescaling of the
constants: by multiplying all constants in v(A) by their least common denominator, we
obtain an equivalent timed automaton (with integer constants).

A bounded U2P-PTA is a U2P-PTA with a bounded parameter domain that assigns to
each parameter a minimum integer bound and a maximum integer bound. That is, each
parameter pi ranges in an interval [ai, bi], with ai, bi ∈ N. Hence, a bounded parameter
domain is a hyperrectangle of dimension M .

A parametric timed automaton (PTA) [AHV93] is a U2P-PTA where, for any edge
e = 〈`, g, a, u, `′〉 ∈ ζ, u : X⇀ {0}.

Definition 2.2 (Concrete semantics of a TA). Given a U2P-PTA A = (Σ, L, `0,X,P, ζ),
and a parameter valuation v, the concrete semantics of v(A) is given by the timed transition
system (S, s0,→), with

• S = {(`, w) ∈ L× RH+}, s0 = (`0,~0);
• → consists of the discrete and (continuous) delay transition relations:

Vol. 17:2 INSTRUCTIONS 13:5

idle mine

checkx

checky

rewardx

rewardy

newTx

t = p
newBlock
x := p1
y := p2
t := 0

x = max ∧ y < max
blockSolutionx

x := 0
y := pv2
t := 0

y = max ∧ x < max
blockSolutiony

x := pv1
y := 0
t := 0

y ≤ v
okBlock

x := 0
y := 0
t := 0y > v

fakeBlock
x := p1
y := p2
t := 0

x ≤ v
okBlock

x := 0
y := 0
t := 0

x > v
fakeBlock
x := p1
y := p2
t := 0

addBlock

t := 0

addBlock

t := 0

Figure 1. A blockchain proof-of-work modeled with a bounded R-U2P-PTA.

– discrete transitions: (`, w)
e7→ (`′, w′), if (`, w), (`′, w′) ∈ S, there exists

e = 〈`, g, a, u, `′〉 ∈ ζ, w′ = [w]v(u), and w |= v(g)

– delay transitions: (`, w)
d7→ (`, w + d), with d ∈ R+.

Moreover, we write (`, w)
e−→ (`′, w′) for a combination of a delay and discrete transitions

where ((`, w), e, (`′, w′)) ∈ → if ∃d,w′′ : (`, w)
d7→ (`, w′′)

e7→ (`′, w′).
Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states of S as the

concrete states of v(A). A (concrete) run of v(A) is a possibly infinite alternating sequence
of concrete states of v(A) and edges starting from the initial concrete state s0 of the form

s0
e0−→ s1

e1−→ · · · em−1−→ sm
em−→ · · · , such that for all i = 0, 1, . . . , ei ∈ ζ, and (si, ei, si+1) ∈ →.

Given a state s = (`, w), we say that s is reachable (or that v(A) reaches s) if s belongs to a
run of v(A). By extension, we say that ` is reachable in v(A), if there exists a state (`, w)
that is reachable.

13:6 É. André, D. Lime, and M. Ramparison Vol. 17:2

Throughout this paper, let K denotes the largest constant in a given U2P-PTA, i. e.,
the maximum of the largest constant compared to a clock in a guard and the largest upper
bound of a parameter (if the U2P-PTA is bounded).

Let us recall the notion of clock region [AD94]. Given a clock x and a clock valuation w,
recall that bw(x)c denotes the integer part of w(x) while frac(w(x)) denotes its fractional
part. We define the same notation for parameter valuations.

Definition 2.3 (clock region). For two clock valuations w and w′, ∼ is an equivalence
relation defined by: w ∼ w′ iff

(1) for all clocks x, either bw(x)c = bw′(x)c or w(x), w′(x) > K;
(2) for all clocks x, y with w(x), w(y) ≤ K, frac(w(x)) ≤ frac(w(y)) iff frac(w′(x)) ≤

frac(w′(y));
(3) for all clocks x with w(x) ≤ K, frac(w(x)) = 0 iff frac(w′(x)) = 0.

A clock region Rc is an equivalence class of ∼.

Two clock valuations in the same clock region (cf. Definition 2.3) reach the same regions
by time elapsing, satisfy the same guards and can take the same transitions [AD94].

In this paper, we address the EF-emptiness problem: given a U2P-PTA A and a
location `, is set of valuations v such that there is a run in v(A) reaching ` is empty? More
formally, the problem can be written as:

EF-emptiness problem:
Input: a U2P-PTA A and a location `
Problem: {v | ∃s0

e0−→ (`1, w1)
e1−→ · · · em−1−→ (`, w) a run of v(A)} = ∅?

3. A decidable subclass of U2P-PTAs

We now impose that, whenever a guard or an update along an edge contains parameters,
then all clocks must be updated (to constants or parameters). Our main contribution is to
prove that this restriction makes EF-emptiness decidable.

Definition 3.1. An R-U2P-PTA is a U2P-PTA where for any edge 〈`, g, a, u, `′〉 ∈ ζ, u is a
total function whenever:

(1) g is a parametric guard, or
(2) u(x) ∈ P for some x ∈ X.

Both conditions of Definition 3.1 are necessary. If we allow parametric guards to be passed
without a full update of clocks, then we obtain a larger class of PTAs for which the EF-
emptiness problem is undecidable as it is for regular PTAs [AHV93]. If we allow partial
parametric updates of clocks, then we obtain a larger class of Reset-to-Parameter Timed
Automaton defined in [ALR18] for which we proved the EF-emptiness problem is undecidable.

In the following we only consider either non-parametric, or (necessarily total) fully
parametric update functions. A total update function which is not fully parametric (i. e., an
update of some clocks to parameters and all others to constants) can be encoded as a total
fully parametric update immediately followed by a (partial) non-parametric update function.

The main idea for proving decidability is the following: given an R-U2P-PTA A we will
construct a finite region automaton that bisimulates A, as in TA [AD94]. Our regions will
contain both clocks and parameters and will be a finite number, due to the finite number

Vol. 17:2 INSTRUCTIONS 13:7

of parameter and their construction similar to clock regions [AD94]. Since parameters are
allowed in guards, we need to construct parameter regions and more restricted clock regions.

We will define a form of Parametric Difference Bound Matrices (viz., p–PDBMs for
precise PDBMs, inspired by [HRSV02]) in which, once valuated by a parameter valuation,
two clock valuations have the same discrete behavior and satisfy the same non-parametric
guards. A p–PDBM will define the set of clocks and parameter valuations that satisfies
it, while once valuated by a parameter valuation, a valuated p–PDBM will define the set
of clock valuations that satisfies it. A key point is that in our p–PDBMs the parametric
constraints used in the matrix will be defined from a finite set of predefined expressions
involving parameters and constants, and we will prove that this defines a finite number of
p–PDBMs. Decidability will come from this fact: the region automaton will evolve in this
finite and stable set of p–PDBMs under time elapsing and update operators.

We define this set of parametric constraints (PLT for parametric linear term) as follows:
PLT = {frac(pi), 1− frac(pi), frac(pi)− frac(pj), frac(pj) + 1− frac(pi), 1, 0, frac(pi)− 1−
frac(pj),−frac(pi), frac(pi) − 1}, for all 1 ≤ i, j ≤ M . Given a parameter valuation v
and d ∈ PLT , we denote by v(d) the term obtained by replacing in d each parameter p
by v(p). Let us now define an equivalence relation between parameter valuations v and v′.

Definition 3.2 (regions of parameters). We write that v _ v′ if

(1) for all parameters p, bv(p)c = bv′(p)c;
(2) for all d1, d2, d3 ∈ PLT , v(d1) ≤ v(d2) + v(d3) iff v′(d1) ≤ v′(d2) + v′(d3).

Parameter regions are defined as the equivalence classes of _, and we will use the notation
Rp for parameter regions. The set of all parameter regions is denoted by Rp. The definition
is in a way similar to Definition 2.3 but also involves comparisons of sums of elements
of PLT . In fact, we will need this kind of comparisons to define our p–PDBMs. Nonetheless
we do not need more complicated comparisons as in R-U2P-PTA whenever a parametric
guard or updated is met the update is a total function: this preserves us from the parameter
accumulation, e.g. obtaining expressions of the form 5frac(pi) − 1 − 3frac(pj) (that may
occur in usual PTAs).

In the following, our p–PDBMs will be matrices of projections on parameters of para-
metric clock constraints, written as matrices of pairs of the form D = (d, /) where d ∈ PLT .
We therefore need to define comparisons on these pairs.

We define an associative and commutative operator ⊕ as /1 ⊕ /2 = < if /1 6= /2, or
/1 if /1 = /2. We define D1 + D2 = (d1 + d2, /1 ⊕ /2). Following the idea of parameter
regions, we define the validity of a comparison between pairs of the form (di, /i) within a
given parameter region, i. e., whether the comparison is true for all parameter valuations v
in the parameter region Rp.

Definition 3.3 (validity of comparison). Let Rp be a parameter region. Given any two
linear terms d1, d2 over P (i. e., of the form

∑
i αipi + d with αi, d ∈ Z), the comparison

(d1, /1) / (d2, /2) is valid for Rp if:

(1) / = <, and either
(a) for all v ∈ Rp, v(d1) < v(d2) evaluates to true regardless of /1, /2, or
(b) for all v ∈ Rp, v(d1) ≤ v(d2) evaluates to true, /1 = < and /2 = ≤;

(2) / = ≤, and either
(a) for all v ∈ Rp, v(d1) < v(d2) evaluates to true regardless of /1, /2, or
(b) for all v ∈ Rp, v(d1) ≤ v(d2) evaluates to true, and /1 = /2, or /1 = <.

13:8 É. André, D. Lime, and M. Ramparison Vol. 17:2

Transitivity is immediate from the definition: if D1 /1 D2 and D2 /2 D3 are valid for Rp,
D1(/1 ⊕ /2)D3 is valid for Rp.

The following lemma derives from Definition 3.3:

Lemma 3.4 (validity of addition). Let d1, d2, d3, d4 ∈ PLT . Let Rp be a parameter region.
If (d1, /1) ≤ (d2, /2) and (d3, /3) ≤ (d4, /4) are valid for Rp then (d1, /1) + (d3, /3) ≤
(d2, /2) + (d4, /4) is valid for Rp.

Proof. See Appendix A.

We can now define our data structure, namely p–PDBMs (for precise Parametric
Difference Bound Matrices), inspired by the PDBMs of [HRSV02]; PDBMs were themselves
inspired by the DBMs of [Dil89]. However, our p–PDBM compare differences of fractional
parts of clocks, instead of clocks as in classical DBMs; therefore, our p–PDBMs are closer to
clock regions than to DBMs and fully contained into clock regions of [AD94]. A p–PDBM is
a pair made of an integer vector (encoding the clocks integer part), and a matrix (encoding
the parametric differences between any two clock fractional parts). Their interpretation also
follows that of PDBMs and DBMs: for i 6= 0, the matrix cell Di,0 = (di,0, /i0) is interpreted
as the constraint frac(xi)/i0 di,0, and D0,i = (d0,i, /0i) as the constraint −frac(xi)/0i d0,i. For
i 6= 0 and j 6= 0, the matrix cell Di,j = (di,j , /ij) is interpreted as frac(xi)− frac(xj) /ij di,j .
Finally for all i, Di,i = (0,≤).

Our p–PDBMs are partitioned into two types: open–p–PDBMs and point–p–PDBMs. A
point–p–PDBM is a clock region defined by only parameters which contains only one clock
valuation; that is, it corresponds to a set of inequalities of the form xi ≤ pj ∧ pj ≤ xi. In
contrast, an open–p–PDBM is a clock region which can contain several clock valuations
satisfying some possibly parametric constraints, or contain at least one clock valuation
satisfying non-parametric constraints (as the corner-point of [AD94]). In particular, the
initial clock region {0H} and any clock region {EHi } where Ei is an integer for all clock xi,
is an open–p–PDBM.

Basically, only the first p–PDBM after a (necessarily total) parametric clock update will
be a point–p–PDBM; any following p–PDBM will be an open–p–PDBM until the next (total)
parametric update. The following two definitions impose several conditions to p–PDBMs
that ensure we build satisfiable ones.

Definition 3.5 (open–p–PDBM). Let Rp be a parameter region. An open–p–PDBM for Rp
is a pair (E,D) with E = (E1, . . . , EH) a vector of H integers (or ∞) which is the integer

part of each clock, and D is an (H + 1)2 matrix where each element Di,j is a pair (di,j , /ij)
for all 0 ≤ i, j ≤ H, where di,j ∈ PLT . Moreover, for all 0 ≤ i ≤ H, Di,i = (0,≤). In
addition:

(1) For all i, (−1, <) ≤ D0,i ≤ (0,≤) and (0,≤) ≤ Di,0 ≤ (1, <) are valid for Rp,
(2) For all i 6= 0, j 6= 0, either (0,≤) ≤ Di,j ≤ (1, <) is valid for Rp and (−1, <) ≤ Dj,i ≤

(0,≤) is valid for Rp or (0,≤) ≤ Dj,i ≤ (1, <) is valid for Rp and (−1, <) ≤ Di,j ≤ (0,≤)
is valid for Rp.

(3) For all i, j, if di,j = −dj,i and is different from 1 then /ij = /ji = ≤, else /ij = /ji = <,
(4) For all i, j, k, Di,j ≤ Di,k +Dk,j is valid for Rp (canonical form), and
(5) (a) There is at least one i s.t. Di,0 = D0,i = (0,≤), or

(b) there is at least one i s.t. Di,0 = (1, <) and for all j s.t. D0,j = (0, /0j), then we
have /0j = <.

Vol. 17:2 INSTRUCTIONS 13:9

Condition 1 ensures fractional parts of clocks valuations have only non negative values.
Condition 2 ensures the consistency of differences of clocks i. e., frac(x) − frac(y) ≤ 0 iff
0 ≤ frac(y)− frac(x). Condition 3 ensures the only possible closed sets of clock valuations
are parametric singleton of clock valuations. Condition 4 is the canonical form which ensures,
as described in [HRSV02, BY03], that the open–p–PDBM has the tightest possible bounds
i. e., no constraint frac(x)− frac(y) /xy dx,y can be strengthened without losing solutions.

An open–p–PDBM satisfying condition 5a can be seen as a subregion of an open line
segment or a corner point region of [AD94, fig. 9 example 4.4] (it can be seen as a border
region) and one satisfying condition 5b can be seen as a subregion of an open region
of [AD94, fig. 9 example 4.4] (it can be seen as a center region). Remark that sets of the
form {frac(w(x)) | 0 ≤ frac(w(x)) ≤ 1} are forbidden by Definition 3.5 (3), as in the regions
of [AD94].

Let Rp be a parameter region. In the following, p–PDBM�(Rp) is the set of all possible
open–p–PDBMs (E,D) for Rp. This definition is similar to that of [HRSV02, def. 3.1].

The second type is the point–p–PDBM. It represents the unique clock valuation (for a
given parameter valuation) obtained after a total parametric update in an U2P-PTA.

Definition 3.6 (point–p–PDBM). Let Rp be a parameter region. A point–p–PDBM for Rp
is a pair (E,D) where D is an (H + 1)2 matrix where each element Di,j is a pair (di,j ,≤)
and for all 0 ≤ i, j ≤ H, di,0 = frac(p1) = −d0,i, and di,j = frac(p1)− frac(p2) = −dj,i, for
any p1, p2 ∈ P. and for all 1 ≤ i ≤ H, Ei = bpkc if di,0 = frac(pk), for 1 ≤ k ≤ M . In
addition:

(1) For all i, (−1, <) ≤ D0,i ≤ (0,≤) and (0,≤) ≤ Di,0 ≤ (1, <) are valid for Rp,
(2) For all i, j, k, Di,j ≤ Di,k +Dk,j is valid for Rp (canonical form).

The fact that D is antisymmetric i. e., for all i, j, Di,j = −Dj,i, means that each clock is
valuated to a parameter and each difference of clocks is valuated to a difference of parameters.
Conditions 1 and 2 are the same as for open–p–PDBMs.

The set of all point–p–PDBM for Rp is denoted by p–PDBM�(Rp), and the set of all
p–PDBMs for Rp is denoted by p–PDBM(Rp) (hence p–PDBM(Rp) = p–PDBM�(Rp) ∪
p–PDBM�(Rp)).

The use of validity ensures the consistency of the p–PDBM. We denote the set of all p–
PDBMs that are valid for Rp by p–PDBM(Rp). Given a p–PDBM (E,D), it defines the sub-
set of RH ∪QM satisfying the constraints

∧
i,j∈[0,H] frac(xi)− frac(xj)/i,j di,j∧

∧
i∈[1,H]bxic =

Ei. Given a p–PDBM (E,D) and a parameter valuation v, we denote by (E, v(D)) the
valuated p–PDBM, i. e., the set of clock valuations defined by the inequalities:∧

i,j∈[0,H]

frac(xi)− frac(xj) /i,j v(di,j) ∧
∧

i∈[1,H]

bxic = Ei.

For a clock valuation w, we write w ∈ (E, v(D)) if it satisfies all constraints of (E, v(D))1.
The following two lemmas derive from the above definitions of point–p–PDBM and

p–PDBMs:

Lemma 3.7 (positivity of reflexivity). Let Rp be a parameter region and (E,D) be a
p–PDBM for Rp. For all clocks i, j, (0,≤) ≤ Di,j +Dj,i is valid for Rp.

Proof. See Appendix B.

1If v is a valuation assigning an integer to each parameter, then (E, v(D)) is DBM as defined in [BY03].

13:10 É. André, D. Lime, and M. Ramparison Vol. 17:2

Lemma 3.8 (neutral element of the set of cells). Let Rp be a parameter region and (E,D)
be a p–PDBM for Rp. For all clocks i, j, Di,j ≤ Di,j +Dj,j and Di,j ≤ Di,i +Di,j are valid
for Rp.

Proof. See Appendix C.

But let us first clarify our needs graphically. Intuitively, our p–PDBMs are partitioned
into three types.

(1) The point–p–PDBM is a clock region defined by only parameters which contains
only one clock valuation; it represents the unique clock valuation (for a given parameter
valuation) obtained after a total parametric update in an U2P-PTA. Each clock is valuated
to a parameter and each difference of clocks is valuated to a difference of parameters (it
corresponds to constraints of the form x = p and x− y = pi − pj).

Let v be a parameter valuation. We assume bv(p2)c = bv(p1)c = k ∈ N and frac(v(p1)) >
frac(v(p2)). The p–PDBM obtained after an update u(x) = v(p2) and u(y) = v(p1) is
represented using the following pair (where the indices 0,x,y are shown for the sake of
comprehension)

(E,D) =
((k

k

)
,


0 x y

0 (0,≤) (−frac(p2),≤) (−frac(p1),≤)
x (frac(p2),≤) (0,≤) (frac(p2)− frac(p1),≤)
y (frac(p1),≤) (frac(p1)− frac(p2),≤) (0,≤)

)

y

(k, k + 1)

frac(v(p1))

(k, k)
frac(v(p2)) (k + 1, k) x

1− frac(v(p1))

Figure 2. Graphical representations of
p–PDBMs and [AD94] regions

Once valuated with v, it contains a unique clock
valuation. We represent it as the black dot in
Figure 2.

(2) In contrast, an open–p–PDBM satisfying
condition (5a) is a clock region which can contain
several clock valuations satisfying some possibly
parametric constraints, or contain at least one clock
valuation satisfying non-parametric constraints (as
the corner-point region of [AD94]). In particu-
lar, the initial clock region {0H} and any clock
region that is a single integer clock valuation is
a p–PDBM. An open–p–PDBM satisfying condi-
tion 5a is characterized by at least one clock x s.t.
Dx,0 = D0,x = (0,≤) and can be seen as a subregion of an open line segment or a corner
point region of [AD94, fig. 9 example 4.4]. After an immediate update of x to k, the above
p–PDBM (E,D) becomes

(E,D) =
((k

k

)
,


0 x y

0 (0,≤) (0,≤) (−frac(p1),≤)
x (0,≤) (0,≤) (−frac(p1),≤)
y (frac(p1),≤) (frac(p1),≤) (0,≤)

)

We represent it once valuated with v as the blue dot in Figure 2. The open line segment
of [AD94, fig. 9 example 4.4] can be represented as

((k
k

)
,


0 x y

0 (0,≤) (0,≤) (0, <)
x (0,≤) (0,≤) (0, <)

y (1, <) (1, <) (0,≤)

)

and is depicted as the vertical left black line in Figure 2.
(3) An open–p–PDBM satisfying condition (5b) is a clock region which can contain

several clock valuations satisfying some possibly parametric constraints (as the open region
of [AD94]). An open–p–PDBM satisfying condition (5b) is characterized by at least one

Vol. 17:2 INSTRUCTIONS 13:11

clock y s.t. Dy,0 = (1, <) and for all x s.t. D0,x = (0, /ox), then we have /ox = < and can
be seen as a subregion of an open region of [AD94, fig. 9 example 4.4]. After some time
elapsing, and before any clock valuation reaches the next integer k + 1—therefore the next
open–p–PDBM satisfying condition 5a—, the above p–PDBM (E,D) becomes

(E,D) =
((k

k

)
,


0 x y

0 (0,≤) (0, <) (−frac(p1), <)

x (1− frac(p1), <) (0,≤) (−frac(p1),≤)
y (1, <) (frac(p1),≤) (0,≤)

)

We represent it once valuated with v as the red line in Figure 2. The open region of [AD94,
fig. 9 example 4.4] can be represented as

((k
k

)
,


0 x y

0 (0,≤) (0, <) (0, <)

x (1, <) (0,≤) (0, <)

y (1, <) (1, <) (0,≤)

)

and is depicted as the top left black triangle in Figure 2.
Remark that sets of the form {frac(w(x)) | 0 ≤ frac(w(x)) ≤ 1} are in contradiction with

Definition 3.5 (3) and therefore cannot be part of a p–PDBM, as in the regions of [AD94].
Basically, only the first p–PDBM after a (necessarily total) parametric clock update will be
a point–p–PDBM; any following p–PDBM will be a open–p–PDBM satisfying condition 5a
or 5b until the next (total) parametric update.

The differentiation made in the previous paragraph between open–p–PDBMs satisfying
condition 5a and 5b is intended to give an intuition to the reader about the inclusion of
p–PDBMs into [AD94] clock regions. Technical details are given in the following Section 4. In
the following subsections Sections 4.1 to 4.5, we are going to define operations on p–PDBMs
(i. e., update of clocks, time elapsing and guards satisfaction), and will show that the set
of p–PDBMs is stable under these operations.

4. Operations on p–PDBMs

4.1. Non-parametric update. To apply a non-parametric update on a p–PDBM, following
classical algorithms for DBMs [BY03], we define an update operator, given in Algorithm 1.
Given a p–PDBM (E,D) and unp a non-parametric update function that updates a clock x
to k ∈ N, update((E,D), unp) defines a new p–PDBM by

(1) updating Ex to k;
(2) setting the fractional part of x to 0: Dx,0 := D0,x := (0,≤);
(3) updating the new difference between fractional parts with all other clocks i, which is

the range of values i can currently take: Dx,i := D0,i and Di,x := Di,0.

Example 4.1. Here is an open–p–PDBM satisfying condition 5b on the left of the figure
below. Formally, it is written:

(E,D) =
((k

k

)
,


0 x y

0 (0,≤) (−frac(p2), <) (−frac(p1), <)
x (frac(p2) + 1− frac(p1), <) (0,≤) (−frac(p1) + frac(p2),≤)
y (1, <) (frac(p1)− frac(p2),≤) (0,≤)

)

13:12 É. André, D. Lime, and M. Ramparison Vol. 17:2

After an update of y to k prior to reaching k + 1, here is the open–p–PDBM satisfying
condition 5a obtained, on the right of the figure below. Formally, it is written:

(E,D) =
((k

k

)
,


0 x y

0 (0,≤) (−frac(p2), <) (0,≤)
x (frac(p2) + 1− frac(p1), <) (0,≤) (frac(p2) + 1− frac(p1), <)

y (0,≤) (−frac(p2), <) (0,≤)

)

Algorithm 1: update(D,unp): for all clock x where unp is defined, update
frac(x) := 0

1 foreach x where unp(x) is defined do
2 Dx,0 := D0,x = (0,≤)

3 for i from 1 to H do
4 Dx,i = D0,i

5 Di,x = Di,0

6 end

7 end

Definition 4.2 (update of a p–PDBM). Let unp be a non-parametric update function.
Given (E,D) ∈ p–PDBM(Rp), we define the update of (E,D), denoted by (E′, D′) =
update((E,D), unp) as: D′ is the result of Algorithm 1 and for each clock x if unp(x) is
defined E′x := unp(x), E′x := Ex otherwise.

Lemma 4.3 (stability under update). Let Rp be a parameter region and

(E,D) ∈ p–PDBM(Rp).

Let unp be a non-parametric update. Then update((E,D), unp) ∈ p–PDBM�(Rp).

Proof. Intuitively, we update in (E,D) the lower and upper bounds of some clocks to (0,≤)
and the difference between two clocks Di,j to D0,j if xi is updated: that is, the new difference
between two clocks if one has been updated is just the lower/upper bound of the one that is
not updated. This allows us to conserve the canonical form as we only “moved” some cells
in D that already verified the canonical form. Therefore update((E,D), unp) is a p–PDBM.
See Appendix D for details.

Applying a non-parametric update on any point–p–PDBM transforms it into an open–
p–PDBM, and open–p–PDBMs are stable under update. It can seem a paradox that the
(non-parametric) update of a point–p–PDBM becomes an open–p–PDBM; in fact, it remains
geometrically speaking a point, i. e., a singleton containing one clock valuation. Recall

Vol. 17:2 INSTRUCTIONS 13:13

that our open–p–PDBMs include p–PDBMs geometrically corresponding to a point for each
valuation. In contrast, point–p–PDBMs are also punctual (for each valuation), but are fully
parametric.

The following lemma states that the update operator behaves as expected.

Lemma 4.4 (semantics of update on p–PDBM(Rp)). Let Rp be a parameter region and
(E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. Let unp be a non-parametric update. For all w,
[w]unp

∈ update((E, v(D)), unp) iff w ∈ (E, v(D)).

Proof. The technical part is (⇒). The idea is to prove that, given w′ ∈ update((E, v(D)), unp)
there is a non-empty set of clock valuations w s.t. w′ = [w]unp

that is precisely defined by

the constraints in (E, v(D)). See Appendix E for details.

4.2. Parametric update. Given (E,D) ∈ p–PDBM(Rp) we write update((E,D), u) to
denote the update of (E,D) by u, when u is a total parametric update function, i. e.,
updating the set of clocks exclusively to parameters. We therefore obtain a point–p–PDBM,
containing the parametric constraints defining a unique clock valuation. The semantics is
straightforward. Recall that a total update function which is not fully parametric (i. e., an
update of some clocks to parameters and some others to constants) can be encoded as a
total parametric update immediately followed by a partial non-parametric update function.

4.3. Time elapsing. Given a parameter region Rp, recall that constraints satisfied by
parameters are known, and we can order elements of PLT . Thanks to this order, within
a p–PDBM (E,D) the clocks with the (possibly parametric) largest fractional part i. e.,
the clocks that have a larger fractional part than any other clock, can always be identified
by their bounds in D. For a p–PDBM (E,D), we define the set of clocks with the largest
fractional part (LFP) as LFPRp(D) = {x ∈ [1, H] | (0,≤) ≤ Dx,i is valid for Rp, for all
0 ≤ i ≤ H}. Clocks belonging to LFP are the first to reach the upper bound 1 by letting
time elapse.

Definition 4.5 (clocks with the largest fractional part in a p–PDBM). Let Rp be a parameter
region and (E,D) ∈ p–PDBM(Rp). A clock with the (possibly parametric) largest fractional
part is a clock x s.t. for all 0 ≤ i ≤ H, (0,≤) ≤ Dx,i is valid for Rp.

There is at least one clock with the (possibly parametric) largest fractional part:

Lemma 4.6 (existence of a clock with the largest fractional part). Let Rp be a parameter
region and (E,D) ∈ p–PDBM(Rp). There is at least one clock x s.t. for all 0 ≤ i ≤ H,
(0,≤) ≤ Dx,i is valid for Rp.

Proof. See Appendix F.

Note that several clocks may have the largest fractional parts (up to some syntactic
replacements 2, in that case they satisfy the same constraints in (E,D)).

Suppose, given a parameter valuation v ∈ Rp, we have two different syntactic expressions
that are equal once valuated (such as, given p, v(p) = 1− v(p) and by Definition 3.2 if it is

2Let v ∈ Rp and suppose, we have two different syntactic expressions, such as p, 1− p that are equal once
valuated i. e., v(p) = 1− v(p). From Definition 3.2 remark that if it is for v, it is for any v′ ∈ Rp. We choose
one e.g. 1− v(p) and replace the second, v(p), everywhere it appears.

13:14 É. André, D. Lime, and M. Ramparison Vol. 17:2

for v, it is for any v′ ∈ Rp). Then we choose one and replace the second in every constraint
where it appears (e.g. replace 1−v(p) by v(p) everywhere). For a p–PDBM (E,D), we define
the set of clocks with the largest fractional part (LFP) as LFPRp(D) = {x ∈ X | 0 ≤ Dx,i is
valid for Rp, for all 0 ≤ i ≤ H}.

As we are able, thanks to the parameter regions, to order our parameter valuations (i. e.,
whether one is greater or less than another one), we can define LFP from the constraints
defined in the point–p–PDBM. We will define and apply successively two time-elapsing
algorithms: the first one starts from a point–p–PDBM or an open–p–PDBM respecting
condition Definition 3.5 (5a). We will prove that we obtain an open–p–PDBM respecting
condition Definition 3.5 (5b). The second one starts from an open–p–PDBM respecting
condition Definition 3.5 (5b) and will define constraints defining the possible clocks valuations
exactly when any clock of LFP has reached its upper bound 1. We will prove that we obtain
an open–p–PDBM respecting condition Definition 3.5 (5a). As we will obtain at each
iteration of the algorithm an open–p–PDBM respecting either condition Definition 3.5 (5a)
or (5b), this will prove that we have a stable set of open–p–PDBMs. Now we explain our
algorithms more precisely.

Clocks belonging to LFP are the first to reach the upper bound 1 by letting time elapse.
Since LFP can contain multiple clocks and they have the same fractional part, we can
consider any x ∈ LFP.

Let (E,D) ∈ p–PDBM(Rp) and x ∈ LFPRp(D). To formalize time elapsing until the
largest fractional part frac(x) reaches 1, we define a time elapsing operator that will have two
variants depending on the input: open–p–PDBM (Definition 3.5) satisfying condition (5a) and
point–p–PDBM (Definition 3.6) or open–p–PDBM (Definition 3.5 satisfying condition (5b)).

Given an open–p–PDBM satisfying condition 5a or a point–p–PDBM (E,D) with Ex = k,
TE ((E,D)) described in Algorithm 2 and named TE<, defines a new open–p–PDBM
satisfying condition 5b by

(1) setting Dx,0 := (1, <) as x is the first one that will reach k + 1;
(2) updating the upper bound of all other clocks i, which has increased: Di,0 := Di,x+(1, <);
(3) updating all lower bounds as they have to leave the border : D0,i := D0,i + (0, <) (x

included).

This gives the range of possible clock valuations before frac(x) reaches 1. Intuitively it
represents the transformation from an open line segment or the corner-point region of [AD94]
into an open region of [AD94].

Example 4.7. Here is an open–p–PDBM satisfying condition 5a, on the left of the figure
below. Formally, it is written:

(E,D) =
((k

k

)
,


0 x y

0 (0,≤) (−frac(p2), <) (0,≤)
x (frac(p2) + 1− frac(p1), <) (0,≤) (frac(p2) + 1− frac(p1), <)

y (0,≤) (−frac(p2), <) (0,≤)

)

Time elapsing before x ∈ LFP reaches the next integer gives the following open–p–PDBM
satisfying condition 5b, on the right of the figure below. Formally, it is written:

(E,D) =
((k

k

)
,


0 x y

0 (0,≤) (−frac(p2), <) (0, <)
x (1, <) (0,≤) (frac(p2) + 1− frac(p1), <)

y (1− frac(p2), <) (−frac(p2), <) (0,≤)

)

Vol. 17:2 INSTRUCTIONS 13:15

Algorithm 2: TE<((E,D)): set upper bound of all frac(x) ∈ LFPRp(D) to 1

1 pick x ∈ LFPRp(D)

2 for i from 1 to H do
3 if i ∈ LFPRp(D) then
4 Di,0 := (1, <)

5 else
6 Di,0 := Di,x + (1, <)

7 end

8 D0,i := D0,i + (0, <)

9 end

The result of Algorithm 2 is denoted by TE<((E,D)) and leaves E unchanged.
The time elapsing operator also operates the transformation from an open region

of [AD94] to the upper open line segment or the corner-point region of [AD94], given in
Algorithm 3 as TE=. Given an open–p–PDBM (E,D) satisfying condition 5b where Ex = k,
TE ((E,D)) defines a new open–p–PDBM satisfying condition 5a by

(1) setting Dx,0 := D0,x := (0,≤) (intuitively both became (1,≤)) and Ex = k + 1 (if
Ex ≤ K + 1), as x is now in the upper border ;

(2) updating the upper/lower bounds of all other clocks i: Di,0 := Di,x + (1,≤) and
D0,i := Dx,i + (−1,≤);

(3) updating the new difference between fractional parts with all other clocks i, which is
the range of values i can currently take (as in the update operator): Dx,i := D0,i and
Di,x := Di,0.

Example 4.8. Here is an open–p–PDBM satisfying condition 5b, on the left of the figure
below. Formally, it is written:

(E,D) =
((k

k

)
,


0 x y

0 (0,≤) (−frac(p2), <) (0, <)
x (1, <) (0,≤) (frac(p2) + 1− frac(p1), <)

y (1− frac(p2), <) (−frac(p2), <) (0,≤)

)

When x ∈ LFP reaches k + 1, the open–p–PDBM satisfying condition 5a obtained is given
on the right of the figure below. Formally, it is written:

(E,D) =
((k + 1

k

)
,


0 x y

0 (0,≤) (0,≤) (−frac(p1) + frac(p2), <)

x (0,≤) (0,≤) (−frac(p1) + frac(p2), <)

y (1− frac(p2), <) (1− frac(p2), <) (0,≤)

)

13:16 É. André, D. Lime, and M. Ramparison Vol. 17:2

Algorithm 3: TE=((E,D)): set upper and lower bound of all frac(x) ∈ LFPRp(D)
to 1

1 pick x ∈ LFPRp(D)

2 for i from 1 to H do
3 if i ∈ LFPRp(D) then
4 Di,0 := (0,≤)

5 D0,i := (0,≤)

6 Ei := Ei + 1

7 else
8 Di,0 := Di,x + (1,≤)

9 D0,i := Dx,i + (−1,≤)

10 end

11 end

12 for i from 1 to H do
13 Di,x := Di,0

14 Dx,i := D0,i

15 end

The result of Algorithm 3 is denoted by TE=((E,D)).

Definition 4.9 (time elapsing in a p–PDBM). Let Rp be a parameter region and (E,D) ∈
p–PDBM�(Rp) ∪ p–PDBM�(Rp). We define (E′, D′) = TE ((E,D)) as applying either
TE< if (E,D) respects condition 5a or (E,D) ∈ p–PDBM�(Rp), or TE= if (E,D) respects
condition 5b.

Lemma 4.10 (stability under time elapsing). Let Rp be a parameter region. Let (E,D) ∈
p–PDBM(Rp). Then TE ((E,D)) ∈ p–PDBM(Rp).

Proof. Although we perform some additions such as Dj,i + (1, <), we do not create new
expressions that are not in PLT . In fact, this addition is performed on a negative term
(e.g. frac(p)− 1), as xi is a clock with the largest fractional part and adding 1 transforms
it into another term of PLT . The intuition is similar when performing additions such
as Di,j + (−1,≤): as xi is a clock with the largest fractional part, di,j is a positive term.
The canonical form is also preserved by the last setting operations of the algorithm, as in
the update operator. Therefore TE ((E,D)) is a p–PDBM. See Appendix G for details.

Note that, by Lemma 4.10 (E′, D′) is a p–PDBM. open–p–PDBMs are stable under TE<

and TE=, switching the condition they respect (5a, 5b). Applying TE< on a point–p–PDBM
transforms it into an open–p–PDBM.

The following proposition proves that time elapsing behaves as we expect.

Vol. 17:2 INSTRUCTIONS 13:17

Proposition 4.11 (semantics of p–PDBM under TE). Let Rp be a parameter region and
(E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. There exists w′ ∈ TE ((E, v(D))) iff there exist
w ∈ (E, v(D)) and a delay δ s.t. w′ = w + δ.

Proof. This proof is quite technical. Intuitively, we bound the difference of each upper
bound v(di,0) and w(xi) and each lower bound v(d0,i) and w(xi). This allows us to take a
delay δ inside these bounds that allows us to reach the next p–PDBM. See Appendix H for
details.

Running example: Figure 3 represents graphically different p–PDBMs obtained after an
update u(x) = v(p2) and u(y) = v(p1) (figure 1). Time elapsing before y ∈ LFP reaches the
next integer gives the open–p–PDBM satisfying condition 5b (figure 2)

(E,D) =
((k

k

)
,


0 x y

0 (0,≤) (−frac(p2), <) (−frac(p1), <)
x (frac(p2) + 1− frac(p1), <) (0,≤) (−frac(p1) + frac(p2),≤)
y (1, <) (frac(p1)− frac(p2),≤) (0,≤)

)

After an update of y to k prior to reaching k + 1, the open–p–PDBM satisfying condition 5a
obtained is (figure 3)

(E,D) =
((k

k

)
,


0 x y

0 (0,≤) (−frac(p2), <) (0,≤)
x (frac(p2) + 1− frac(p1), <) (0,≤) (frac(p2) + 1− frac(p1), <)
y (0,≤) (−frac(p2), <) (0,≤)

)

Time elapsing before x ∈ LFP reaches the next integer gives the open–p–PDBM satisfying
condition 5b (figure 4)

(E,D) =
((k

k

)
,


0 x y

0 (0,≤) (−frac(p2), <) (0, <)

x (1, <) (0,≤) (frac(p2) + 1− frac(p1), <)

y (1− frac(p2), <) (−frac(p2), <) (0,≤)

)

When x ∈ LFP reaches k + 1, the open–p–PDBM satisfying condition 5a obtained is (figure
5)

(E,D) =
((k + 1

k

)
,


0 x y

0 (0,≤) (0,≤) (−frac(p1) + frac(p2), <)
x (0,≤) (0,≤) (−frac(p1) + frac(p2), <)

y (1− frac(p2), <) (1− frac(p2), <) (0,≤)

)

4.4. Non-parametric guard. From [AD94, Section 4.2] we have that either every clock
valuation of a clock region satisfies a guard, or none of them does. Note that a p–PDBM for Rp
is contained into a clock region of Definition 2.3 (see Appendix I for more details), therefore
we have that if w ∈ (E, v(D)) satisfies a non-parametric guard g, then for all w′ ∈ (E, v(D))
we also have w′ satisfies g.

Let v ∈ Rp. We define v ∈ guard∀(g,E,D) iff for all w ∈ (E, v(D)), w |= g. As any
two v, v′ ∈ Rp satisfy the same constraints, the following lemma is straightforward

Lemma 4.12. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. Let g be a non-parametric
guard. If v ∈ guard∀(g,E,D), then for all v′ ∈ Rp, v′ ∈ guard∀(g,E,D).

Proof. See Appendix I.

13:18 É. André, D. Lime, and M. Ramparison Vol. 17:2

Figure 3. Representation of p–PDBMs in two dimensions with two
clocks x, y, two parameters p1, p2 and v s.t. bv(p1)c = bv(p2)c and
frac(v(p1)) > frac(v(p2)).

4.5. Parametric guard. As for the previous result, using a projection on parameters i. e.,
eliminating clocks, does not create new constraints on parameters that are not already

Vol. 17:2 INSTRUCTIONS 13:19

in a parameter region Rp. Indeed, a parametric guard g only adds new constraints of
the form x ./ p which gives, when eliminating clocks in both a p–PDBM (E,D) and a
parametric guard, again a comparison between elements of PLT . Therefore, these new
constraints already belong to PLT and we can decide whether the set of clock valuations
satisfying these constraints is non-empty i. e., given v ∈ Rp, v(g) is satisfied by some clock
valuation w ∈ (E, v(D)). This is a key point in the overall process of proving the decidability
of our R-U2P-PTAs.

Note that there will also be additional constraints involving clocks (with other clocks,
constants or parameters), but they will not be relevant as we immediately update all clocks,
therefore replacing these constraints with new constraints encoding the clock updates.

Let v ∈ Rp. We define v ∈ p-guard∃(g,E,D) iff there is a w ∈ (E, v(D)) s.t. w |=
v(g).3 Again, as any two v, v′ ∈ Rp satisfy the same constraints, the following lemma is
straightforward

Lemma 4.13. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. Let g be a parametric guard.
If v ∈ p-guard∃(g,E,D), then for all v′ ∈ Rp, v′ ∈ p-guard∃(g,E,D).

Proof. See Appendix J.

Now that we have defined useful operations on p–PDBMs, we are going, given a parameter
region Rp, to construct a finite region automaton in which for any run, there is an equivalent
concrete run in the R-U2P-PTA.

5. Parametric region automaton

Let (E,D) ∈ p–PDBM(Rp), we say (E′, D′) ∈ Succ((E,D)) ⇔ ∃ i ≥ 0 s.t. (E′, v(D′)) =

TE i((E,D)). In other words, (E′, D′) is obtained after applying TE ((E,D)) a finite number
of times. Succ((E,D)) is also called the time successors of (E,D).

In order to finitely simulate an R-U2P-PTA, we create a parametric region automaton.

Definition 5.1 (Parametric region automaton). Let Rp be a parameter region. For an
R-U2P-PTA A = (Σ, L, `0,X,P, ζ), given (E0, D0) the initial p–PDBM where all clocks are 0,
the parametric region automaton R(A) over Rp is the tuple (L′,Σ, L′0, ζ

′) where:

(1) L′ = L× p–PDBM(Rp)
(2) L′0 = (`0, (E0, D0))
(3) ζ ′ = {

(
(`, (E,D)), a, (`′, (E′, D′))

)
∈ L′ × Σ × L′ | either ∃e = 〈`, g, a, unp, `′〉 ∈ ζ,

g is a non-parametric guard, ∃(E′′, D′′) ∈ Succ((E,D)), Rp ⊆ guard∀(g, (E
′′, D′′))

and (E′, D′) = update(E′′, D′′, unp) is an open–p–PDBM, or ∃e = 〈`, g, a, u, `′〉 ∈ ζ,
g is a parametric guard, ∃(E′′, D′′) ∈ Succ((E,D)), Rp ⊆ p-guard∃(g, (E

′′, D′′)) and

(E′, D′) = update(E′′, D′′, u) is a point–p–PDBM.}
Let Rp be a parameter region, A be an R-U2P-PTA and R(A) = (L′,Σ, L′0, ζ

′) its parametric
region automaton over Rp. A run in R(A) is an untimed sequence
σ : (`0, (E0, D0))e0(`1, (E1, D1))e1 · · · (`i, (Ei, Di))ei(`i+1, (Ei+1, Di+1))ei+1 · · · such that for

all i we have
(
(`i, (Ei, Di)), ai, (`i+1, (Ei+1, Di+1))

)
∈ ζ ′, which we also write (`i, (Ei, Di))

ei−→
(`i+1, (Ei+1, Di+1)). Note that we label our transitions with the edges of the R-U2P-PTA.

3Remark that here is why our construction works for EF-emptiness, but cannot be used for, e.g., AF-
emptiness (“is there a parameter valuation such that all runs reach a goal location `”): unlike guard∀(g,E,D),
not all clock valuations in a p–PDBM (E, v(D)) can satisfy a parametric guard if v ∈ p-guard∃(g,E,D).

13:20 É. André, D. Lime, and M. Ramparison Vol. 17:2

(`0,~0) (`1, w1) · · · (`i, wi) (`i+1, wi+1) · · · (`j , wj) (`f , wf)
e0 e1 ei−1

ei ei+1 ej−1 ej

(a) run of A with one parametric transition ei

(`0, (E0, D0)) (`1, (E1, D1)) · · · (`i, (Ei, Di)) (`i+1, (Ei+1, Di+1)) · · · (`j , (Ej , Dj)) (`f , (Ef , Df))
e0 e1 ei−1

ei ei+1 ej−1 ej

(b) run of R(A) with one parametric transition ei

Figure 4. A run in an R-U2P-PTA A (above) and its equivalent run in R(A)
(below)

6. Decidability of EF-emptiness and synthesis

Using our construction of the parametric region automaton R(A) for a given R-U2P-PTA
A, we state the next proposition.

Proposition 6.1. Let Rp be a parameter region. Let A be an R-U2P-PTA and R(A) its

parametric region automaton over Rp. There is a run σ : (`0, (E0, D0))
e0−→ (`1, (E1, D1))

e1−→
· · · (`f−1, (Ef−1, Df−1))

ef−1−→ (`f , (Ef , Df)) in R(A) iff for all v ∈ Rp there is a run ρ :

(`0, w0)
e0−→ (`1, w1)

e1−→ · · · (`f−1, wf−1)
ef−1−→ (`f , wf) in v(A) s.t. for all 0 ≤ i ≤ f ,

wi ∈ (Ei, v(Di)).

Proof. We prove this result by induction on the length of the run. It is quite direct as we
construct runs without parametric guards. See Appendix K for details.

Example 6.2. Consider Figure 4. Let A be an R-U2P-PTA, Rp a parameter region

and v ∈ Rp. Suppose there is a run in A, starting from the initial location (`0,~0) reaching a
goal location (`f , wf). Along this run, all edges are non-parametric transitions but ei =

〈`i, g, ai, u, `i+1〉. That is, u is a total parametric update, and g is a possibly parametric
guard.

The first part of this run, from (`0,~0) to (`i, wi) starts from (l0, (E0, D0)) where (E0, D0)

is the p–PDBM of the initial clock region {~0}, and ends in (`i, (Ei, Di)). The second part of
this run, from (`i+1, wi+1) to (`f , wf) starts from (li+1, (Ei+1, Di+1)) where (Ei+1, Di+1) is
a point–p–PDBM, and can reach (`f , (Ef , Df)) and further ends in (`s, (Es, Ds)).

These runs contain only non-parametric transitions, and as there is an edge in A
from (`i, wi) to (`i+1, wi+1), we have to bisimulate this run inR(A) containing the parametric
transition ei , where update((Ei, Di), u) gives (Ei+1, Di+1).

From Proposition 6.1, we deduce that if there is a run reaching a goal location in an
instantiated R-U2P-PTA, then for another parameter valuation in the same parameter region
there is a run in the instantiated R-U2P-PTA with the same locations and transitions (but
possibly different delays), reaching the same location.

Theorem 6.3. Let A be an R-U2P-PTA. Let Rp be a parameter region and v ∈ Rp. If

there is a run ρ = (`0, w0)
e0−→ · · · ei−1−→ (`i, wi) in v(A), then for all v′ ∈ Rp there is a

run ρ′ = (`0, w
′
0)

e0−→ · · · ei−1−→ (`i, w
′
i) in v′(A) with for all 0 ≤ j ≤ i, there is (Ej , Dj) ∈

p–PDBM(Rp) s.t. wj ∈ (Ej , v(Dj)) and w′j ∈ (Ej , v
′(Dj)).

Proof. Let v ∈ Rp and ρ a run of v(A) reaching (`i, wi). From Proposition 6.1, there is a
run σ in R(A) s.t. each clock valuation at a location j in ρ is in the p–PDBM (Ej , Dj) at
the same location in σ. Still from Proposition 6.1, for all v′ ∈ Rp there is a run ρ′ in v′(A)

Vol. 17:2 INSTRUCTIONS 13:21

reaching (`i, w
′
i) s.t. each clock valuation at a location j in ρ′ is in the p–PDBM (Ej , Dj) at

the same location in σ (note that possibly v = v′). Therefore, we have for all 0 ≤ j ≤ i, there
is (Ej , Dj) ∈ p–PDBM(Rp) s.t. wj ∈ (Ej , v(Dj)) and w′j ∈ (Ej , v

′(Dj)) and the expected
result.

Note that there is a finite number of p–PDBMs for each parameter region Rp. Let

(E,D) ∈ p–PDBM(Rp) and consider PLT : D is an (H + 1)2 matrix made of pairs (d, /)
where d ∈ PLT and / ∈{≤, <}. Therefore the number of possible D is bounded by(

2×
(

2 + 3×
(
M

2

)
+ 4×M

))(H+1)2

.

Moreover the number of E is unbounded, but only a finite subset of all values needs to
be explored, i. e., those smaller than K + 1: indeed, following classical works on timed
automata [AD94, BDFP04], (integer) values exceeding the largest constant used in the
guards or the parameter bounds are equivalent.

To test EF-emptiness given an R-U2P-PTA A and a goal location `, we first enumerate
all parameter regions (which are a finite number), and apply for each Rp the following process:
we pick v ∈ Rp (e.g. using a linear programming algorithm [Kar84]). Then, we consider v(A)
which is an updatable timed automaton and test the reachability of ` in v(A) [BDFP04].
Then EF-emptiness is false if and only if there is v and a run in v(A) reaching `.

Theorem 6.4. The EF-emptiness problem is PSPACE-complete for bounded R-U2P-PTAs.

Proof. Since a TA is a special case of R-U2P-PTA we have the PSPACE-hardness [AD94].
Now, let G be a set of goal locations of A. We build a non-deterministic Turing machine
that:

(1) takes A, G and K as input;
(2) non-deterministically “guesses” a parameter region Rp;
(3) takes v ∈ Rp and writes it to the tape;
(4) overwrites on the tape each parameter p by v(p) giving the updatable TA v(A);
(5) solves reachability in v(A) for G;
(6) accepts iff the result of the previous step is “yes”.

The machine accepts iff there is an integer valuation v bounded by K and a run in v(A)
reaching a location ` ∈ G.

The size of the input is |A| + |G| + |K|, using |.| to denote the size in bits of the
different objects. Moreover, the number of parameter regions is bounded (M is the number

of parameters in A) by
(
M !× 2M ×

∏
p∈P(2M + 2)

)
×
(
2× (2 +M(3M−12 + 4))

3)
since they

are constructed as the clock regions of [AD94], the second part being the maximal number of
constraints in a parameter region. Picking v at step (3) uses a PSPACE linear programming
algorithm (e.g. [Kar84]). Storing the valuation at step (4) uses at most M × |K| additional
bits, which is polynomial w.r.t. the size of the input. Step (5) also needs polynomial
space from [BDFP04]. So globally this non-deterministic machine runs in polynomial space.
Finally, by Savitch’s theorem we have PSPACE = NPSPACE [Sav70], and the expected
result.

Given a goal location ` and a bounded R-U2P-PTA A, we can exactly synthesize the
parameter valuations v s.t. there is a run in v(A) reaching ` by enumerating each parameter
region (of which there is a finite number) and test if ` is reachable for one of its parameter

13:22 É. André, D. Lime, and M. Ramparison Vol. 17:2

valuations. The result of the synthesis is the union of the parameter regions for which
one valuation (and, from our results, all valuations in that region) indeed reaches the goal
location in the instantiated TA.

Corollary 6.5. Given a bounded R-U2P-PTA A and a goal location ` we can effectively
compute the set of parameter valuations v s.t. there is a run in v(A) reaching `.

Proof. The procedure to obtain synthesis is as follows. We assume an R-U2P-PTA A and a
goal location `.

(1) enumerate all parameter regions (of which there is a finite number);
(2) for each Rp, pick a parameter valuation we pick v ∈ Rp (e.g. using a linear programming

algorithm [Kar84]);
(3) test the reachability of ` in the updatable timed automaton v(A), which is decid-

able [BDFP04];
(4) if ` is reachable in v(A), add Rp to the list of synthesized regions.

We finally return the union of all regions Rp that reach `.
The correctness immediately comes from Theorems 6.3 and 6.4.

Remark 6.6. By bounding parameter valuations in guards but not those used in updates,
we still have a finite number of parameter regions. Indeed, an integer vector E with
components Ex greater than bKc+ 1 is equivalent to an integer vector E′ with E′x = Ex
if Ex < bKc+ 1 and E′x = bKc+ 1 if Ex ≥ bKc+ 1. Moreover for all p, we have to replace
each parameter valuation v used in an update by v(p) = v′(p) if v(p) ≤ K and v′(p) = K + 1
if v(p) > K.

7. Parametric updates and stopwatches

In this section, we consider clocks in R-U2P-PTAs as stopwatches [CL00]: stopwatches
can be stopped and started again on transitions. In the general case, stopwatches bring
back undecidability in timed automata [BBR06]. Similarly to the “initialization” constraint
of [HKPV98] we allow stopwatches to be stopped and started again only on specific transitions.
We define A an R-U2P-PTA with stopwatches instead of clocks. We will prove by using
our p–PDBMs structure that the EF-emptiness problem is decidable under the condition
that stopwatches can be stopped at each full update function, and started again at the next
full update function. Such a condition, as in Definition 3.1 is critical: allowing a partial (or
empty) update of clocks ruins the efforts made to keep the set of p–PDBMs stable and allows
accumulation of parameters, leading to the undecidability of the EF-emptiness problem.

Definition 7.1. A stopwatch reset update-to-parameter PTA (S-R-U2P-PTAs) A is a tuple
A = (Σ, L, `0,X,P, ζ, stop), where:

(1) Σ is a finite set of actions,
(2) L is a finite set of locations,
(3) `0 ∈ L is the initial location,
(4) X is a finite set of stopwatches,
(5) P is a finite set of parameters,
(6) ζ is a finite set of edges e = 〈`, g, a, u, `′〉 where `, `′ ∈ L are the source and target

locations, g is a parametric guard, a ∈ Σ and u : X ⇀ N ∪ P is a parametric update
function.

Vol. 17:2 INSTRUCTIONS 13:23

(7) stop : L → 2X assigns to each location a set of stopwatches that are stopped at this
location.

Moreover, u is a total function whenever:

(1) g is a parametric guard,
(2) u(x) ∈ P for some x ∈ X, or
(3) stop(`) 6= stop(`′) for e = 〈`, g, a, u, `′〉.

The semantics is defined in a straightforward manner. The update and time elapsing
operators are defined in a similar manner as for R-U2P-PTA.

Theorem 7.2. The EF-emptiness problem is PSPACE-complete for bounded S-R-U2P-
PTAs.

Proof. To prove this result, we first remove stopped stopwatches from p–PDBMs, and show
that we can still reason as in Theorem 6.4.

Note that after a full update, stopped stopwatches satisfy constraints defined by
a p–PDBM�(Rp). These constraints, defined in Definition 3.6, are

(1) For all i, (−1, <) ≤ D0,i ≤ (0,≤) and (0,≤) ≤ Di,0 ≤ (1, <) are valid for Rp,
(2) For all i, j, k, Di,j ≤ Di,k +Dk,j is valid for Rp (canonical form).

Let x be a stopped stopwatch, we remove the column and the row corresponding to x in
the point–p–PDBM, and we put these constraints aside.

(1) is still satisfied for stopwatches different from x as nothing changed. As both
the column and the row are removed for x, constraints of the form Dx,j ≤ Dx,k + Dk,j

and Di,x ≤ Di,k +Dk,x are removed as well. With the same argument, constraints of the
form Di,j ≤ Di,x +Dx,j are also removed. Only constraints of the form Di,j ≤ Di,k +Dk,j

where i, j, k are different from x remain, and therefore (2) is still satisfied. We apply the
same reasoning for all stopped stopwatches.

After this modification, we still have a point–p–PDBM. Lemmas Lemmas 4.3, 4.4
and 4.10 and Proposition 4.11 are still applicable in this context.

Remains the comparison with non parametric guards Lemma 4.12 and parametric
guards Lemma 4.13.

As stated, constraints on stopped stopwatches are put aside, call these constraints Cstop;
as these constraints are the result of a full update it means there is one clock valuation
that satisfies these constraints (it is not an interval, or a set of clock valuations). This
argument is crucial in the following: we do not need to be able to bound difference of a
stopped stopwatch and a running stopwatch (i. e., Dx,y in the p–PDBM for some stopped x
and running y, or conversely) to compare separately the p–PDBM with a guard, parametric
or not.

First, we compare the p–PDBM with a possibly parametric guard. Let Rp a parameter
region and v ∈ Rp. Separately we compare the guard g with the constraints on stopped
stopwatch Cstop:

• If g is a non parametric guard, let x be a stopped stopwatch appearing in g.
– If x has been updated to a constant, we can test whether g is satisfied by testing the

conjunction of the constraints v(Cstop) projected on x and g projected on x.
– If x has been updated to a parameter, we can test the same conjunction as the order

between parameters is defined in Rp.
• If g is a parametric guard, let x be a stopped stopwatch appearing in g. In both cases (x

updated to a parameter or a constant) we can test whether v(g) is satisfied by testing

13:24 É. André, D. Lime, and M. Ramparison Vol. 17:2

the conjunction of the constraints v(Cstop) projected on x and v(g) projected on x as the
order between parameters and constants is defined in Rp.

Therefore, Lemma 4.12 and parametric guards Lemma 4.13 are still applicable in this context.
With our modified structure of p–PDBM with stopwatches, the core operators for clock

updates, time elapsing and comparison with guards are still applicable. We obtain our result
by a similar reasoning as Theorem 6.4.

Similarly to Corollary 6.5, we obtain the following result:

Corollary 7.3. Given a bounded S-R-U2P-PTA A and a goal location ` we can effectively
compute the set of parameter valuations v s.t. there is a run in v(A) reaching `.

8. Case study

We implemented EFsynth for R-U2P-PTAs in IMITATOR, a parametric model checker for
(extensions of) PTAs [AFKS12].

Our class is the first for which synthesis is possible over bounded rational parameters.
We believe our formalism is useful to model several categories of case studies, notably
distributed systems with a periodic (global) behavior for which the period is unknown:
this can be encoded using a parametric guard while resetting all clocks—possibly to other
parameters.

Consider the R-U2P-PTA in Figure 1 with six locations, three clocks compared to
parameters (x, y, t), one constant (max) and six parameters (p, p1, p2, v, pv1, pv2).

We consider the case of a network of peers exchanging transactions grouped by blocks,
e.g. a blockchain, using the Proof-of-Work as a mean to validate new blocks to add. In this
simplified example, we consider a set of two peers (represented by x, y) which have different
computation power (represented by p1, p2). Peers write new transactions on the current
block (newTx). If it is full (t = p), both peers try to add a new block (newBlock) to write
the transaction on it. We update x to p1, y to p2, and t to 0 as the peers have a different
computation power, and they start “mining” the block (find a solution to a computation
problem). Either x or y will eventually offer a solution to the problem (blockSolutionx

if x = max or blockSolutiony if y = max). If y offers a solution, x will check whether the
solution is correct: x is updated to pv1 to represent its speed to verify an offer. x can refuse
the offer if the verification is too long (fakeBlock if x > v) therefore the mining step restarts.
x can approve the offer (okBlock if x ≤ v), y is rewarded and the block is added to the
blockchain (addBlock).

We are interested in a malicious peer x that wants to avoid y being rewarded for every
new block. Therefore x asks: “what are the possible computation power configurations and
verification speed so that y can be rewarded” (EF (rewardy)-synthesis), considered as a bug
state in the automaton.

We run this R-U2P-PTA using IMITATOR [AFKS12]4. We set max = 30 units of time
and also the upper bound of p and 1 ≥ v > 0 unit of time. IMITATOR computes a disjunction
of constraints so that rewardy is unreachable: we keep two relevant ones;

4Experiments were conducted with IMITATOR 2.10.4 “Butter Jellyfish” on a 2.4 GHz Intel Core i5 processor
with 2 GiB memory. Computation time is less than 1 second. Sources, binaries, models and results are
available at imitator.fr/static/FORTE19/

imitator.fr/static/FORTE19/

Vol. 17:2 INSTRUCTIONS 13:25

`1 `2 `3

x = p1
x := 0

x := 0
y := 0 x = p2 ∧ y = p3

Figure 5. PTA of [AHV93, Fig. 1].

(1) p1 ≥ p2: x has strictly more computation power than y in which case x always offers a
block solution, or has the same computation power than y in which case the systems
blocks. x should invest heavily into hardware to keep its computation power high;

(2) pv1 > v: the malicious peer x is always faster to verify the solution offered by y and
refuses it. The blockchain is probably compromised.

Using a parameter valuation respecting one of the previous constraints guarantees that y is
never rewarded.

Remark 8.1. Even if we have to update all clocks whenever a parameter is met in a guard
or in an update, the possibility to update clocks to unknown parameter offers an appreciable
freedom in the range of system that can be modeled with R-U2P-PTA. Especially as our
parameters can take unbounded rational values in updates and bounded rational values in
guards.

However, such a restriction restricts the behavior that can be modeled. Consider the
PTA of Figure 5 for which the set of possible parameter valuations s.t. `3 is reachable
is {v | v(p3) = nv(p1) + v(p2) for some n ∈ N}. This set cannot be computed from a
R-U2P-PTA as in the loop transition over `2 both clocks x and y must be updated.

9. Conclusion and perspectives

Our class of R-U2P-PTAs is one of the few subclasses of PTAs (actually even extended with
parametric updates) to enjoy decidability of EF-emptiness. In addition, R-U2P-PTAs are
the first “subclass” of PTAs to allow exact synthesis of bounded rational -valued parameters.

In terms of future work, beyond reachability emptiness, we aim at studying unavoidability-
emptiness and language preservation emptiness (“given a reference parameter valuation,
does there exist another parameter valuation with the same untimed language” [ALM20]),
as well as their synthesis.

We would also study the possibility to stop and start stopwatches without full updates; it
would change the p–PDBM structure by creating new clock constraints, but seems promising
and the reachability emptiness problem might be decidable as well.

Time bounded reachability is also interesting to study: given an R-U2P-PTA A, a
parameter max and a goal location `, is there a parameter valuation v and a run in v(A)
reaching ` in less than v(max) time?

Finally, we would like to investigate whether our parametric updates can be applied
to decidable hybrid extensions of TAs [HKPV98, BDG+13]. For example, we shall find a
subclass of hybrid automata that can be reduced to R-U2P-PTA as done with initialized
rectangular hybrid automata and TAs in [HKPV98].

13:26 É. André, D. Lime, and M. Ramparison Vol. 17:2

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, April 1994.

[AFKS12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IMITATOR 2.5: A tool for
analyzing robustness in scheduling problems. In Dimitra Giannakopoulou and Dominique Méry,
editors, FM, volume 7436 of Lecture Notes in Computer Science, pages 33–36. Springer, August
2012.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time reasoning. In
S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, STOC, pages 592–601, New
York, NY, USA, 1993. ACM.

[AL17] Étienne André and Didier Lime. Liveness in L/U-parametric timed automata. In Alex Legay and
Klaus Schneider, editors, ACSD, pages 9–18. IEEE, 2017.

[ALM20] Étienne André, Didier Lime, and Nicolas Markey. Language preservation problems in parametric
timed automata. Logical Methods in Computer Science, 16, January 2020.

[ALR16] Étienne André, Didier Lime, and Olivier H. Roux. Decision problems for parametric timed
automata. In Kazuhiro Ogata, Mark Lawford, and Shaoying Liu, editors, ICFEM, volume 10009
of Lecture Notes in Computer Science, pages 400–416. Springer, 2016.

[ALR18] Étienne André, Didier Lime, and Mathias Ramparison. Timed automata with parametric updates.
In Gabriel Juhás, Thomas Chatain, and Radu Grosu, editors, ACSD, pages 21–29. IEEE, 2018.

[ALR19] Étienne André, Didier Lime, and Mathias Ramparison. Parametric updates in parametric timed
automata. In Jorge A. Pérez and Nobuko Yoshida, editors, FORTE, volume 11535 of Lecture
Notes in Computer Science, pages 39–56. Springer, 2019.

[And19] Étienne André. What’s decidable about parametric timed automata? International Journal on
Software Tools for Technology Transfer, 21(2):203–219, April 2019.

[BBLS15] Nikola Beneš, Peter Bezděk, Kim Gulstrand Larsen, and Jǐŕı Srba. Language emptiness of
continuous-time parametric timed automata. In Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, ICALP, Part II, volume 9135 of Lecture Notes in
Computer Science, pages 69–81. Springer, July 2015.

[BBR06] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On model-checking timed
automata with stopwatch observers. Inf. Comput., 204(3):408–433, 2006.

[BDFP04] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Updatable timed
automata. Theoretical Computer Science, 321(2-3):291–345, 2004.

[BDG+13] Thomas Brihaye, Laurent Doyen, Gilles Geeraerts, Joël Ouaknine, Jean-François Raskin, and
James Worrell. Time-bounded reachability for monotonic hybrid automata: Complexity and fixed
points. In Dang Van Hung and Mizuhito Ogawa, editors, ATVA, volume 8172 of Lecture Notes in
Computer Science, pages 55–70. Springer, 2013.

[BL09] Laura Bozzelli and Salvatore La Torre. Decision problems for lower/upper bound parametric
timed automata. Formal Methods in System Design, 35(2):121–151, 2009.

[BMRS19] Damien Busatto-Gaston, Benjamin Monmege, Pierre-Alain Reynier, and Ocan Sankur. Robust
controller synthesis in timed büchi automata: A symbolic approach. In Isil Dillig and Serdar
Tasiran, editors, CAV, volume 11561 of Lecture Notes in Computer Science, pages 572–590.
Springer, July 2019.

[BO14] Daniel Bundala and Joël Ouaknine. Advances in parametric real-time reasoning. In Erzsébet

Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, MFCS, Part I, volume 8634 of
Lecture Notes in Computer Science, pages 123–134. Springer, 2014.

[BY03] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Jörg
Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri
Nets, Advances in Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 87–124.
Springer, 2003.

[CL00] Franck Cassez and Kim Guldstrand Larsen. The impressive power of stopwatches. In Catuscia
Palamidessi, editor, CONCUR, volume 1877 of Lecture Notes in Computer Science, pages 138–152.
Springer, 2000.

Vol. 17:2 INSTRUCTIONS 13:27

[Dil89] David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In Joseph
Sifakis, editor, Automatic Verification Methods for Finite State Systems 1989, volume 407 of
Lecture Notes in Computer Science, pages 197–212. Springer, 1989.

[Doy07] Laurent Doyen. Robust parametric reachability for timed automata. Information Processing
Letters, 102(5):208–213, 2007.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable about
hybrid automata? Journal of Computer and System Sciences, 57(1):94–124, 1998.

[HRSV02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. Linear parametric
model checking of timed automata. Journal of Logic and Algebraic Programming, 52-53:183–220,
2002.

[JLR15] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer parameter synthesis for real-time
systems. IEEE Transactions on Software Engineering, 41(5):445–461, 2015.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4(4):373–396, 1984.

[Mil00] Joseph S. Miller. Decidability and complexity results for timed automata and semi-linear hybrid
automata. In Nancy A. Lynch and Bruce H. Krogh, editors, HSCC, volume 1790 of Lecture Notes
in Computer Science, pages 296–309. Springer, 2000.

[QSW17] Karin Quaas, Mahsa Shirmohammadi, and James Worrell. Revisiting reachability in timed
automata. In LICS, pages 1–12. IEEE Computer Society, 2017.

[Qua14] Karin Quaas. MTL-model checking of one-clock parametric timed automata is undecidable. In

Étienne André and Goran Frehse, editors, SynCoP, volume 145 of EPTCS, pages 5–17, 2014.
[San15] Ocan Sankur. Symbolic quantitative robustness analysis of timed automata. In Christel Baier

and Cesare Tinelli, editors, TACAS, volume 9035 of Lecture Notes in Computer Science, pages
484–498. Springer, 2015.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192, 1970.

[SBM14] Ocan Sankur, Patricia Bouyer, and Nicolas Markey. Shrinking timed automata. Information and
Computation, 234:107–132, 2014.

13:28 É. André, D. Lime, and M. Ramparison Vol. 17:2

Appendix A. Proof of Lemma 3.4

Lemma 3.4 (recalled). Let d1, d2, d3, d4 ∈ PLT . Let Rp be a parameter region. If
(d1, /1) ≤ (d2, /2) and (d3, /3) ≤ (d4, /4) are valid for Rp then (d1, /1) + (d3, /3) ≤
(d2, /2) + (d4, /4) is valid for Rp.

Proof. Four cases show up: for all v ∈ Rp,
• v(d1) < v(d2) and v(d3) < v(d4), then clearly v(d1) + v(d3) < v(d2) + v(d4) and we have

our result from Definition 3.3 (2a).
• v(d1) < v(d2) and v(d3) ≤ v(d4), then v(d1) + v(d3) < v(d2) + v(d4) and we have our

result from Definition 3.3 (2a).
• v(d1) ≤ v(d2) and v(d3) < v(d4), then v(d1) + v(d3) < v(d2) + v(d4) and we have our

result from Definition 3.3 (2a).
• v(d1) ≤ v(d2) and v(d3) ≤ v(d4), then v(d1) + v(d3) ≤ v(d2) + v(d4) and

(1) if /1 = /2 and /3 = /4 then /1 ⊕ /3 = /2 ⊕ /4 and we have our result from Defini-
tion 3.3 (2b).

(2) if /1 = /2 and /3 = <, /4 = ≤ then /1 ⊕ /3 = < and /2 ⊕ /4 is either < or ≤ and we
have our result from Definition 3.3 (2b).

(3) if /1 = <, /2 = ≤ and /3 = /4 then /1 ⊕ /3 = < and /2 ⊕ /4 is either < or ≤ and we
have our result from Definition 3.3 (2b).

(4) if /1 = /3 =< and /2 = /4 =≤ then /1 ⊕ /3 =< and /2 ⊕ /4 =≤ and we have our
result from Definition 3.3 (2b).

From Definition 3.3 (2a, 2b) we have that (d1, /1) + (d3, /3) ≤ (d2, /2) + (d4, /4) is valid for
Rp.

Appendix B. Proof of Lemma 3.7

Lemma 3.7 (recalled). Let Rp be a parameter region and (E,D) be a p–PDBM for
Rp. For all clocks i, j, (0,≤) ≤ Di,j +Dj,i is valid for Rp.

Proof. By condition (4) in Definition 3.5 and Definition 3.6 (2), we have that Di,i ≤ Di,j+Dj,i

is valid for Rp; the result follows from the fact that Di,i = (0,≤) (again from Definition 3.5
and Definition 3.6).

Appendix C. Proof of Lemma 3.8

Lemma 3.8 (recalled). Let Rp be a parameter region and (E,D) be a p–PDBM for
Rp. For all clocks i, j, Di,j ≤ Di,j +Dj,j and Di,j ≤ Di,i +Di,j are valid for Rp.

Proof. Let Rp be a parameter region and (E,D) be a p–PDBM for Rp. Let Di,j =
(di,j , /ij) with di,j ∈ PLT . By Definition 3.5 and Definition 3.6 for all clock i, Di,i = (0,≤).
We haveDj,i+Di,i = (dj,i+0, /ij⊕ ≤) = Dj,i. Moreover from Definition 3.3 (2b)Di,j ≤ Di,j is
valid for Rp. Hence Di,j ≤ Di,i+Di,j is valid for Rp. The same way we prove Di,j ≤ Di,j+Dj,j

is valid for Rp.

Vol. 17:2 INSTRUCTIONS 13:29

Appendix D. Proof of Lemma 4.3

Lemma 4.3 (recalled). Let Rp be a parameter region and

(E,D) ∈ p–PDBM(Rp).

Let unp be a non-parametric update. Then update((E,D), unp) ∈ p–PDBM�(Rp).

Proof. The case of a trivial non-parametric update i. e., that updates no clock, is straight-
forward.

We split this proof in two parts: the first one treats the case of point–p–PDBMs and
the second one of open–p–PDBMs.

First we show that applying an update on any point–p–PDBM transforms it into an open–
p–PDBM.

Claim D.1 (p–PDBM�(Rp) becomes p–PDBM�(Rp) after update). Let Rp be a param-
eter region and (E,D) ∈ p–PDBM�(Rp). Let unp be a non-parametric update. Then
update((E,D), unp) ∈ p–PDBM�(Rp).

Proof. Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Consider (E′, D′) =
update((E,D), unp). After applying Algorithm 1, for all clock xi of (E,D) where unp is
defined, E′i = unp(xi); moreover for all clock j, D′i,j = D0,j and D′j,i = Dj,0. First note that

if xi, xj have been updated, D′i,j = D′j,i = D′0,j = D′j,0 = D′0,i = D′i,0 = (0,≤) = D0,0. For
all clocks i, j, k, the following inequalities are valid for Rp:

(1) (a) if xi is updated: D′i,0 = (0,≤) = D′0,i and therefore trivially it holds that −1 ≤
D′0,i ≤ 0 and 0 ≤ D′i,0 ≤ 1 are valid for Rp;

(b) if xi is not updated: D′i,0 = Di,0 and therefore −1 ≤ D′0,i ≤ 0 and 0 ≤ D′i,0 ≤ 1 are

valid for Rp because these constraints were already satisfied in (E,D).
(2) For all xi, xj , if neither xi nor xj is updated, Di,j and Dj,i are not modified so condition

Definition 3.5 (2) still holds. If either xi is updated, as D′i,j = D0,j and D′j,i = Dj,0

condition Definition 3.5 (2) still holds as it holds for D0,j and Dj,0 and we apply the
same reasoning if xj is updated. If both xi, xj are updated, condition Definition 3.5 (2)
trivially holds.

(3) For all xi, if it is updated then D′0,i = D′i,0 = (0,≤), hence d0,i = −di,0 = 0

and /0i = /i0 =≤; condition Definition 3.5 (3) holds. For all xi, xj , if neither xi
nor xj is updated, D′i,j = Di,j and D′j,i = Dj,i so condition Definition 3.5 (3) holds as it

holds for Di,j and Dj,i. If either xi is updated, as D′i,j = D0,j and D′j,i = Dj,0, condition

Definition 3.5 (3) holds as it holds for D0,j and Dj,0. We treat the case where xj is
updated similarly. If both xi, xj are updated, condition Definition 3.5 (3) trivially holds.

(4) Canonical form is preserved:
(a) if xi, xj , xk are not updated: since no clock is updated we have D′i,j = Di,j ,

D′j,k = Dj,k and D′i,k = Di,k since (E,D) ∈ p–PDBM�(Rp) from Definition 3.6

(2), we know that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore it remains valid.
(b) if xk is updated and xi, xj are not updated: D′i,j = Di,j and D′j,k = Dj,0, D′i,k = Di,0

because xk is updated. Since (E,D) ∈ p–PDBM�(Rp) from Definition 3.6 (2), we
know that Di,0 ≤ Di,j +Dj,0 is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid
for Rp.

13:30 É. André, D. Lime, and M. Ramparison Vol. 17:2

(c) if xj is updated and xi, xk are not updated: then D′i,k = Di,k because neither xi
nor xk are updated; since xk is updated we have D′j,k = D0,k and D′i,j = Di,0;

since (E,D) ∈ p–PDBM�(Rp) from Definition 3.6 (2), we know that Di,k ≤
Di,0 +D0,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

(d) if xj , xk are updated and xi is not updated: then D′i,k = Di,0 because xk is

updated; since xj is updated we have D′i,j = Di,0 and D′j,k = D0,0; since (E,D) ∈
p–PDBM�(Rp) from Definition 3.6 (2) and Lemma 3.8, we know that Di,0 ≤
Di,0 +D0,0 is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

(e) if xi is updated and xj , xk are not updated: then D′i,k = D0,k, D′i,j = D0,j because xi
is updated; since xj , xk are not updated, we have D′j,k = Dj,k; since (E,D) ∈
p–PDBM�(Rp) from Definition 3.6 (2), we know that D0,k ≤ D0,j +Dj,k is valid
for Rp; therefore D′i,k ≤ D′i,j +D′j,k is valid for Rp.

(f) if xi, xk are updated and xj is not updated: we have D′i,k = (0,≤) = D0,0, D
′
i,j =

D0,j and D′j,k = Dj,0 because xi, xk are updated. Since (E,D) ∈ p–PDBM�(Rp)

from Definition 3.6 (2), we know that D0,0 ≤ D0,j +Dj,0 is valid for Rp; therefore,
D′i,k ≤ D′i,j +D′j,k is valid for Rp.

(g) if xi, xj are updated and xk is not updated: we have D′i,k = D0,k, D′i,j = (0 <≤) =

D0,0 and D′j,k = D0,k because xi, xj are updated. Since (E,D) ∈ p–PDBM�(Rp)

from Definition 3.6 (2) and Lemma 3.8, we know that D0,k ≤ D0,0 +D0,k is valid
for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

(h) if xi, xj , xk are updated: we have D′i,k = D0,0, D
′
i,j = D0,0 and D′j,k = D0,0

because xi, xj , xk are updated. Since (E,D) ∈ p–PDBM�(Rp) from Definition 3.6
(2) and Lemma 3.8, we know that D0,0 ≤ D0,0 + D0,0 is valid for Rp; therefore,
D′i,k ≤ D′i,j +D′j,k is valid for Rp.

(5) there is at least one clock x s.t. D′x,0 = D′0,x = (0,≤).

Therefore, (E′, D′) ∈ p–PDBM�(Rp).

Now we show that applying an update on any open–p–PDBM transforms it into an open–
p–PDBM respecting Definition 3.5 (2).

Claim D.2 (stability of p–PDBM�(Rp) under update). Let Rp be a parameter region and
(E,D) ∈ p–PDBM�(Rp). Let unp be a non-parametric update. Then update((E,D), unp) ∈
p–PDBM�(Rp).

Proof. Most cases are similar to the proof of Claim D.1.
The remaining cases to treat are the cases of Definition 3.5 (2). If i, j are different

from 0, and

(1) if i, j are not updated then D′i,j = Di,j and since it is the case in (E,D), condition

Definition 3.5 (2) holds.
(2) if j is updated and i is not updated then D′i,j = Di,0 and D′j,i = D0,i and as condition

Definition 3.6 (1) holds for Di,0 and D0,i in (E,D), condition Definition 3.5 (2) holds
in (E′, D′).

(3) if i is updated and j is not updated then D′i,j = D0,j and D′j,i = Dj,0 and as condition

Definition 3.6 (1) holds for Dj,0 and D0,j in (E,D), condition Definition 3.5 (2) holds
in (E′, D′).

Vol. 17:2 INSTRUCTIONS 13:31

(4) if i, j are updated then trivially D′i,j = D′j,i = (0,≤) and condition Definition 3.5 (2)
holds.

Appendix E. Proof of Lemma 4.4

Lemma 4.4 (recalled). Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp).
Let v ∈ Rp. Let unp be a non-parametric update. For all w, [w]unp

∈
update((E, v(D)), unp) iff w ∈ (E, v(D)).

Proof. We first treat the case of open–p–PDBMs, the case of point–p–PDBMs will be handled
similarly at the end. We also prove this lemma for a singleton update (only one clock, say xi)
since updating several clocks can be done by applying several singleton updates in a 0 delay.

=⇒ for open–p–PDBMs

Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp. Let unp be a
non-parametric update which updates xi to an integer n and lets the value of other clocks
unchanged. Consider (E′, D′) = update((E, v(D)), unp) and suppose w′ ∈ (E′, D′). We want
to construct a valuation w ∈ (E, v(D)) s.t. w′ = unp(w).

Let w be a clock valuation s.t. for all clock xj where i 6= j, w(xj) = w′(xj). That means
that for all j 6= i,

frac(w(xj)) /j0 v(dj,0), −frac(w(xj)) /0j v(d0,j) and bw(xj)c = Ej

hold from Definition 4.2 since it is the case in (E′, D′) and these values are left untouched
by the update. Moreover for all j 6= i, k 6= i,

frac(w(xj))− frac(w(xk)) /jk v(dj,k) and frac(w(xk))− frac(w(xj)) /kj v(dk,j)

again hold from Definition 4.2 since it is the case in (E′, D′) and these values are left
untouched by the update.

We want a valuation for w(xi) s.t.

frac(w(xi)) /i0 v(di,0) − frac(w(xi)) /0i v(d0,i) and bw(xi)c = Ei

hold, and for all j 6= i, k 6= i,

frac(w(xi))− frac(w(xj)) /ij v(di,j) and frac(w(xk))− frac(w(xi)) /ki v(dk,i) (E.1)

hold. Let us prove that such a valuation w exists. We set bw(xi)c = Ei.

The following lemma proves transitivity of constraints on clocks with respect to con-
straints in a p–PDBM.

Lemma E.1. Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. Let
w ∈ (E, v(D)). For all clocks i, j, k, frac(w(xj))− frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k).

Proof. Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. Let
w ∈ (E, v(D)).

Since (E,D) ∈ p–PDBM(Rp), for all i, j, k we have from Definition 3.5 (4),

Dj,k ≤ Dj,i +Di,k

13:32 É. André, D. Lime, and M. Ramparison Vol. 17:2

is valid for Rp hence since v ∈ Rp, we have v(Dj,k) ≤ v(Dj,i) + v(Di,k). Precisely that is
(v(dj,k), /jk) ≤ (v(dj,i), /ji) + (v(di,k), /ik) i. e.,

(v(dj,k), /jk) ≤ (v(dj,i) + v(di,k), /ji ⊕ /ik).

For all clocks j, k satisfying constraints of (E,D),

frac(w(xj))− frac(w(xk)) /jk v(dj,k).

Then for all i, j, k, either:

• from Definition 3.3 (2a): v(dj,k) < v(dj,i) + v(di,k) and then, regardless of /jk and /ji⊕ /ik
we have frac(w(xj))− frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k), or
• from Definition 3.3 (2b):

– v(dj,k) ≤ v(dj,i) + v(di,k) and /jk = <, /ji ⊕ /ik = ≤ and then we have

frac(w(xj))− frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k),

or
– v(dj,k) ≤ v(dj,i) + v(di,k) and /jk = /ji ⊕ /ik and then we have

frac(w(xj))− frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k)

which completes the proof.

This completes the proof of Lemma E.1.

For all j 6= i and k 6= i, since v(Dj,k) ≤ v(Dj,i) + v(Di,k) from Definition 3.5 (4), we
have frac(w(xj))− frac(w(xk)) /jk v(dj,k) and

frac(w(xj))− frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k)

holds from Lemma E.1. Hence

frac(w(xj))− v(dj,i)(/ji ⊕ /ik)frac(w(xk)) + v(di,k) (E.2)

holds. Note that /ji ⊕ /ik is either ≤ or <. Note the following trick is inspired by [HRSV02,
Proof of Lemma 3.5] and [HRSV02, Proof of Lemma 3.13]. Hence

I = {t ∈ R+ | frac(w(xj))− v(dj,i) ≤ t ≤ frac(w(xk)) + v(di,k) for all clocks j, k}

is a non empty set. That means that choosing a frac(w(xi)) with respect to constraints (E.1),
recall that they are

frac(w(xj))− frac(w(xi)) /ji v(dj,i) and frac(w(xi))− frac(w(xk)) /ik v(di,k)

is equivalent to choose a frac(w(xi)) s.t.

frac(w(xj))− v(dj,i) /ji frac(w(xi)) and frac(w(xi)) /ik frac(w(xk)) + v(di,k)

which is a nonempty set from formula (E.2). Finally we choose a frac(w(xi)) ∈ I, then
w ∈ (E, v(D)) and it completes the proof.

⇐= for open–p–PDBMs

Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp. Let unp be a
non-parametric update which updates xi to an integer n and lets the value of other clocks
unchanged. Consider (E′, D′) = update((E, v(D)), unp). Now suppose w ∈ (E, v(D)) and
let w′ = [w]unp

.

Vol. 17:2 INSTRUCTIONS 13:33

• for xi, since unp is defined, w′(xi) = unp(xi) = E′xi (i. e., frac(w′(xi)) = 0) by apply-
ing update as defined in Definition 4.2. By applying update as defined in Definition 4.2,
D′i,0 = D′0,i = (0,≤), hence

−frac(w′(xi)) /0i v(d′0,i) and frac(w′(xi)) /i0 v(d′i,0)

hold from Definition 4.2 and Claim D.1. Moreover we know that for all j 6= i

− v(D′i,j) = −v(D′0,j) and v(D′j,i) = v(D′j,0) (E.3)

holds from Definition 4.2, and we also know that

frac(w′(xj))− frac(w′(xi)) = frac(w′(xj)) (E.4)

since frac(w′(xi)) = 0. Hence, combining (E.3) and (E.4), clearly since

−frac(w′(xj)) /0j v(d′0,j) and frac(w′(xj)) /j0 v(d′j,0)

hold in (E′, D′),

frac(w′(xj))− frac(w′(xi)) /ji v(d′j,i) and frac(w′(xi))− frac(w′(xj)) /ij v(d′i,j)

hold.
• for any two clocks xj , xk where unp is not defined, w(xj) = w′(xj) and w(xk) = w′(xk).

Hence

−v(D′0,j) /0j frac(w′(xj)) /j0 v(D′j,0)

and

−v(D′k,j) /kj frac(w′(xj))− frac(w′(xk)) /jk v(D′j,k)

hold from Definition 4.2 and Claim D.1 since bounds remain unchanged.

Then w′ ∈ update((E, v(D)), unp).
This concludes the case (E,D) ∈ p–PDBM�(Rp).

Let us now treat the case (E,D) ∈ p–PDBM�(Rp).

=⇒ for point–p–PDBMs

Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp. Let unp be a
non-parametric update which updates xi to an integer n and lets the value of other clocks
unchanged. Consider (E′, D′) = update((E, v(D)), unp) and suppose w′ ∈ (E′, D′). We want
to construct a valuation

w ∈ (E, v(D)) s.t. w′ = unp(w)

Let w be a clock valuation s.t. for all clock xj where j 6= i, w(xj) = w′(xj). That means for
all j 6= i,

frac(w(xj)) /j0 v(dj,0), −frac(w(xj)) /0j v(d0,j) and bw(xj)c = Ej

hold from Definition 4.2 since it is the case in (E′, D′) and bounds remain unchanged i. e.,
D0,j = D′0,j and Dj,0 = D′j,0. Moreover for all k 6= i and k 6= j,

frac(w(xj))− frac(w(xk)) /jk v(dj,k) and frac(w(xk))− frac(w(xj)) /kj v(dk,j)

also hold from Definition 4.2 since it is the case in (E′, D′) and bounds remain unchanged
i. e., Dk,j = D′k,j and Dj,k = D′j,k.

Recall that (E,D) contains only one clock valuation for each parameter valuation
v ∈ Rp.

13:34 É. André, D. Lime, and M. Ramparison Vol. 17:2

Let frac(w(xi)) = v(di,0) (or equivalently frac(w(xi)) = −v(d0,i) since by Definition 3.6
we have (di,0, /i0) = (−d0,i, /0i)). Then, as it is the case in (E,D),

frac(w(xi)) /i0 v(di,0), −frac(w(xi)) /0i v(d0,i) and bw(xi)c = Ei

hold, and for all j 6= i, k 6= i,

frac(w(xi))− frac(w(xj)) /ij v(di,j) and frac(w(xk))− frac(w(xi)) /ki v(dk,i)

hold, which completes the proof, as w ∈ (E, v(D)) and w′ = unp(w).

⇐= for point–p–PDBMs

This case is straightforward and similar to the case (⇐) above of open–p–PDBMs.

Appendix F. Proof of Lemma 4.6

Lemma 4.6 (recalled). Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp).
There is at least one clock x s.t. for all 0 ≤ i ≤ H, (0,≤) ≤ Dx,i is valid for Rp.

Proof. Reductio ad absurdum: Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp)
with at least 2 clocks i, j. Suppose for all clock xi there is another clock xj s.t. Di,j < 0 is
valid for Rp. Let v ∈ Rp. Then v(Di,j) < 0.

• Suppose for xj , xi is the clock s.t. Dj,i < 0 is valid for Rp. Then v(Dj,i) < 0. We have
v(Di,j) + v(Dj,i) < 0 holds, therefore 0 ≤ v(Di,j) + v(Dj,i) does not hold, and hence
0 ≤ Di,j +Dj,i is not valid for Rp. Then (E,D) does not respect Lemma 3.7 and violates
condition (4) of Definition 3.5. So (E,D) 6∈ p–PDBM�(Rp).
• Suppose for xj , a third clock xk is the clock s.t. Dj,k < 0 is valid for Rp. Then v(Dj,k) < 0.

Suppose we have only three clocks. Then for xk, either xi or xj is the clock s.t. Dk,i < 0
is valid for Rp.
– Assume this is xi. Then v(Dk,i) < 0. We have v(Dk,i) + v(Di,j) < 0 and v(Dk,j) ≤
v(Dk,i) + v(Di,j) by Definition 3.5 (4). Follows that v(Dk,j) + v(Dj,k) < 0 and 0 ≤
Dk,j +Dj,k is not valid for Rp. Then (E,D) does not respect Lemma 3.7 and violates
condition (4) of Definition 3.5. So (E,D) 6∈ p–PDBM�(Rp).

– Assume this is xj . This case is similar (and simpler).

We apply the same reasoning for more than 3 clocks. Now suppose (E,D) ∈ p–PDBM�(Rp).
We apply the same reasoning, replacing the argument of condition (4) of Definition 3.5 by
the fact from Definition 3.6 that D is antisymmetric.

Appendix G. Proof of Lemma 4.10

Lemma 4.10 (recalled). Let Rp be a parameter region. Let (E,D) ∈ p–PDBM(Rp).
Then TE ((E,D)) ∈ p–PDBM(Rp).

Proof. We prove our lemma for the two types of open–p–PDBMs and for point–p–PDBMs.

Vol. 17:2 INSTRUCTIONS 13:35

G.0.1. → Definition 3.5 type (5a) to (5b).

Claim G.1 (modification of an open–p–PDBM respecting condition (5a) under TE<).
Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp) respecting condition 5a, then
TE<((E,D)) ∈ p–PDBM�(Rp) respecting condition 5b.

Proof. Suppose (E,D) ∈ p–PDBM�(Rp) respects condition (5a) of Definition 3.5, i. e., we
have at least an x s.t. Dx,0 = D0,x = (0,≤). Since, in Rp, we know which parameters have
the largest fractional part, we can determine LFPRp(D) from Lemma 4.6. If more than
one clock belong to LFPRp(D) then their valuations have the same fractional part. Indeed,
from Definition 4.5 if xi, xj ∈ LFPRp(D) then both (0,≤) ≤ Di,j and (0,≤) ≤ Dj,i are valid
for Rp, and from Definition 3.5 (2) we must have Di,j = Dj,i = (0,≤)(?).

Let v ∈ Rp. Assume xi ∈ LFPRp(D) and w ∈ (E, v(D)), by letting time elapse,
frac(w(xi)) is the first that might reach 1. Moreover, for all xj ∈ X \ LFPRp(D), frac(w(xj))
cannot reach 1 before frac(w(xi)). We are going to construct a new (E′, D′) = TE<((E,D)),
which will be an open–p–PDBM respecting condition 5b of Definition 3.5. While detailing
the procedure of TE<, we are going to prove that Definition 3.5 (1) and (2) hold for (E′, D′).
Further we will prove that (4) and (5b) also hold.

proof that Definition 3.5 (1) holds.

According to the definition of TE< (Algorithm 2) the first step is to set a new upper
bound

D′i,0 = (1, <) for all xi ∈ LFPRp(D)

and obviously (0,≤) ≤ D′i,0 ≤ (1,≤) is valid for Rp. Then we set new upper bounds for all

other clock xj ∈ X \ LFPRp(D) by setting

D′j,0 = Dj,i + (1, <).

Indeed, Dj,i is the constraint on the lower bound of frac(w(xj))− frac(w(xi)) and since
the upper bound of xi has increased, this gives the new upper bound of xj . Note that since
xi ∈ LFPRp(D), from Definition 4.5 and Definition 3.5 (2) we have that −1 ≤ Dj,i ≤ 0 is
valid for Rp for all clock xj . Precisely, dj,i ∈ {0,−p1, p2 − p1, p1 − 1− p2, p1 − 1} for some
p1, p2 ∈ P where p2 ≤ p1 is valid for Rp. Hence as dj,i+1 ∈ {1, 1−p1, p2 +1−p1, p1−p2, p1},
we have that d′j,0 ∈ PLT , /ji′ = /ji ⊕< = < so (0,≤) ≤ D′j,0 ≤ (1, <) is valid for Rp.

Note that we cannot have (dj,i, /ji) = (−1, <) because even if (di,j , /ij) = (1, <),
since (E,D) ∈ p–PDBM�(Rp) we do not have have 0 ≤ Dj,i + Di,j is valid for Rp from
Definition 3.5 (4) and Lemma 3.7.

Secondary we set for all clock x regardless of whether they are in LFPRp(D)

D′0,x = D0,x + (0, <).

Since some time elapsed, lower bounds of all clocks are increased. Moreover, as (−1, <) ≤
D0,x ≤ (0,≤) is valid for Rp from Definition 3.5 (1), (−1,≤) ≤ D′0,x ≤ (0,≤) is also valid
for Rp.

Therefore, Definition 3.5 (1) holds.

proof that Definition 3.5 (2) holds

Third we set for all clocks x, y regardless of whether they are in LFPRp(D)

D′x,y = Dx,y

13:36 É. André, D. Lime, and M. Ramparison Vol. 17:2

so as Definition 3.5 (2) holds in (E,D), it still does. More intuitively since no fractional
part has reached 1, constraints on differences of clocks and integer parts remain unchanged.

proof that Definition 3.5 (3) holds

For all xi:

• if xi ∈ LFPRp(D), D′i,0 = (1, <), D′0,i = D0,i + (0, <) hence d′i,0 6= d′0,i and /i0′ = /0i′ = <,

condition Definition 3.5 (3) holds;
• if xi ∈ X \ LFPRp(D), x ∈ LFPRp(D), D′i,0 = Di,x + (1, <), D′0,i = D0,i + (0, <) hence

as (0,≤) ≤ D′i,0 is valid for Rp and D′0,i ≤ (0,≤) is valid for Rp, we have d′i,0 6= d′0,i
and /i0′ = /0i′ = < and condition Definition 3.5 (3) holds.

For all xi, xj :

• if xi, xj ∈ X \ LFPRp(D), D′i,j = Di,j and D′j,i = Dj,i, condition Definition 3.5 (3) holds as
it holds for Di,j and Dj,i.
• if xi ∈ X \ LFPRp(D), xj ∈ LFPRp(D), D′i,0 = Di,j + (1, <), D′0,i = D0,i + (0, <) hence

as (0,≤) ≤ D′i,0 is valid for Rp and D′0,i ≤ (0,≤) is valid for Rp, we have d′i,0 6= d′0,i
and /i0′ = /0i′ = <, condition Definition 3.5 (3) holds. The case xj ∈ X \ LFPRp(D),
xi ∈ LFPRp(D) is treated similarly.
• if xi, xj ∈ LFPRp(D), D′i,j = D′j,i = (0,≤), hence d′i,j = −d′j,i = 0 and /ij′ = /ji′ =≤ and

condition Definition 3.5 (3) holds.

proof that Definition 3.5 (4) holds

Now we prove that Definition 3.5 (4) holds, i. e., for all clocks xi, xj , xk, valid conditions
such as D′i,j ≤ D′i,k +D′k,j remain valid in Rp. Indeed, when time elapses, all clocks have the
same behavior, hence the difference between two clocks does not change without an update.
Precisely, for all clocks xi, xj , xk, are valid for Rp:

(1) if xi, xj , xk ∈ X \ LFPRp(D): let x ∈ LFPRp(D) and
• if i, j, k are different from 0, we have D′i,k = Di,k, D

′
i,j = Di,j and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp) from Definition 3.5 (4), we know that Di,k ≤ Di,j+Dj,k

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if i, j are different from 0, k = 0, we have D′i,0 = Di,x + (1, <), D′i,j = Di,j and D′j,0 =

Dj,x + (1, <); since (E,D) ∈ p–PDBM�(Rp) from Definition 3.5 (4), we know
that Di,x ≤ Di,j + Dj,x is valid for Rp; then Di,x + (1, <) ≤ Di,j + Dj,x + (1, <) is
valid for Rp from Lemma 3.4 and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

• if i, k are different from 0, j = 0, we have D′i,k = Di,k, D′i,0 = Di,x + (1, <) and D′0,k =

D0,k + (0, <); we claim that

Di,k ≤ Di,x + (1, <) +D0,k + (0, <) (G.1)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. Since (E,D) ∈
p–PDBM�(Rp) from Definition 3.5 (1), we know that

Dx,0 ≤ (1, <); (G.2)

moreover we have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <) (G.3)

Vol. 17:2 INSTRUCTIONS 13:37

Since (E,D) ∈ p–PDBM�(Rp) from Definition 3.5 (4), we know that Dx,k ≤ Dx,0 +
D0,k is valid for Rp; combining with (G.2) and (G.3) we obtain

Dx,k ≤ (1, <) +D0,k + (0, <). (G.4)

Now, since (E,D) ∈ p–PDBM�(Rp) from Definition 3.5 (4), we know that Di,k ≤
Di,x +Dx,k is valid for Rp and combining with (G.4) we obtain (G.1) and therefore
our result.
• if i is different from 0, j = k = 0, we have D′i,0 = Di,x+(1, <); from Definition 3.3 (2b)

we have that
Di,x + (1, <) ≤ Di,x + (1, <)

is valid for Rp. Hence from Lemma 3.8

D′i,0 ≤ D′i,0 +D′0,0

is valid for Rp.
• if j, k are different from 0, i = 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <)

and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know
that D0,k ≤ D0,j +Dj,k is valid for Rp. Moreover we have that

D0,k + (0, <) = (d0,k, <) and D0,j + (0, <) +Dj,k = (d0,j + dj,k, <)

so we have from Definition 3.3 (2b)

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if j is different from 0, i = k = 0, we have D′0,0 = (0,≤), D′0,j = D0,j + (0, <) and

D′j,0 = Dj,x + (1, <); since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we

know that D0,x ≤ D0,j +Dj,x is valid for Rp; moreover, from Definition 3.3 (2b) and
Lemma 3.4,

D0,x + (0, <) ≤ D0,j + (0, <) +Dj,x

is valid for Rp. Recall that from Lemma 3.7 (0,≤) ≤ D0,x +Dx,0 is valid for Rp and
since Dx,0 ≤ (1, <) from Definition 3.5 (1), we have

(0,≤) ≤ D0,x + (1, <)

is valid for Rp. As we have (1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <), we obtain that

D0,x + (1, <) ≤ D0,j +Dj,x + (1, <)

is valid for Rp and therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.

• if k is different from 0, i = j = 0, we have D′0,k = D0,k+(0, <); From Definition 3.3 (2b)
and Lemma 3.4 we have that

D0,k + (0, <) ≤ D0,k + (0, <)

is valid for Rp. Hence from Lemma 3.8

D′0,k ≤ D′0,0 +D′0,k

is valid for Rp.
• if i = j = k = 0, from Definition 3.5 (4) and Lemma 3.8 we trivially have

D′0,0 ≤ D′0,0 +D′0,0

is valid for Rp.
(2) if xk ∈ LFPRp(D) and xi, xj ∈ X \ LFPRp(D): k 6= 0 and

13:38 É. André, D. Lime, and M. Ramparison Vol. 17:2

• if i, j are different from 0, we have D′i,k = Di,k, D
′
i,j = Di,j and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp) from Definition 3.5 (4), we know thatDi,k ≤ Di,j+Dj,k;
therefore, D′i,k ≤ D′i,j +D′j,k.

• if i 6= 0, j = 0, we have D′i,k = Di,k, D′i,0 = Di,k + (1, <) and D′0,k = D0,k + (0, <); we

claim that Di,k ≤ Di,k + (1, <) +D0,k + (0, <) is valid for Rp, i. e.,

(0,≤) ≤ (1, <) +D0,k + (0, <) (G.5)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. We have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <). (G.6)

Since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know that (0,≤) ≤
D0,k + Dk,0 is valid for Rp and from Definition 3.5 (1) that Dk,0 ≤ (1, <) is valid
for Rp; combining with (G.5) and (G.6) we obtain our result.
• if i = 0, j 6= 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know that D0,k ≤ D0,j +
Dj,k. Moreover we have that

D0,k + (0, <) = (d0,k, <) and D0,j + (0, <) +Dj,k = (d0,j + dj,k, <)

so we have from Definition 3.3 (2b)

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if i = j = 0, from Definition 3.5 (4) and Lemma 3.8 we trivially have

D′0,k ≤ D′0,0 +D′0,k

is valid for Rp.
(3) if xj ∈ LFPRp(D) and xi, xk ∈ X \ LFPRp(D): j 6= 0 and
• if i, k are different from 0, we have D′i,k = Di,k, D

′
i,j = Di,j and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know that Di,k ≤ Di,j+Dj,k

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if i 6= 0, k = 0, we have D′i,0 = Di,j + (1, <), D′i,j = Di,j and D′j,0 = (1, <); From

Definition 3.3 (2b) we trivially have that Di,j + (1, <) ≤ Di,j + (1, <) is valid for Rp
and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

• if i = 0, k 6= 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know that D0,k ≤ D0,j +
Dj,k is valid for Rp. Moreover we have that

D0,k + (0, <) = (d0,k, <) and D0,j + (0, <) +Dj,k = (d0,j + dj,k, <)

so we have from Definition 3.3 (2b) and Lemma 3.4

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if i = k = 0, we have D′0,0 = (0,≤), D′0,j = D0,j + (0, <) and D′j,0 = (1, <);

since (E,D) ∈ p–PDBM�(Rp), from Lemma 3.7 we know that (0,≤) ≤ D0,j +Dj,0

is valid for Rp, and since from Definition 3.5 (1) Dj,0 ≤ (1,≤) is valid for Rp, that
means (0,≤) ≤ D0,j + (1, <) is valid for Rp. As we have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

Vol. 17:2 INSTRUCTIONS 13:39

we obtain that
(0,≤) ≤ D0,j + (0, <) + (1, <)

is valid for Rp and therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.

(4) if xj , xk ∈ LFPRp(D) and xi ∈ X \ LFPRp(D): j 6= 0, k 6= 0 and
• if i is different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k; since (E,D) ∈
p–PDBM�(Rp), from Definition 3.5 (4) we know that Di,k ≤ Di,j +Dj,k; therefore,
D′i,k ≤ D′i,j +D′j,k.

• if i = 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know that D0,k ≤ D0,j +
Dj,k. Moreover we have that

D0,k + (0, <) = (d0,k, <) and D0,j + (0, <) +Dj,k = (d0,j + dj,k, <)

so we have from Definition 3.3 (2b) and Lemma 3.4

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

(5) if xi ∈ LFPRp(D) and xj , xk ∈ X \ LFPRp(D): i 6= 0 and
• if j, k are different from 0, we have D′i,k = Di,k, D

′
i,j = Di,j and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know thatDi,k ≤ Di,j+Dj,k;
therefore, D′i,k ≤ D′i,j +D′j,k.

• if j 6= 0, k = 0, we have D′i,0 = (1, <), D′i,j = Di,j and D′j,0 = Dj,i + (1, <); from

Definition 3.5 (4) and Lemma 3.7 we know that (0,≤) ≤ Di,j +Dj,i is valid for Rp.
Since, from Definition 3.3 (2b) (1, <) ≤ (1, <) is valid for Rp, then from Lemma 3.4

(1, <) ≤ Di,j +Dj,i + (1, <)

is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

• if j = 0, k 6= 0, we have D′i,k = Di,k, D′i,0 = (1, <) and D′0,k = D0,k + (0, <); we claim
that

Di,k ≤ (1, <) +D0,k + (0, <)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. Since (E,D) ∈
p–PDBM�(Rp) from Definition 3.5 (4), we know that Di,k ≤ Di,0 + D0,k is valid
for Rp; moreover, from Definition 3.5 (1), we know that Di,0 ≤ (1, <) is valid for Rp.
We have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

so we obtain that

Di,k ≤ Di,0 +D0,k ≤ (1, <) +D0,k = (1, <) +D0,k + (0, <)

is valid for Rp and therefore our result.
• if i is different from 0, j = k = 0, we have D′i,0 = (1, <), D′0,0 = (0,≤); from

Definition 3.3 (2b) we have that

(1, <) ≤ (1, <)

is valid for Rp. Hence from Lemma 3.8

D′i,0 ≤ D′i,0 +D′0,0

is valid for Rp.
(6) if xi, xk ∈ LFPRp(D) and xj ∈ X \ LFPRp(D): i 6= 0, k 6= 0 and

13:40 É. André, D. Lime, and M. Ramparison Vol. 17:2

• if j 6= 0, we have D′i,k = Di,k, D
′
i,j = Di,j and D′j,k = Dj,k; since (E,D) ∈

p–PDBM�(Rp), from Definition 3.5 (4) we know that Di,k ≤ Di,j + Dj,k; there-
fore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if j = 0, we have D′i,k = Di,k, D
′
i,0 = (1, <) and D′0,k = D0,k + (0, <); we claim that

Di,k ≤ (1, <) +D0,k + (0, <)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. Since (E,D) ∈
p–PDBM�(Rp) from Definition 3.5 (4), we know that Di,k ≤ Di,0 + D0,k is valid
for Rp; moreover, from Definition 3.5 (1), we know that Di,0 ≤ (1, <) is valid for Rp.
We have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

so we obtain that

Di,k ≤ Di,0 +D0,k ≤ (1, <) +D0,k = (1, <) +D0,k + (0, <)

is valid for Rp and therefore our result.
(7) if xi, xj ∈ LFPRp(D) and xk ∈ X \ LFPRp(D): i 6= 0, j 6= 0 and
• if k 6= 0, we have D′i,k = Di,k, D

′
i,j = Di,j and D′j,k = Dj,k; since (E,D) ∈

p–PDBM�(Rp), from Definition 3.5 (4) we know that Di,k ≤ Di,j + Dj,k is valid
for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if k = 0, we have D′i,0 = (1, <), D′i,j = Di,j = (0,≤) since both xi, xj ∈ LFPRp(D)

(cf. (?)) and D′j,0 = (1, <); then (1, <) ≤ (0,≤) + (1, <) is valid for Rp and therefore,

D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

(8) if xi, xj , xk ∈ LFPRp(D): i, j, k are different from 0, we have D′i,k = Di,k, D
′
i,j = Di,j

and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know

that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

proof that Definition 3.5 (5b) holds

Finally, for xi ∈ LFPRp(D), D′i,0 = (1, <) and for all clock j s.t. D′0,j = (0, /0j′), then

we have /0j′ = <. Condition Definition 3.5 (5b) is satisfied.
We denote by (E,D′) the obtained p–PDBM and (E,D′) ∈ p–PDBM�(Rp).

G.0.2. → Definition 3.5 type (5b) to (5a).

Lemma G.2. Let (E,D) ∈ p–PDBM�(Rp); let xi ∈ LFPRp(D), xj ∈ X \ LFPRp(D). If
(di,j , /ij) = (0, /), then / = <

Proof. Let xi ∈ LFPRp(D), xj ∈ X \ LFPRp(D). Suppose (di,j , /ij) = (0,≤). From Def-
inition 3.5 (2) we should have that (dj,i, /ji) = (0,≤) so Lemma 3.7 is satisfied, and
then xj ∈ LFPRp(D).

Claim G.3 (modification of an open–p–PDBM respecting condition 5b under TE=). Let
Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp) respecting condition 5b, then
TE=(E,D) ∈ p–PDBM�(Rp) respecting condition 5a.

Vol. 17:2 INSTRUCTIONS 13:41

Proof. Suppose (E,D) ∈ p–PDBM�(Rp) respects condition (5a) of Definition 3.5 i. e., we
have at least an x s.t. Dx,0 = (1, <) and for all other j s.t. D0,j = (0, /0j), /0j = <.
First we can determine LFPRp(D). Let x ∈ LFPRp(D). If more than one clock belong
to LFPRp(D) then their valuations have the same fractional part. Indeed, from Definition 4.5
if xi, xj ∈ LFPRp(D) then both (0,≤) ≤ Di,j and (0,≤) ≤ Dj,i are valid for Rp, and from
Definition 3.5 (2) we must have Di,j = Dj,i = (0,≤).

Let v ∈ Rp. Let xi ∈ LFPRp(D) and w ∈ (E, v(D)). By letting time elapse, frac(w(x))
is the first to actually reach 1. Moreover, for all xj ∈ X \ LFPRp(D), frac(w(xj)) cannot
reach 1 before frac(w(xi)). We are going to construct a new (E′, D′) = TE=((E,D)) which
is an open–p–PDBM respecting condition 5b. While detailing the procedure of TE=, we
are going to prove that Definition 3.5 (1) and (2) hold for (E′, D′). Further we will prove
that (4) and (5a) also hold.

proof that Definition 3.5 (1) holds

According to the definition of TE= Algorithm 3, the first step is to fix the value
of frac(xi) to 0 by setting

D′i,0 = (0,≤) and D′0,i = (0,≤) for all xi ∈ LFPRp(D).

Indeed, when frac(xi) reaches 1, in the constraints expressed by (E, v(D)) we have to
increase the integer part by 1 and set the new constraints on the fractional part to 0.

Secondary we set new upper and lower bound for all other clock xj ∈ X \ LFPRp(D)

D′0,j = Di,j + (−1,≤) and D′j,0 = Dj,i + (1,≤).

We have to force now upper and lower bounds for other clocks since we know the interval of
time that elapsed when xi reached 1.

Note that since xi ∈ LFPRp(D), xj ∈ X\LFPRp(D) from Definition 4.5 we have that (0,≤
) ≤ Di,j ≤ (1, <) is valid for Rp for all clock xj . Nonetheless, since xj ∈ X \ LFPRp(D),
we even have Di,j 6= (0,≤): suppose (di,j , /ij) = (0,≤): from Definition 3.5 (2) we should
have that (dj,i, /ji) = (0,≤) so Lemma 3.7 is satisfied, and then xj ∈ LFPRp(D). The same
reasoning leads to Dj,i 6= (0,≤).

Obviously, we have Di,j 6= (0, <): suppose Di,j = (0, <), since xi ∈ LFPRp(D) then from
Definition 4.5 (0,≤) ≤ Di,j should be valid for Rp, which is not from Definition 3.3 (2b).

Precisely, di,j∈{1, 1− p1, p2 + 1− p1, p1 − p2, p1} for any two p1, p2 ∈ P where p2 ≤ p1
is valid for Rp. Hence as −1 + di,j∈{0,−p1, p2 − p1, p1 − 1 − p2, p1 − 1}, we have that
D′0,j ∈ PLT and (−1, <) ≤ D′0,j ≤ (0,≤) is valid for Rpfrom Lemma G.2.

Also note that since xi ∈ LFPRp(D), from Definition 4.5 and Definition 3.5 (2) we have
that (−1, <) ≤ Dj,i ≤ (0,≤) is valid for Rp for all clock xj . Precisely, dj,i ∈ {0,−p1, p2 −
p1, p1 − 1 − p2, p1 − 1} for some p1, p2 ∈ P where p2 ≤ p1 is valid for Rp. Hence as
dj,i+1 ∈ {1, 1−p1, p2+1−p1, p1−p2, p1}, we have that d′j,0 ∈ PLT and (0,≤) ≤ D′j,0 ≤ (1, <)
is valid for Rp.

Clearly Definition 3.5 (1) holds.

proof that Definition 3.5 (2) holds

Third we set for all two clocks i, j where xi ∈ LFPRp(D), xj ∈ X \ LFPRp(D)

D′i,j = D′0,j and D′j,i = D′j,0,

for all two clocks xj , xk ∈ X \ LFPRp(D)

D′j,k = Dj,k

13:42 É. André, D. Lime, and M. Ramparison Vol. 17:2

and for all two clocks x, y ∈ LFPRp(D)

D′x,y = D′y,x = (0,≤).

Here as we have already proven above that (−1, <) ≤ D′0,j ≤ (0,≤) and (0,≤) ≤ D′0,j ≤ (1, <)

are valid for Rp, Definition 3.5 (2) holds.

proof that Definition 3.5 (3) holds

For all xi:

• if xi ∈ LFPRp(D), D′i,0 = (0,≤), D′0,i = (0,≤) hence d′i,0 = −d′0,i and /i0′/0i′ = ≤,

condition Definition 3.5 (3) holds;
• if xi ∈ X \ LFPRp(D), x ∈ LFPRp(D), D′i,0 = Di,x + (1,≤), D′0,i = Dx,i + (−1,≤) as

condition Definition 3.5 (3) holds for Di,x and Dx,i and /ij⊕ ≤= /ij , /ji⊕ ≤= /ji,
condition Definition 3.5 (3) holds for D′i,0 and D′0,i.

For all xi, xj :

• if xi, xj ∈ X \ LFPRp(D), D′i,j = Di,j and D′j,i = Dj,i, condition Definition 3.5 (3) holds as
it holds for Di,j and Dj,i.
• if xi ∈ X\LFPRp(D), xj ∈ LFPRp(D), D′i,j = Di,j + (1,≤), D′j,i = Dj,i+ (−1,≤) condition

Definition 3.5 (3) holds for Di,j and Dj,i and /ij⊕ ≤= /ij , /ji⊕ ≤= /ji, condition
Definition 3.5 (3) holds for D′i,j and D′j,i. The case xj ∈ X \ LFPRp(D), xi ∈ LFPRp(D) is
treated similarly.
• if xi, xj ∈ LFPRp(D), D′i,j = D′j,i = (0,≤), hence d′i,j = −d′j,i = 0 and /ij′/ji′ =≤ and

condition Definition 3.5 (3) holds.

proof that Definition 3.5 (4) holds

Now we prove that Definition 3.5 (4) holds, i. e., for all clocks xi, xj , xk, valid conditions
such as D′i,j ≤ D′i,k +D′k,j remain valid in Rp. This is not trivial since, in this construction
some clocks have been updated. Precisely, for all clocks xi, xj , xk, are valid for Rp:

(1) if xi, xj , xk ∈ X \ LFPRp(D): let x ∈ LFPRp(D) and
• if i, j, k are different from 0, we have D′i,k = Di,k, D

′
i,j = Di,j and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know that Di,k ≤ Di,j+Dj,k

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if i, j are different from 0, k = 0, we have D′i,0 = Di,x + (1,≤), D′i,j = Di,j and D′j,0 =

Dj,x + (1,≤); since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know
that Di,x ≤ Di,j + Dj,x is valid for Rp; then from Lemma 3.4 Di,x + (1,≤) ≤
Di,j +Dj,x + (1,≤) is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

• if i, k are different from 0, j = 0, we have D′i,k = Di,k, D′i,0 = Di,x + (1,≤) and D′0,k =

Dx,k + (−1,≤); we claim that

Di,k ≤ Di,x + (1,≤) +Dx,k + (−1,≤) (G.7)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. We have

(1,≤) + (−1,≤) = (1 +−1,≤ ⊕ ≤) = (0,≤) (G.8)

Since (E,D) ∈ p–PDBM�(Rp) from Definition 3.5 (4), we know that Di,k ≤ Di,x +
Dx,k is valid for Rp; combining with (G.8) and since Dx,k + (0,≤) = Dx,k, we obtain
(G.7) and therefore our result.

Vol. 17:2 INSTRUCTIONS 13:43

• if i is different from 0, j = k = 0, we have D′i,0 = Di,x + (1,≤), D′j,k = D′0,0 = (0,≤);

we have from Definition 3.3 (2b) that

Di,x + (1,≤) ≤ Di,x + (1,≤)

is valid for Rp. Hence Lemma 3.8 gives that

D′i,0 ≤ D′i,0 +D′0,0

is valid for Rp.
• if j, k are different from 0, i = 0, we have D′0,k = Dx,k + (−1,≤), D′0,j = Dx,j + (−1,≤)

and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know
that Dx,k ≤ Dx,j +Dj,k is valid for Rp. Moreover we have that

(−1,≤) ≤ (−1,≤)

is valid for Rp so we have from Definition 3.3 (2b) and Lemma 3.4

Dx,k + (−1,≤) ≤ Dx,j + (−1,≤) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if j is different from 0, i = k = 0, we haveD′0,j = Dx,j+(−1,≤) andD′j,0 = Dj,x+(1,≤);

since (E,D) ∈ p–PDBM�(Rp), from Lemma 3.7 we know that (0,≤) ≤ Dx,j +Dj,x

is valid for Rp; moreover, we have that

(1,≤) + (−1,≤) = (1 +−1,≤ ⊕ ≤) = (0,≤)

and Dj,x + (0,≤) = Dj,x. Then we have from Lemma 3.4

(0,≤) ≤ Dx,j + (−1,≤) +Dj,x + (1,≤)

is valid for Rp and therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.

• if k is different from 0, i = j = 0, we have D′0,k = Dx,k + (−1,≤), D′i,j = D′0,0 = (0,≤);

we have from Definition 3.3 (2b) that

Dx,k + (−1,≤) ≤ Dx,k + (−1,≤)

is valid for Rp. Hence, as Dx,k + (−1,≤) + (0,≤) = Dx,k + (−1,≤) we have

D′0,k ≤ D′0,0 +D′0,k

is valid for Rp.
• if i = j = k = 0, we trivially have from Definition 3.5 (4) and Lemma 3.8

D′0,0 ≤ D′0,0 +D′0,0

is valid for Rp.
(2) if xk ∈ LFPRp(D) and xi, xj ∈ X \ LFPRp(D): k 6= 0 and
• if i, j are different from 0, we have D′i,k = D′i,0 = Di,k + (1,≤), D′i,j = Di,j and D′j,k =

D′j,0 = Dj,k + (1,≤); since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know

that Di,k ≤ Di,j +Dj,k is valid for Rp; moreover, since we have (1,≤) ≤ (1,≤) is valid
for Rp then from Lemma 3.4

Di,k + (1,≤) ≤ Di,j +Dj,k + (1,≤)

is valid for Rp, therefore we have D′i,k ≤ D′i,j +D′j,k is valid for Rp.

13:44 É. André, D. Lime, and M. Ramparison Vol. 17:2

• if i 6= 0, j = 0, we have D′i,k = D′i,0 = Di,k + (1,≤), D′i,0 = Di,k + (1,≤) and D′0,k =

(0,≤); clearly

(1,≤) ≤ (1,≤) + (0,≤)

and

Di,k ≤ Di,k

are valid for Rp, then from Lemma 3.4 we obtain D′i,k ≤ D′i,0 +D′0,k is valid for Rp.

• if i = 0, j 6= 0, we have D′0,k = (0,≤), D′0,j = Dk,j + (−1,≤) and D′j,k = D′j,0 =

Dj,k + (1,≤); since (E,D) ∈ p–PDBM�(Rp), from Lemma 3.7 we know that (0,≤
) ≤ Dk,j +Dj,k is valid for Rp. Moreover we have that

(1,≤) + (−1,≤) = (1 +−1,≤ ⊕ ≤) = (0,≤)

so we have from Lemma 3.4

(0,≤) ≤ Dk,j +Dj,k + (0,≤)

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if i = j = 0, we trivially have from Definition 3.5 (4) and Lemma 3.8

D′0,k ≤ D′0,0 +D′0,k

is valid for Rp.
(3) if xj ∈ LFPRp(D) and xi, xk ∈ X \ LFPRp(D): j 6= 0 and
• if i, k are different from 0, we have D′i,k = Di,k, D′i,j = D′i,0 = Di,j + (1,≤) and D′j,k =

D′0,k = Dj,k + (−1,≤); since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we
know that Di,k ≤ Di,j +Dj,k is valid for Rp; moreover, since we have

(1,≤) + (−1,≤) = (1 + (−1),≤ ⊕ ≤) = (0,≤)

then as Di,j +Dj,k + (0,≤) = Di,j +Dj,k, clearly D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if i 6= 0, k = 0, we have D′i,0 = Di,j + (1,≤), D′i,j = D′i,0 = Di,j + (1,≤) and D′j,0 =

(0,≤); From Definition 3.3 (2b) we trivially have that Di,j + (1,≤) ≤ Di,j + (1,≤) is
valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

• if i = 0, k 6= 0, we have D′0,k = Dj,k + (−1,≤), D′0,j = (0,≤) and D′j,k = D′0,k =

Dj,k + (−1,≤); since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4) we know
that D0,k ≤ D0,j + Dj,k is valid for Rp. From Definition 3.3 (2b) we trivially have
that Dj,k + (−1,≤) ≤ Dj,k + (−1,≤) is valid for Rp. As (−1,≤) + (0,≤) = (−1,≤),
we have D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if i = k = 0, we have D′0,j = (0,≤) and D′j,0 = (0,≤); As we have

(0,≤) + (0,≤) = (0,≤)

we clearly have that D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.

(4) if xj , xk ∈ LFPRp(D) and xi ∈ X \ LFPRp(D): j 6= 0, k 6= 0 and
• if i is different from 0, we have D′i,k = D′i,0 = Di,k+(−1,≤), D′i,j = D′i,0 = Di,k+(−1,≤

) and D′j,k = (0,≤); we have that (−1,≤) + (0,≤) = (−1,≤) and

Di,k + (−1,≤) ≤ Di,k + (−1,≤)

holds from Definition 3.3 (2b). Therefore, D′i,k ≤ D′i,j +D′j,k.

Vol. 17:2 INSTRUCTIONS 13:45

• if i = 0, we have D′0,k = (0,≤), D′0,j = (0,≤) and D′j,k = (0,≤); since (E,D) ∈
p–PDBM�(Rp) from Definition 3.5 (4), we know that D0,k ≤ D0,j +Dj,k. As we have

(0,≤) + (0,≤) = (0,≤)

we clearly have that D′0,k ≤ D′0,j +D′j,k is valid for Rp.

(5) if xi ∈ LFPRp(D) and xj , xk ∈ X \ LFPRp(D): i 6= 0 and
• if j, k are different from 0, we have D′i,k = D′0,k = Di,k + (−1,≤), D′i,j = D′0,j =

Di,j+(−1,≤) and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 3.5 (4)
we know that Di,k ≤ Di,j +Dj,k is valid for Rp; moreover, since we have

(−1,≤) ≤ (−1,≤)

is valid for Rp then from Lemma 3.4 we have D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if j 6= 0, k = 0, we have D′i,0 = (0,≤), D′i,j = D′0,j = Di,j + (−1,≤) and D′j,0 =

Dj,i + (1,≤); from Lemma 3.7 we know that (0,≤) ≤ Di,j + Dj,i is valid for Rp.
Moreover, we have

(1,≤) + (−1,≤) = (1 + (−1),≤ ⊕ ≤) = (0,≤)

then
(0,≤) ≤ Di,j +Dj,i + (0,≤)

is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

• if j = 0, k 6= 0, we have D′i,k = Di,k, D′i,0 = (1,≤) and D′0,k = Di,k + (−1,≤); we have
that

(1,≤) + (−1,≤) = (1 + (−1),≤ ⊕ ≤) = (0,≤)

and from Definition 3.3 (2b) that

Di,k ≤ Di,k + (0,≤)

is valid for Rp, which gives us our result.
• if i is different from 0, j = k = 0, we have D′i,0 = (0,≤), D′j,k = D′0,0 = (0,≤); we

have from Definition 3.3 (2b) that

(0,≤) ≤ (0,≤)

is valid for Rp. Hence

D′i,0 ≤ D′i,0 +D′0,0
is valid for Rp.

(6) if xi, xk ∈ LFPRp(D) and xj ∈ X \ LFPRp(D): i 6= 0, k 6= 0 and
• if j 6= 0, we have D′i,k = (0,≤), D′i,j = D′0,j = Di,j + (−1,≤) and D′j,k = D′j,0 =

Dj,i + (1,≤); since (E,D) ∈ p–PDBM�(Rp), from Lemma 3.7 we know that (0,≤
) ≤ Di,j +Dj,i is valid for Rp; we have

(1,≤) + (−1,≤) = (1 + (−1),≤ ⊕ ≤) = (0,≤)

and therefore from Lemma 3.4, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if j = 0, we have D′i,k = (0,≤), D′i,0 = (0,≤) and D′0,k = (0,≤); we have that

(0,≤) + (0,≤) = (0,≤) and from Definition 3.3 (2b)

(0,≤) ≤ (0,≤)

is valid for Rp. Therefore we obtain our result.
(7) if xi, xj ∈ LFPRp(D) and xk ∈ X \ LFPRp(D): i 6= 0, j 6= 0 and

13:46 É. André, D. Lime, and M. Ramparison Vol. 17:2

• if k 6= 0, we have D′i,k = D′0,k = Di,k + (−1,≤), D′i,j = (0,≤) and D′j,k = D′0,k =

Di,k + (−1,≤); we have that

Di,k ≤ Di,k

is valid for Rp and from Lemma 3.4

(−1,≤) ≤ (−1,≤)

is valid for Rp. Therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if k = 0, we have D′i,0 = (0,≤), D′i,j = (0,≤) and D′j,0 = (0,≤); we have that

(0,≤) + (0,≤) = (0,≤) and from Definition 3.3 (2b)

(0,≤) ≤ (0,≤)

is valid for Rp: therefore D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

(8) if xi, xj , xk ∈ LFPRp(D): i, j, k are different from 0, we have D′i,k = (0,≤), D′i,j = (0,≤)

and D′j,k = (0,≤); we have that (0,≤) + (0,≤) = (0,≤) and from Definition 3.3 (2b)

(0,≤) ≤ (0,≤)

is valid for Rp: therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

proof that Definition 3.5 (5a) holds

Finally, there is at least one clock xi ∈ LFPRp(D) s.t. D0,i = Di,0 = (0,≤). Hence
condition Definition 3.5 (5a) holds.

To conclude the proof, we set E′i = Ei + 1 if xi ∈ LFPRp(D) and E′j = Ej if xj ∈ X \
LFPRp(D) We denote by (E,D′) the obtained p–PDBM and (E′, D′) ∈ p–PDBM�(Rp).

G.0.3. → Definition 3.6 to Definition 3.5 type (5a).

Claim G.4 (p–PDBM�(Rp) becomes p–PDBM�(Rp) after TE<). Let Rp be a parameter
region and (E,D) ∈ p–PDBM�(Rp), then TE<

(
(E,D)

)
∈ p–PDBM�(Rp) respecting

condition 5b.

Proof. Suppose (E,D) ∈ p–PDBM�(Rp). Since, in Rp, we know which parameters have
the largest fractional part, we can determine LFPRp(D) from Lemma 4.6. If more than one
clock belong to LFPRp(D) then their valuations have the same fractional part.

Indeed, from Definition 4.5 if xi, xj ∈ LFPRp(D) then both (0,≤) ≤ Di,j and (0,≤) ≤
Dj,i are valid for Rp, and from Definition 3.5 (2) we must have Di,j = Dj,i = (0,≤).

Let v ∈ Rp. Let xi ∈ LFPRp(D) and w ∈ (E, v(D)). By letting time elapse, frac(w(xi))
is the first that might reach 1. Moreover, for all xj ∈ X \ LFPRp(D), frac(w(xj)) cannot
reach 1 before frac(w(xi)). We are going to construct a new (E′, D′) = TE<((E,D)) which
is an open–p–PDBM respecting condition 5b. While detailing the procedure of TE<, we
are going to prove that Definition 3.5 (1) and (2) hold for (E′, D′). Further we will prove
that (4) and (5b) also hold.

proof that Definition 3.5 (1) holds

According to the definition of TE< (Algorithm 2) the first step is to set a new upper
bound

D′i,0 = (1, <) for all xi ∈ LFPRp(D)

Vol. 17:2 INSTRUCTIONS 13:47

and obviously (0,≤) ≤ D′i,0 ≤ (1, <) is valid for Rp. Then we set new upper bounds for all

other clock xj ∈ X \ LFPRp(D) by setting

D′j,0 = Dj,i + (1, <).

Indeed, Dj,i is the constraint on the lower bound of w(xj)− w(xi) and since the upper
bound of xi has increased, this gives the new upper bound of xj . Note that since xi ∈
LFPRp(D), from Definition 4.5 we have for all clock xj that (−1, <) ≤ Dj,i ≤ (0,≤) is valid
for Rp. Precisely, dj,i ∈ {0,−p1, p2−p1, p1−1−p2, p1−1} for some p1, p2 ∈ P where p2 ≤ p1
is valid for Rp. Hence as dj,i+1 ∈ {1, 1−p1, p2+1−p1, p1−p2, p1}, we have that d′j,0 ∈ PLT ,

/j0′ = /j0′ ⊕< = < and (0,≤) ≤ D′j,0 ≤ (1, <) is valid for Rp. Note that we cannot have

(dj,i, /ji) = (−1, <) because even if (di,j , /ij) = (1, <), since (E,D) ∈ p–PDBM�(Rp) we
do not have have 0 ≤ Dj,i +Di,j is valid for Rp from Definition 3.5 (4) and Lemma 3.7.

Secondary we set for all clock x regardless of whether they are in LFPRp(D)

D′0,x = D0,x + (0, <).

Since some time elapsed, lower bounds of all clocks are increased. Moreover, from Defini-
tion 3.6 (1) as (−1, <) ≤ D0,x ≤ (0,≤) is valid for Rp, (−1, <) ≤ D′0,x ≤ (0,≤) is also valid
for Rp.

proof that Definition 3.5 (2) holds

Third we set for all clocks x, y regardless of whether they are in LFPRp(D)

D′x,y = Dx,y

since no fractional part has reached 1, constraints on differences of clocks and integer parts
remain unchanged. As it is the case in (E,D), Definition 3.5 (2) holds.

proof that Definition 3.5 (3) holds

For all xi:

• if xi ∈ LFPRp(D), D′i,0 = (1, <), D′0,i = D0,i + (0, <) hence d′i,0 6= d′0,i and /i0′/0i′ = <,

condition Definition 3.5 (3) holds;
• if xi ∈ X \ LFPRp(D), x ∈ LFPRp(D), D′i,0 = Di,x + (1, <), D′0,i = D0,i + (0, <) hence

as (0,≤) ≤ D′i,0 is valid for Rp and D′0,i ≤ (0,≤) is valid for Rp, we have d′i,0 6= d′0,i
and /i0′/0i′ = < and condition Definition 3.5 (3) holds.

For all xi, xj :

• if xi, xj ∈ X \ LFPRp(D), D′i,j = Di,j and D′j,i = Dj,i, condition Definition 3.5 (3) holds as
it holds for Di,j and Dj,i.
• if xi ∈ X \ LFPRp(D), xj ∈ LFPRp(D), D′i,0 = Di,j + (1, <), D′0,i = D0,i + (0, <) hence

as (0,≤) ≤ D′i,0 is valid for Rp and D′0,i ≤ (0,≤) is valid for Rp, we have d′i,0 6= d′0,i
and /i0′/0i′ = <, condition Definition 3.5 (3) holds. The case xj ∈ X \ LFPRp(D),
xi ∈ LFPRp(D) is treated similarly.
• if xi, xj ∈ LFPRp(D), D′i,j = D′j,i = (0,≤), hence d′i,j = −d′j,i = 0 and /ij′/ji′ =≤ and

condition Definition 3.5 (3) holds.

proof that Definition 3.5 (4) holds

Now we prove that Definition 3.5 (4) holds, i. e., for all clocks xi, xj , xk valid conditions
such as D′i,j ≤ D′i,k +D′k,j remain valid in Rp. Indeed, when time elapses, all clocks have the

13:48 É. André, D. Lime, and M. Ramparison Vol. 17:2

same behavior, hence the difference between two clocks does not change without an update.
Precisely, for all clocks xi, xj , xk, are valid for Rp:

(1) if xi, xj , xk ∈ X \ LFPRp(D): let x ∈ LFPRp(D) and
• if i, j, k are different from 0, we have D′i,k = Di,k, D

′
i,j = Di,j and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp) from Definition 3.6 (2), we know thatDi,k ≤ Di,j+Dj,k

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if i, j are different from 0, k = 0, we have D′i,0 = Di,x + (1, <), D′i,j = Di,j and D′j,0 =

Dj,x + (1, <); since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we know
that Di,x ≤ Di,j + Dj,x is valid for Rp; then from Lemma 3.4 Di,x + (1, <) ≤
Di,j +Dj,x + (1, <) is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

• if i, k are different from 0, j = 0, we have D′i,k = Di,k, D′i,0 = Di,x + (1, <) and D′0,k =

D0,k + (0, <); we claim that

Di,k ≤ Di,x + (1, <) +D0,k + (0, <) (G.9)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. Since (E,D) ∈
p–PDBM�(Rp), from Definition 3.6 (1) we know that

Dx,0 ≤ (1, <) (G.10)

is valid for Rp; moreover we have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <). (G.11)

Since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we know that Dx,k ≤ Dx,0 +
D0,k is valid for Rp; combining with (G.10) and (G.11) we obtain Dx,k ≤ (1, <
) +D0,k + (0, <) is valid for Rp. As Di,x ≤ Di,x is valid for Rp, using Lemma 3.4 we
obtain

Di,x +Dx,k ≤ Di,x + (1, <) +D0,k + (0, <) (G.12)

is valid for Rp. Now, since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we know
that Di,k ≤ Di,x + Dx,k is valid for Rp and combining with (G.12) we obtain (G.9)
and therefore our result.
• if i is different from 0, j = k = 0, we have D′i,0 = Di,x + (1, <), D′j,k = D′0,0 = (0,≤);

we have from Definition 3.3 (2b) that

Di,x + (1, <) ≤ Di,x + (1, <)

is valid for Rp. Hence

D′i,0 ≤ D′i,0 +D′0,0

is valid for Rp.
• if j, k are different from 0, i = 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <)

and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we know
that D0,k ≤ D0,j +Dj,k is valid for Rp. Moreover we have that

D0,k + (0, <) = (d0,k, <) and D0,j + (0, <) +Dj,k = (d0,j + dj,k, <)

so we have from Lemma 3.4

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

Vol. 17:2 INSTRUCTIONS 13:49

• if j is different from 0, i = k = 0, we have D′i,k = D′0,0 = (0,≤), D′0,j = D0,j + (0, <)

and D′j,0 = Dj,x + (1, <); since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we
know that D0,x ≤ D0,j +Dj,x is valid for Rp; moreover from Lemma 3.4,

D0,x + (0, <) ≤ D0,j + (0, <) +Dj,x

is valid for Rp. As we have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

we obtain from Lemma 3.4 that

D0,x + (1, <) ≤ D0,j +Dj,x + (1, <)

is valid for Rp. Recall that from Lemma 3.7 (0,≤) ≤ D0,x +Dx,0 is valid for Rp. Since
from Definition 3.6 (1) Dx,0 ≤ (1, <) is valid for Rp, we have (0,≤) ≤ D0,x + (1, <) is
valid for Rp. Therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.

• if k is different from 0, i = j = 0, we have D′i,k = D′j,k = D′0,k = D0,k + (0, <),

D′i,j = D′0,0 = (0,≤); we have from Definition 3.3 (2b) that

D0,k + (0, <) ≤ D0,k + (0, <)

is valid for Rp. Hence from Lemma 3.8

D′0,k ≤ D′0,0 +D′0,k

is valid for Rp.
• if i = j = k = 0, we trivially have

D′0,0 ≤ D′0,0 +D′0,0

is valid for Rp.
(2) if xk ∈ LFPRp(D) and xi, xj ∈ X \ LFPRp(D): k 6= 0 and
• if i, j are different from 0, we have D′i,k = Di,k, D

′
i,j = Di,j and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we know thatDi,k ≤ Di,j+Dj,k

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if i 6= 0, j = 0, we have D′i,k = Di,k, D′i,0 = Di,k + (1, <) and D′0,k = D0,k + (0, <); we

claim that Di,k ≤ Di,k + (1, <) +D0,k + (0, <), i. e.,

0 ≤ (1, <) +D0,k + (0, <) (G.13)

is valid for Rp, which is from Lemma 3.4 equivalent to D′i,k ≤ D′i,0 + D′0,k is valid
for Rp. We have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <). (G.14)

Since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we know that 0 ≤ D0,k +Dk,0

is valid for Rp and from Definition 3.6 (1) that Dk,0 ≤ (1, <) is valid for Rp; combining
with (G.14) we obtain (G.13) and therefore our result.
• if i = 0, j 6= 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we know that D0,k ≤ D0,j +
Dj,k is valid for Rp. Moreover we have that (0, <) ≤ (0, <) is valid for Rp so we have
from Lemma 3.4

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

13:50 É. André, D. Lime, and M. Ramparison Vol. 17:2

• if i = j = 0, from Definition 3.6 (2) we trivially have

D′0,k ≤ D′0,0 +D′0,k

is valid for Rp.
(3) if xj ∈ LFPRp(D) and xi, xk ∈ X \ LFPRp(D): j 6= 0 and
• if i, k are different from 0, we have D′i,k = Di,k, D

′
i,j = Di,j and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we know thatDi,k ≤ Di,j+Dj,k

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if i 6= 0, k = 0, we have D′i,0 = Di,j + (1, <), D′i,j = Di,j and D′j,0 = (1, <); from

Definition 3.3 (2b) we trivially have that Di,j + (1, <) ≤ Di,j + (1, <) is valid for Rp
and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

• if i = 0, k 6= 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we know that D0,k ≤ D0,j +
Dj,k is valid for Rp. Moreover we have that (0, <) ≤ (0, <) is valid for Rp so we have

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

holds from Definition 3.3 (2b). Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if i = k = 0, we have D′0,j = D0,j + (0, <) and D′j,0 = (1, <); since (E,D) ∈
p–PDBM�(Rp), from Lemma 3.7 we know that 0 ≤ D0,j +Dj,0 is valid for Rp, from
Definition 3.6 (1) we know that Dj,0 ≤ 1 is valid for Rp which means 0 ≤ D0,j + (1, <)
is valid for Rp. As we have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

we obtain that

(0,≤) ≤ D0,j + (0, <) + (1, <)

is valid for Rp and therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.

(4) if xj , xk ∈ LFPRp(D) and xi ∈ X \ LFPRp(D): j 6= 0, k 6= 0 and
• if i is different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k; since (E,D) ∈
p–PDBM�(Rp), from Definition 3.6 (2) we know that Di,k ≤ Di,j + Dj,k is valid
for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if i = 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we know that D0,k ≤ D0,j +
Dj,k is valid for Rp. Moreover we have that (0, <) ≤ (0, <) is valid for Rp so we have
from Lemma 3.4

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

(5) if xi ∈ LFPRp(D) and xj , xk ∈ X \ LFPRp(D): i 6= 0 and
• if j, k are different from 0, we have D′i,k = Di,k, D

′
i,j = Di,j and D′j,k = Dj,k;

since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we know thatDi,k ≤ Di,j+Dj,k

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if j 6= 0, k = 0, we have D′i,0 = (1, <), D′i,j = Di,j and D′j,0 = Dj,i + (1, <);

since (E,D) ∈ p–PDBM�(Rp), from Lemma 3.7 we know that 0 ≤ Di,j +Dj,i. Then
from Lemma 3.4

(1, <) ≤ Di,j +Dj,i + (1, <)

is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

Vol. 17:2 INSTRUCTIONS 13:51

• if j = 0, k 6= 0, we have D′i,k = Di,k, D′i,0 = (1, <) and D′0,k = D0,k + (0, <); we claim
that

Di,k ≤ (1, <) +D0,k + (0, <)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. Since (E,D) ∈
p–PDBM�(Rp) from Definition 3.6 (2), we know that Di,k ≤ Di,0 + D0,k is valid
for Rp; moreover, from Definition 3.6 (1), we know that Di,0 ≤ (1, <) is valid for Rp.
We have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

We obtain that

Di,k ≤ Di,0 +D0,k ≤ (1, <) +D0,k = (1, <) +D0,k + (0, <)

is valid for Rp and therefore our result.
• if i is different from 0, j = k = 0, we have D′i,0 = (1, <), D′j,k = D′0,0 = (0,≤); from

Definition 3.3 (2b) we have that

(1, <) ≤ (1, <)

is valid for Rp. Hence

D′i,0 ≤ D′i,0 +D′0,0

is valid for Rp.
(6) if xi, xk ∈ LFPRp(D) and xj ∈ X \ LFPRp(D): i 6= 0, k 6= 0 and
• if j 6= 0, we have D′i,k = Di,k, D

′
i,j = Di,j and D′j,k = Dj,k; since (E,D) ∈

p–PDBM�(Rp), from Definition 3.6 (2) we know that Di,k ≤ Di,j + Dj,k is valid
for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if j = 0, we have D′i,k = Di,k, D
′
i,0 = (1, <) and D′0,k = D0,k + (0, <); we claim that

Di,k ≤ (1, <) +D0,k + (0, <)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 +D′0,k is valid for Rp. Since (E,D) ∈
p–PDBM�(Rp) from Definition 3.6 (2), we know that Di,k ≤ Di,0 + D0,k is valid
for Rp; moreover, from Definition 3.6 (1), we know that Di,0 ≤ (1, <) is valid for Rp.
We have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

We obtain that

Di,k ≤ Di,0 +D0,k ≤ (1, <) +D0,k = (1, <) +D0,k + (0, <)

is valid for Rp and therefore our result.
(7) if xi, xj ∈ LFPRp(D) and xk ∈ X \ LFPRp(D): i 6= 0, j 6= 0 and
• if k 6= 0, we have D′i,k = Di,k, D

′
i,j = Di,j and D′j,k = Dj,k; since (E,D) ∈

p–PDBM�(Rp), from Definition 3.6 (2), we know that Di,k ≤ Di,j + Dj,k is valid
for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if k = 0, since both xi, xj ∈ LFPRp(D) we have D′i,j = Di,j = (0,≤), D′i,0 = (1, <)

and D′j,0 = (1, <); trivially (1, <) ≤ (0,≤) + (1, <) is valid for Rp and therefore,

D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

(8) if xi, xj , xk ∈ LFPRp(D): i, j, k are different from 0, we have D′i,k = Di,k, D
′
i,j = Di,j

and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 3.6 (2) we know

that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

13:52 É. André, D. Lime, and M. Ramparison Vol. 17:2

proof that Definition 3.5 (5b) holds

Finally, for xi ∈ LFPRp(D), D′i,0 = (1, <) and for all clock j s.t. D′0,j = (0, /), then we

have / = <. Condition Definition 3.5 (5b) is satisfied.
We set E′ = E and denote by (E,D′) the obtained p–PDBM, which is (E,D′) ∈

p–PDBM�(Rp).

Appendix H. Proof of Proposition 4.11

Proposition 4.11 (recalled). Let Rp be a parameter region and (E,D) ∈
p–PDBM(Rp). Let v ∈ Rp. There exists w′ ∈ TE ((E, v(D))) iff there exist
w ∈ (E, v(D)) and a delay δ s.t. w′ = w + δ.

Proof. Note that this proof is inspired by [HRSV02, Proof of Lemma 3.13]. We treat
first open–p–PDBMs and then point–p–PDBMs.

Claim H.1. Let (E,D) ∈ p–PDBM�(Rp). If (E,D) satisfies condition Definition 3.5 (5b)
it has been obtained after applying Algorithm 2 on another open–p–PDBM satisfying condition
Definition 3.5 (5a) or a point–p–PDBM.

Let (E,D) ∈ p–PDBM�(Rp). If (E,D) satisfies condition Definition 3.5 (5a) it has
been obtained after applying Algorithm 3 on another open–p–PDBM satisfying condition
Definition 3.5 (5b) or after a non-parametric update applied on another open–p–PDBM or a
point–p–PDBM.

Proof. Let (E,D) ∈ p–PDBM�(Rp) and suppose (E,D) satisfies condition Definition 3.5 (5b).
Since for all y, if d0,y = 0 we have /0y = <, from Claim D.1 and Claim D.2 it can-
not be the result of a non-parametric update where there is at least a clock x update
and Dx,0 = D0,x = (0,≤). From Claim G.3 it cannot be the result of Algorithm 3, as
there must be at least a clock x s.t. Dx,0 = D0,x = (0,≤). Then it is the result ei-
ther from Claim G.1 of Algorithm 2 applied on an open–p–PDBM satisfying condition
Definition 3.5 (5a), or from Claim G.4 of Algorithm 2 applied on a point–p–PDBM.

Let (E,D) ∈ p–PDBM�(Rp) and suppose (E,D) satisfies condition Definition 3.5 (5a).
Since there is at least a clock y s.t. Dy,0 = D0,y = (0,≤), from Claims G.1 and G.4 it cannot
be the result of Algorithm 2, as for all x, if d0,x = 0 we must have /ox = <. Then it is
the result of either from Claim G.3 of Algorithm 3 applied on an open–p–PDBM satisfying
condition Definition 3.5 (5b) or from Claims D.1 and D.2 of Algorithm 1 applied on an
open–p–PDBM or a point–p–PDBM.

Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp). We have to consider two
different cases: (E,D) ∈ p–PDBM�(Rp) and (E,D) ∈ p–PDBM�(Rp).

Claim H.2. Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp.
There is w′ ∈ TE ((E, v(D))) iff there is w ∈ (E, v(D)) and a delay δ s.t. w′ = w + δ.

Proof. Let Rp a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp.

Vol. 17:2 INSTRUCTIONS 13:53

=⇒ open–p–PDBM respecting Definition 3.5 (5a)

Let v ∈ Rp. Consider (E′, D′) = TE ((E,D)) respecting condition Definition 3.5 (5a),
i. e., suppose there is xi s.t. D′i,0 = −D′0,i = (0,≤). Let w′ ∈ (E′, v(D′)), for this xi we

have w′(xi) = 0. We need to find a value δ s.t. w′ − δ ∈ (E, v(D)) which is equivalent
to prove for all xi, xj

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i)

and

frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j)

and

−frac(w′(xj)) + δ /0j v(d0,j) and frac(w′(xj))− δ /j0 v(dj,0).

In this proof we are going to define a δ which is different from 0, and give it an upper
bound in order to show that constraints in (E,D) are satisfied while going backward
of δ units of time from w′.

First we will prove that for all clock j, its constraints of lower bound D0,j and
upper bound Dj,0 are satisfied. Second we will prove that for all i, bounds on their
difference Di,j and Dj,i are also satisfied.

We want to show that we have to go a little backward in time from w′ to ensure the
upper bounds Dj,0 of (E,D) hold. For this purpose, we are going to prove that for
all xj

Dj,0 ≤ D′j,0
is valid for Rp. Intuitively this means upper bounds of clocks in (E′, D′) are greater
than in (E,D), which is consistent as time is elapsing.

As (E′, D′) respects Definition 3.5 (5a) and precisely (E′, D′) = TE=((E,D)),
we know (E,D) is respecting condition Definition 3.5 (5b) from Claim G.1. As
frac(w′(xi)) = 0 it was in (E,D) a clock with the largest fractional part, i. e.,
xi ∈ LFPRp(D) and Di,0 = (1, <).

By definition of TE< (cf. Algorithm 2), in (E,D) which is the open–p–PDBM
obtained after the application of TE< on another p–PDBM (see Claim H.1), for each
xj ∈ X \ LFPRp(D), Dj,0 = Dj,i + (1, <) and for all xj ∈ X, we have Dj,0 is of the form
(dj,0, <) for some dj,0.

By definition of TE= applied to (E,D) (cf. Algorithm 3), in (E′, D′), for each xj ∈
X \ LFPRp(D), D′j,0 = Dj,i + (1,≤), i. e., dj,0 = d′j,0. Hence by Definition 3.3 (2b) and
as /j0′ is either ≤ or <, we have

(dj,0, <) = Dj,0 ≤ D′j,0 = (dj,0, /j0′)

is valid for Rp. Next we define the largest amount of time so that all upper bounds of
(E,D) are satisfied.

We claim that for all xj , frac(w′(xj))−v(dj,0) ≤ 0. Indeed, remark that by applying
Algorithm 2 then 3, constraints on upper bounds of clocks in (E,D) and (E′, D′) differ
only by their /. As for i ∈ LFPRp(D) and j ∈ X\LFPRp(D) it we have Dj,0 = Dj,i+(1, <)
in (E,D) and D′j,0 = Dj,i+(1,≤) in (E′, D′), so dj,0 = d′j,0. Since for any x, its fractional

part is less or equal to its upper bound in D and therefore in D′, any difference between
a fractional part and its upper bound is either negative or null. For all x, since
frac(w′(x)) /x0′ v(d′x,0) we have frac(w′(x)) − v(d′x,0) /x0′ 0. Since v(d′x,0) = v(dx,0),

frac(w′(x))− v(dx,0) /x0′ 0, therefore we have our result.

13:54 É. André, D. Lime, and M. Ramparison Vol. 17:2

Now we claim that we have to go at least an ε > 0 backward in time to ensure all
bounds of (E,D) are met. Let xj ∈ X \ LFPRp(D). As

frac(w′(xj)) /j0′ v(dj,0)

we have
– either /j0′ = < and we already have frac(w′(xj)) < v(dj,0),
– or /j0′ = ≤ and for any ε > 0 we have frac(w′(xj))− ε < v(dj,0).

It is also true for each xi ∈ LFPRp(D): after applying TE< recall that we have Di,0 =
(1, <). We can take ε > 0 and define frac(w(xi)) = 1−ε, so we have frac(w(xi)) < v(di,0).

Now that we know we have to go a little backward in time (at least an ε > 0) so
upper bounds of (E,D) are satisfied, we are going to give an upper bound to ε so that
all lower bounds D0,j of (E,D) are also satisfied.

Let
t1 = min

x∈X
{frac(w′(x)) + v(d0,x)}

We want to prove that t1 > 0.
Let us prove that for all xj , D

′
0,j ≤ D0,j is valid for Rp. Recall that for xi ∈ LFPRp(D),

we have that Di,0 = (1, <). Moreover, from Definition 3.5 (4) Di,j ≤ Di,0 +D0,j is valid
for Rp, then we have

Di,j ≤ (1, <) +D0,j

is valid for Rp. Recall that after applying Algorithm 3, D′0,j = Di,j + (−1,≤). By

Definition 3.3 (2b) we have (−1,≤) ≤ (−1,≤). We invoke Lemma 3.4 which gives

Di,j + (−1,≤) ≤ (1, <) +D0,j + (−1,≤) = D0,j + (0, <) is valid for Rp. (H.1)

As, from Definition 3.3 (2b) we have D0,j + (0, <) ≤ D0,j is valid for Rp, we infer (H.1)
and it gives

D′0,j ≤ D0,j is valid for Rp.

Since w′ ∈ (E′, v(D′)) we have −frac(w′(xj)) /0j′ v(d′0,j),

0 /0j′ frac(w′(xj)) + v(d′0,j).

Then we have that

0 /0j′ frac(w′(xj)) + v(d′0,j) ≤ frac(w′(xj)) + v(d0,j)

where,
– either from Definition 3.3 (2a) d′0,j < d0,j ;

– or from Definition 3.3 (2b), d′0,j ≤ d0,j and then /0j′ = /0j = <. Indeed as D′0,j ≤ D0,j

is valid for Rp, and since (E,D) is the open–p–PDBM obtained after the application
of TE< (cf. Algorithm 2) on another p–PDBM (see Claim H.1), we have /0j = <.

To conclude we have that for all xj either

0 /0j′ frac(w′(xj)) + v(d′0,j) < frac(w′(xj)) + v(d0,j)

or
0 < frac(w′(xj)) + v(d′0,j) ≤ frac(w′(xj)) + v(d0,j).

As t1 is by definition the minimum value of an expression frac(w′(xj)) + v(d0,j) for a
given xj , which as we just proved are all strictly positive, we have that for all xj

0 < t1 ≤ frac(w′(xj)) + v(d0,j).

We proved that t1 > 0, so we can set δ = t1
2 (therefore δ > 0).

Vol. 17:2 INSTRUCTIONS 13:55

More intuitively δ is the value right in the middle of the least and the largest amount
of time s.t. we can go backward in time from w′ and respect all constraints defined
in (E, v(D)).

Now we are going to prove that for any clock xj , its constraints on lower and upper
bounds are satisfied, i. e.,

−v(d0,j) /0j frac(w′(xj))− δ /j0 v(dj,0).

First as δ < t1, we have

−frac(w′(xj)) + δ < −frac(w′(xj)) + t1 ≤ −frac(w′(xj)) + frac(w′(xj)) + v(d0,j) = v(d0,j)

which is −v(d0,j) < frac(w′(xj))− δ. Since (E,D) is the open–p–PDBM obtained after
the application of TE< (cf. Algorithm 3) on another p–PDBM (see Claim H.1), we
have /0j = < so −v(d0,j) /0j frac(w′(xj))− δ. Secondary as 0 < δ, we have

frac(w′(xj))− δ < frac(w)′(xj)− 0 ≤ frac(w′(xj))− frac(w′(xj)) + v(dj,0) = v(dj,0)

which is frac(w′(xj))− δ < v(dj,0). Since (E,D) is the open–p–PDBM obtained after
the application of TE< (cf. Algorithm 3) on another p–PDBM (see Claim H.1), we
have /j0 = < so frac(w′(xj))− δ /j0 v(dj,0)

Now we prove that constraints defined in (E,D) on differences of clocks are also
satisfied by going back of δ units of time from w′.

Recall that in (E′, D′) we have for all clock xj ,

D′j,i = D′j,0 = Dj,i + 1 and D′i,j = D′0,j = −1 +Di,j .

In addition by definition of TE=, for xi ∈ LFPRp(D), Exi = E′xi − 1 and for
xj ∈ X \ LFPRp(D), Exj = E′xj .

We already treated the case whether i or j are 0, now suppose i, j are both different
from 0.
– if xi, xj ∈ X\LFPRp(D): let x ∈ LFPRp(D) and recall that after applying Algorithm 3,
D′i,j = Di,j , D

′
j,i = Dj,i; we have that frac(w′(xj))− frac(w′(xi)) /ij′ d

′
j,i = dj,i, and

therefore frac(w′(xj))− δ − frac(w′(xi)) + δ /ji dj,i.
We also have that frac(w′(xi))− frac(w′(xj)) /ij′ d

′
i,j = di,j , therefore frac(w′(xi))−

δ − frac(w′(xj)) + δ /ij di,j ;
– if xi ∈ LFPRp(D) and xj ∈ X \ LFPRp(D): recall that after applying Algorithm 3,
D′j,0 = Dj,i + (1,≤), and D′0,j = Di,j + (−1,≤). Observe that as we added ≤ which
is the neutral element of the addition ⊕ between two operators /, we have /j0′ = /ji
and /0j′ = /ij . Note that as xi ∈ LFPRp(D), in (E′, D′) we have D′0,i = (0,≤) = D′i,0
which means frac(w′(xi)) = 0. Going backward in time of δ units of time from w′(xi)
means that frac(w(xi)) = 1− δ.
We have that

frac(w′(xj)) /j0′ v(d′j,0) = v(dj,i) + 1

hence frac(w′(xj))− 1 /ji v(dj,i) which is equivalent to

frac(w′(xj))− δ − 1 + δ /ji v(dj,i).

The same way we have

−frac(w′(xj)) /0j′ v(d′0,j) = v(di,j)− 1

hence 1− frac(w′(xj)) /ij v(di,j) which is equivalent to

1− δ − frac(w′(xj)) + δ /ij v(di,j).

13:56 É. André, D. Lime, and M. Ramparison Vol. 17:2

To conclude, we define for all xj s.t. D′0,j 6= (0,≤) and D′j,0 6= (0,≤)

w(xj) = w′(xj)− δ
and for all xi s.t. D′0,i = (0,≤) = D′i,0

w(xi) = (w′(xi)− 1) + 1− δ
and clearly, w ∈ (E, v(D)).

=⇒ open–p–PDBM respecting Definition 3.5 (5b)

Let v ∈ Rp. Consider (E′, D′) = TE ((E,D)) respecting condition Definition 3.5 (5b),
i. e., suppose there is at least an xi s.t. D′i,0 = (1, <) and for all j s.t. D0,j = (0, /0j),

then we have /0j = <. Let w′ ∈ (E′, v(D′)).
We need to find a value δ s.t. w′ − δ ∈ (E, v(D)) which is equivalent to prove for

all xi, xj
frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i)

and
frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j)

and
−frac(w′(xj)) + δ /0j v(d0,j) and frac(w′(xj))− δ /j0 v(dj,0).

As done previously we are going to define a δ which is different from 0 so we satisfy
condition Definition 3.5 (5a), and show that constraints in (E,D) are satisfied while
going backward of δ units of time from w′.

We define the largest and the least amount of time so that all upper bounds of (E,D)
are satisfied. Let

t0 = max
x∈X
{0, frac(w′(x))− v(dx,0)}

and
t1 = min

x∈X
{frac(w′(x)) + v(d0,x)}.

We want to prove that t0 = t1 > 0. For this purpose, let us first show that for all i, j
we have frac(w′(xj))− v(d′j,0) ≤ frac(w′(xi)) + v(d′0,i), which is t0 ≤ t1.

First note that for all i, j

frac(w′(xj))− frac(w′(xi)) /ji′ v(d′j,i).

By applying TE< (Algorithm 2) to (E,D), we have that D′j,i = Dj,i, i. e., (di,j , /ij) =

(d′i,j , /ij′), and from Definition 3.5 (4) we have that Dj,i ≤ Dj,0 +D0,i is valid for Rp.

Hence, we have from Definition 3.3 (2b) that either v(dj,i) < v(dj,0) + v(d0,i) or
v(dj,i) ≤ v(dj,0) + v(d0,i) and /ji = /j0 ⊕ /0i or /ji = < and /j0 ⊕ /0i = ≤.

We can then write that

frac(w′(xj))− frac(w′(xi))(/j0 ⊕ /0i)v(dj,0) + v(d0,i)

which is equivalent to

frac(w′(xj))− v(dj,0)(/j0 ⊕ /0i)frac(w′(xi)) + v(d0,i)

so we obtain our result, as (/j0 ⊕ /0i) is either ≤ or <.
Now, recall that (E,D) respects condition Definition 3.5 (5a) so we have at least an

x s.t. Dx,0 = D0,x = (0,≤).
For this clock x we have that frac(w′(x)) = frac(w′(x))− v(dx,0) ≤ t0 and that t1 ≤

frac(w′(x)) + v(d0,x) = frac(w′(x)).

Vol. 17:2 INSTRUCTIONS 13:57

Hence t0 = t1 = frac(w′(x)).
As /x0 = ≤, we have (/x0 ⊕ /0i) = /0i and (/j0 ⊕ /0x) = /j0, which gives

frac(w′(x)) = frac(w′(x))− v(dx,0) /0i frac(w′(xi)) + v(d0,i)

and
frac(w′(xj))− v(dj,0) /j0 frac(w′(x)) + v(d0,x) = frac(w′(x)).

Moreover in (E′, D′) we have that frac(w′(x)) /0x′ v(d′0,x). Since (E′, D′) respects

condition Definition 3.5 (5b), if D′0,x = (0, /0x′) then /0x′ = <. Hence 0 < frac(w′(x))
and

0 < t0 = t1.

Let δ = t0 = t1. More intuitively δ is the value right in the middle of the least and
the largest amount of time s.t. we can go backward in time from w′ and respect all
constraints defined in (E, v(D)).

First we have

−frac(w′(xj)) + δ ≤ −frac(w′(xj)) + t1 /j0 −frac(w′(xj)) + frac(w′(xj)) + v(d0,j) = v(d0,j)

which is −v(d0,j) /j0 frac(w′(xj))− δ.
Secondary we have

frac(w′(xj))− δ ≤ frac(w)′(xj)− t0 /0j frac(w′(xj))− frac(w′(xj)) + v(dj,0) = v(dj,0)

which is frac(w′(xj))− δ /0j v(dj,0).
Now we prove that constraints defined in (E,D) on differences of clocks are also

satisfied by going back of δ units of time from w′

Recall that in (E′, D′) from the definition of Algorithm 2 we have for all clocks xi, xj ,

D′j,i = Dj,i and D′i,j = Di,j .

Since we already treated the case whether i or j are 0, now suppose i, j are both different
from 0. We have that frac(w′(xj))− frac(w′(xi)) /ji′ v(d′j,i) = v(dj,i), and therefore as
/ji′ = /ji,

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i).

We also have that frac(w′(xi))− frac(w′(xj)) /ij′ v(d′i,j) = v(di,j), therefore as /ij′ = /ij ,

frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j).

To conclude, we define for all xj

w(xj) = w′(xj)− δ
and clearly, w ∈ (E, v(D)).

Conversely, let w ∈ (E, v(D)),

⇐= open–p–PDBM respecting Definition 3.5 (5b)

Suppose in (E,D) there is at least an xi s.t. Di,0 = (1, <) and for all j s.t. D0,j =
(0, /), we have / = <. Let xi be such a clock and v ∈ Rp.

Now consider (E′, D′) = TE ((E,D)). We need to find a value δ s.t. w + δ ∈
(E′, v(D′)). which is equivalent to prove for all xi, xj

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i)

and
frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j)

13:58 É. André, D. Lime, and M. Ramparison Vol. 17:2

and

−frac(w(xj))− δ /0j′ v(d′0,j) and frac(w(xj)) + δ /j0′ v(d′j,0).

As done previously we are going to define a δ which is different from 0, and show
that constraints in (E,D) are satisfied while going forward of δ units of time from w.

Recall that xi ∈ LFPRp(D) and let δ = 1 − frac(w(xi)) which we will prove is the
exact amount of time so that all upper bounds of (E′, D′) are satisfied. Let

t0 = max
x∈X
{−frac(w(x))− frac(v(d′0,x))}

and

t1 = min
x∈X
{frac(v(d′x,0))− frac(w(x))}.

Recall that since (E,D) respects condition Definition 3.5 (5b), for all j s.t. D0,j =
(0, /0j), we have /0j = <. Hence as −frac(w(xi)) < v(d0,j), frac(w(xi)) 6= 0. Using the
same reasoning as before, we are going to prove that t0 ≤ δ ≤ t1.

First we will prove that t0 ≤ δ. Consider xi ∈ LFPRp(D). For all clock xj , since w ∈
(E, v(D)) we have frac(w(xi))− frac(w(xj)) /ij frac(v(di,j)).

From Algorithm 3 applied to (E,D) and since xi ∈ LFPRp(D) we obtain in (E′, D′)
that D′0,j = Di,j + (−1,≤). Clearly we have /0j′ = /ij ⊕≤ = /ij . It gives that

frac(w(xi))− frac(w(xj))− 1(/ij⊕ ≤)frac(v(di,j))− 1

which is equivalent to frac(w(xi))− frac(w(xj))− 1 /0j′ frac(v(d′0,j)) which is equivalent
to

frac(w(xi))− 1 /0j′ frac(v(d′0,j)) + frac(w(xj)).

This gives us our first result.
Second we will prove that δ ≤ t1. Consider xi ∈ LFPRp(D). For all clock xj , from

Definition 3.5 (4) we have frac(w(xj))− frac(w(xi)) /ji frac(v(dj,i)). We have

frac(w(xj))− frac(w(xi)) + 1 /ji frac(v(dj,i)) + 1.

From Algorithm 3 applied to (E,D) and since xi ∈ LFPRp(D) we obtain in (E′, D′)
that D′j,0 = Dj,i + (1,≤). Clearly we have /j0′ = /ji⊕ ≤= /ji. Then we can write that

frac(w(xj))− frac(w(xi)) + 1 /j0′ frac(v(d′j,0)) which is equivalent to

1− frac(w(xi)) /j0′ frac(v(d′j,0))− frac(w(xj)).

This gives us our second result.
Now for all clock xj , we obtain two results. First we have

−frac(w(xj))− δ /0j′ −frac(w(xj))− t1 ≤ −frac(w(xj)) + frac(w(xj)) + v(d′0,j) = v(d′0,j)

which is −v(d′0,j) /0j′ frac(w(xj)) + δ.
Secondary we have

frac(w(xj)) + δ /j0′ frac(w(xj)) + t0 ≤ frac(w(xj))− frac(w(xj)) + v(d′j,0) = v(d′j,0)

which is frac(w(xj)) + δ /j0′ v(d′j,0).
Since we already treated the case whether i or j are 0, now suppose i, j are both

different from 0.
Note that if both xi, xj ∈ LFPRp(D), as frac(w(xi)) = frac(w(xj)), Di,j = D′i,j =

(0,≤) and Dj,i = D′j,i = (0,≤) from Definition 4.5. Hence frac(w(xi))+δ−frac(w(xj))−
δ /ij′ frac(v(d′i,j)) and frac(w(xj)) + δ − frac(w(xj))− δ /ji′ frac(v(d′j,i)).

Vol. 17:2 INSTRUCTIONS 13:59

The same way, if both xi, xj 6∈ LFPRp(D) we have Di,j = D′i,j and Dj,i = D′j,i and

again our result. If either xi or xj is in LFPRp(D), the case is similar to D′0,j or D′i,0.

Finally, we define w′ = w + δ and w′ ∈ (E′, v(D′)).

⇐= open–p–PDBM respecting Definition 3.5 (5a)

Suppose in (E,D) there is at least an xj s.t. Dj,0 = D0,j = (0,≤) Let v ∈ Rp,
and xi ∈ LFPRp(D).

Now consider (E′, D′) = TE ((E,D)). We need to find a value δ s.t. w + δ ∈
(E′, v(D′)). which is equivalent to prove for all xi, xj

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i)

and
frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j)

and
−frac(w(xj))− δ /0j′ v(d′0,j) and frac(w(xj)) + δ /j0′ v(d′j,0).

As done previously we are going to define a δ which is different from 0, and show
that constraints in (E,D) are satisfied while going forward of δ units of time from w.

Let
t0 = max

x∈X
{0,−frac(w(x))− frac(v(d′0,x))}

and
t1 = min

x∈X
{frac(v(d′x,0))− frac(w(x))}.

We want to prove that t0 ≤ t1. For this purpose, we are going to prove for all
clocks i, j that −frac(w(xj))− v(d′j,0) ≤ v(d′0,i)− frac(w(xi)).

First note that
frac(w(xj))− frac(w(xi)) /ji v(dj,i)

By definition of TE< applied to (E,D), we have that D′j,i = Dj,i, and from Defini-

tion 3.5 (4) we have that D′j,i ≤ D′j,0 +D′0,i.

Hence, we have from Definition 3.3 (2b) that either d′j,i < d′j,0+d′0,i or d′j,i = d′j,0+d′0,i
and /ji′ = /j0′ ⊕ /0i′ or /ji′ = < and /j0′ ⊕ /0i′ = ≤.

We can then write that

frac(w(xj))− frac(w(xi))(/j0′ ⊕ /0i′)v(d′j,0) + v(d′0,i)

which is equivalent to

−frac(w(xi))− v(d′0,i)(/j0′ ⊕ /0i′)v(d′j,0)− frac(w(xj))

Now we prove that t0 = 0. Clearly from Definition 3.5 for any clock i we have that
−frac(w(xi)) /0i v(d0,i) which is equivalent to −frac(w(xi))− v(d0,i) /0i 0.

Hence if as (E,D) there is at least an xj s.t. Dj,0 = D0,j = (0,≤), for this clock j
we have −frac(w(xj))− v(d0,j) = 0.

By definition of TE< applied to (E,D), we have that D′0,i = D0,i+(0, <). In order to

respect the constraint −frac(w(xi))−δ/0i′v(d′0,i) which is, as /0i′ =<, −frac(w(xi))−δ <
v(d′0,i) and especially for j where v(d′0,j) = 0 we have to find a δ > 0.

In order to find an upper bound for δ, we are going to prove that t1 > 0. From
Definition 3.5 (4) we have in (E,D) that for any clocks i, j Dj,0 ≤ Dj,i +Di,0. Let xi ∈
LFPRp(D). From Definition 3.5 (1), we have that Di,0 ≤ (1, <). This gives that
Dj,i +Di,0 ≤ Dj,i + (1, <).

13:60 É. André, D. Lime, and M. Ramparison Vol. 17:2

By definition of TE< applied to (E,D), we have that D′j,0 = Dj,i + (1, <). Hence we

have Dj,0 ≤ D′j,0.
Now as frac(w(xi)) /i0 v(di,0) we can write frac(w(xi)) /i0′ v(d′i,0) and then 0 /i0′

v(d′i,0)− frac(w(xi)) where /i0′ =<, which prove our result.

We define δ = t1
2 , therefore t0 < δ < t1. Now for all clock xj , we obtain two results.

First we have

−frac(w(xj))− δ < −frac(w(xj))− t1 /0j′ −frac(w(xj)) + frac(w(xj)) + v(d′0,j) = v(d′0,j)

which is −v(d′0,j) /0j frac(w(xj)) + δ as /0j′ = <.
Secondary we have

frac(w(xj)) + δ < frac(w(xj)) + t0 /j0′ frac(w(xj))− frac(w(xj)) + v(d′j,0) = v(d′j,0)

which is frac(w(xj)) + δ /j0 v(d′j,0) as /0j′ = <.

Now we prove that constraints defined in (E′, D′) on differences of clocks are also
satisfied by going forward of δ units of time from w

Recall that in (E′, D′) from the definition of Algorithm 2 we have for all clock xj ,

D′j,i = Dj,i and D′i,j = Di,j .

Since we already treated the case whether i or j are 0, now suppose i, j are both different
from 0. We have that frac(w(xj)) − frac(w(xi)) /ji v(dj,i) = v(d′j,i), and therefore as
/ji′ = /ji,

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i).

We also have that frac(w(xi))− frac(w(xj)) /ij v(di,j) = v(d′i,j), therefore as /ij′ = /ij ,

frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j).

Finally, we define w′ = w + δ and w′ ∈ (E′, v(D′)).

Claim H.3. Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp.
There is w′ ∈ TE ((E, v(D))) iff there is w ∈ (E, v(D)) and a delay δ s.t. w′ = w + δ.

Proof. (⇐=) for point–p–PDBMs

Let v ∈ Rp. Consider (E′, D′) = TE ((E,D)) respecting condition Definition 3.5 (5b),
i. e., suppose there is at least an xi s.t. D′i,0 = (1, <) and for all j s.t. D0,j = (0, /0j), then

we have /0j = <. Let w′ ∈ (E′, v(D′)).
We need to find a value δ s.t. w′ − δ ∈ (E, v(D)) which is equivalent to prove for

all xi, xj
frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i)

and

frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j)

and

−frac(w′(xj)) + δ /0j v(d0,j) and frac(w′(xj))− δ /j0 v(dj,0).

As done previously we are going to define a δ which is different from 0, and show that
constraints in (E,D) are satisfied while going backward of δ units of time from w′.

We define the largest and the least amount of time so that all upper bounds of (E,D)
are satisfied. Let

t0 = max
x∈X
{0, frac(w′(x))− v(dx,0)}

Vol. 17:2 INSTRUCTIONS 13:61

and

t1 = min
x∈X
{frac(w′(x)) + v(d0,x)}.

We want to prove that t0 = t1 > 0. For this purpose, let us first show that for all i, j we
have frac(w′(xj))− v(d′j,0) ≤ frac(w′(xi)) + v(d′0,i), which is t0 ≤ t1.

First note that for all i, j

frac(w′(xj))− frac(w′(xi)) /ji′ v(d′j,i).

By applying TE< (Algorithm 2) to (E,D), we have that D′j,i = Dj,i, i. e., (di,j , /ij) =

(d′i,j , /ij′), and from Definition 3.6 (2) we have that Dj,i ≤ Dj,0 +D0,i is valid for Rp.

Hence, we have from Definition 3.3 (2b) that either v(dj,i) < v(dj,0) + v(d0,i) or v(dj,i) ≤
v(dj,0) + v(d0,i) and /ji = /j0 ⊕ /0i or /ji = < and /j0 ⊕ /0i = ≤.

We can then write that

frac(w′(xj))− frac(w′(xi))(/j0 ⊕ /0i)v(dj,0) + v(d0,i)

which is equivalent to

frac(w′(xj))− v(dj,0)(/j0 ⊕ /0i)frac(w′(xi)) + v(d0,i)

so we obtain our result, as (/j0 ⊕ /0i) is either ≤ or <.
Now, recall that in (E,D) for all x we have d0,x = −dx,0 and /0x = /x0.
For any clock x we have that frac(w′(x)) − v(dx,0) ≤ t0 and that t1 ≤ frac(w′(x)) +

v(d0,x) = frac(w′(x))− v(dx,0).
Hence t0 = t1.
As for all x, /x0 = ≤, we have for all i, j that (/x0 ⊕ /0i) = /0i and (/j0 ⊕ /0x) = /j0,

which gives

t1 /0i frac(w′(xi)) + v(d0,i)

and

frac(w′(xj))− v(dj,0) /j0 t0.

Moreover in (E′, D′) we have that frac(w′(x)) /0x′ v(d′0,x). From Claim H.1, (E′, D′) is

obtained after applying Algorithm 2 and therefore /0x′ = <. Hence 0 < frac(w′(x)) and

0 < t0 = t1.

Let δ = t0 = t1. More intuitively δ is the value right in the middle of the least and the
largest amount of time s.t. we can go backward in time from w′ and respect all constraints
defined in (E, v(D)).

First we have

−frac(w′(xj)) + δ ≤ −frac(w′(xj)) + t1 /j0 −frac(w′(xj)) + frac(w′(xj)) + v(d0,j) = v(d0,j)

which is −v(d0,j) /j0 frac(w′(xj))− δ.
Secondary we have

frac(w′(xj))− δ ≤ frac(w)′(xj)− t0 /0j frac(w′(xj))− frac(w′(xj)) + v(dj,0) = v(dj,0)

which is frac(w′(xj))− δ /0j v(dj,0).
Now we prove that constraints defined in (E,D) on differences of clocks are also satisfied

by going back of δ units of time from w′

Recall that in (E′, D′) from the definition of Algorithm 2 we have for all clocks xi, xj ,

D′j,i = Dj,i and D′i,j = Di,j .

13:62 É. André, D. Lime, and M. Ramparison Vol. 17:2

Since we already treated the case whether i or j are 0, now suppose i, j are both different
from 0. We have that frac(w′(xj)) − frac(w′(xi)) /ji′ v(d′j,i) = v(dj,i), and therefore as
/ji′ = /ji,

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i).

We also have that frac(w′(xi))− frac(w′(xj)) /ij′ v(d′i,j) = v(di,j), therefore as /ij′ = /ij ,

frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j).

To conclude, we define for all xj

w(xj) = w′(xj)− δ
and clearly, w ∈ (E, v(D)).

(=⇒) for point–p–PDBMs

Assume in (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp, and xi ∈ LFPRp(D).
Now consider (E′, D′) = TE ((E,D)). We need to find a value δ s.t. w+ δ ∈ (E′, v(D′)).

which is equivalent to prove for all xi, xj

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i)

and
frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j)

and
−frac(w(xj))− δ /0j′ v(d′0,j) and frac(w(xj)) + δ /j0′ v(d′j,0).

As done previously we are going to define a δ which is different from 0, and show that
constraints in (E,D) are satisfied while going forward of δ units of time from w.

Let
t0 = max

x∈X
{0,−frac(w(x))− frac(v(d′0,x))}

and
t1 = min

x∈X
{frac(v(d′x,0))− frac(w(x))}.

We prove that t1 ≤ t0.
for any clock i we have that Di,0 = (frac(p),≤) and Di,0 = (−frac(p),≤) i. e., d0,i = −di,0

for some p, hence −frac(w(xi))− v(d0,i) = −frac(w(xi)) + v(di,0).
By definition of TE< applied to (E,D), we have that D′0,i = D0,i + (0, <). In order to

respect the constraint −frac(w(xi))− δ /0i′ v(d′0,i) which is, as /0i′ =<, −frac(w(xi))− δ <
v(d′0,i), we have to find a δ > 0.

In order to find an upper bound for δ, we are going to prove that t1 > 0. From
Definition 3.6 (2) we have in (E,D) that for any clocks i, j Dj,0 ≤ Dj,i + Di,0. Let xi ∈
LFPRp(D). From Definition 3.6 (1), we have that Di,0 ≤ (1, <). This gives that Dj,i+Di,0 ≤
Dj,i + (1, <).

By definition of TE< applied to (E,D), we have that D′j,0 = Dj,i + (1, <). Hence we

have Dj,0 ≤ D′j,0.
Now as frac(w(xi))/i0 v(di,0) we can write frac(w(xi))/i0′ v(d′i,0) and then 0/i0′ v(d′i,0)−

frac(w(xi)) where /i0′ =<, which prove our result.
We define δ = t1

2 , therefore t0 < δ < t1. Now for all clock xj , we obtain two results.
First we have

−frac(w(xj))− δ < −frac(w(xj))− t1 /0j′ −frac(w(xj)) + frac(w(xj)) + v(d′0,j) = v(d′0,j)

Vol. 17:2 INSTRUCTIONS 13:63

which is −v(d′0,j) /0j frac(w(xj)) + δ as /0j′ = <.
Secondary we have

frac(w(xj)) + δ < frac(w(xj)) + t0 /j0′ frac(w(xj))− frac(w(xj)) + v(d′j,0) = v(d′j,0)

which is frac(w(xj)) + δ /j0 v(d′j,0) as /0j′ = <.

Now we prove that constraints defined in (E′, D′) on differences of clocks are also
satisfied by going forward of δ units of time from w

Recall that in (E′, D′) from the definition of Algorithm 2 we have for all clock xj ,

D′j,i = Dj,i and D′i,j = Di,j .

Since we already treated the case whether i or j are 0, now suppose i, j are both
different from 0. We have that frac(w(xj))− frac(w(xi)) /ji v(dj,i) = v(d′j,i), and therefore
as /ji′ = /ji,

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i).

We also have that frac(w(xi))− frac(w(xj)) /ij v(di,j) = v(d′i,j), therefore as /ij′ = /ij ,

frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j).

Finally, we define w′ = w + δ and w′ ∈ (E′, v(D′)).

Appendix I. Proof of Lemma 4.12

Lemma 4.12 (recalled). Let (E,D) be a p–PDBM for Rp and v ∈ Rp. Let g be a non-
parametric guard. If v ∈ guard∀(g,E,D), then for all v′ ∈ Rp, v′ ∈ guard∀(g,E,D).

Proof. Our idea is to define a clock region “larger” than our p–PDBM (following Defini-
tion 2.3) and show that, even for this (larger) clock region, either all clock valuations satisfy
the guard—or none does.

Definition I.1. Let Rp be a parameter region, v ∈ Rp. Let (E,D) be a p–PDBM for Rp.
We define the clock region containing (E, v(D)), denoted by [(E, v(D))]Rc

, as follows: for all
w ∈ [(E, v(D))]Rc

, for all clocks xi, xj ,

• if Exi < K, bw(xi)c = Exi , else if Exi =∞, w(xi) ≥ K;
• if (0,≤) < Di,j is valid for Rp and Exi < K, frac(w(xj)) < frac(w(xi));
• if (0,≤) = Di,j is valid for Rp and Exi < K, frac(w(xj)) = frac(w(xi));
• if Di,0 = D0,i = (0,≤) and Exi < K, frac(w(xi)) = 0;
• if Di,0 6= (0,≤), D0,i 6= (0,≤) and Exi < K, frac(w(xi)) 6= 0.

Claim I.2. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. We have (E, v(D)) ⊆ [(E, v(D))]Rc
.

Proof. Clock regions of Definition 2.3 define constraints on clocks of the form 0 = frac(x),
0 < frac(x) < 1, 0 = frac(x) − frac(y) and 0 < frac(x) − frac(y) < 1 for some x, y,
and bxc = k for some integer k. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. It defines
constraints ∧

i,j∈[0,H]2

frac(xi)− frac(xj) /i,j v(di,j) ∧
∧

i∈[1,H]

bxic = Ei.

13:64 É. André, D. Lime, and M. Ramparison Vol. 17:2

Clearly, if w ∈ (E, v(D)) satisfies bxic = Ei then it satisfies the same constraint defined
in [(E, v(D))]Rc

.
Consider the constraints frac(xi)− frac(xj) /i,j v(di,j) and frac(xj)− frac(xi) /j,i v(dj,i).

• Suppose i, j are both different from 0. From Definition 3.5 (3) and Definition 3.6,
either di,j = dj,i and then /i,j = ≤ = /j,i, then if di,j = dj,i = 0 it satisfies the same
constraint defined in [(E, v(D))]Rc

, or di,j and dj,i are different from 0, as they are elements
of PLT which are strictly smaller than 1, it satisfies either 0 < frac(xi) − frac(xj) < 1
or 0 = frac(xi)− frac(xj) in [(E, v(D))]Rc

. Finally if di,j 6= dj,i, then /i,j = < = /j,i and
it satisfies 0 < frac(xi)− frac(xj) < 1 in [(E, v(D))]Rc

.
• Suppose i is different from 0 and j = 0. From Definition 3.5 (3) and Definition 3.6,

either di,0 = d0,i and then /i,0 = ≤ = /0,i, then if di,0 = d0,i = 0 it satisfies the same
constraint defined in [(E, v(D))]Rc

, or di,0 and d0,i are different from 0, as they are elements
of PLT which are strictly smaller than 1, it satisfies either 0 < frac(xi) < 1 or 0 = frac(xi)
in [(E, v(D))]Rc

. Finally if di,0 6= d0,i, then /i,0 = < = /0,i and it satisfies 0 < frac(xi) < 1
in [(E, v(D))]Rc

.
• The case j is different from 0 and i = 0 is similar.
• Suppose both i, j are 0, the constraint is not taken into account as we have no x0

in [(E, v(D))]Rc
.

Finally, we have that if w ∈ (E, v(D)) then w ∈ [(E, v(D))]Rc
.

Now we come back to the proof of the main lemma:
Let (E,D) be a p–PDBM for Rp and v ∈ Rp. It defines constraints∧

i,j∈[0,H]2

frac(xi)− frac(xj) /i,j v(di,j) ∧
∧

i∈[1,H]

bxic = Ei.

Moreover, let g be a non-parametric guard. It defines constraints for a finite number of
integer constants ki with i ∈ I ⊆ [1, H]∧

i∈I
frac(xi) ≤ 0 ∧

∧
i∈I
−frac(xi) ≤ 0 ∧

∧
i∈I
bxic ./ ki.

The intersection between the two is given by the conjunction of those constraints. We
project this intersection on parameter variables (by elimination of clock variables) and we
prove that the intersection does not create new constraints on parameters different from
those we already have in (E, v(D)) (and therefore in Rp). For some set of clocks I ⊆ [1, H]
and i ∈ I, suppose we have the constraints frac(xi) ≤ 0 and −frac(xi) ≤ 0 in g. When
eliminating xi in any constraint of the form frac(xi) − frac(xj) /i,j v(di,j), it is clear that
we proceed on PLT to the operation (0,≤) + (di,j , /i,j) = (0 + di,j ,≤ ⊕/i,j) = (di,j , /i,j).
The same way on any constraint of the form frac(xi) /i,0 v(di,0), eliminating xi gives the
constraint (0,≤) + (di,0, /i,0) = (di,0, /i,0). Hence it does not create new inequalities not
belonging to Rp.

Now suppose v ∈ guard∀(g,E,D). We have that all w ∈ (E, v(D)) satisfy g.
As no new constraints not in PLT have been created, all v′ ∈ Rp respect the same
constraints on their fractional part and integer part as v and therefore, (E, v′(D)) is
contained in the same clock region as (E, v(D)) is, i. e., [(E, v(D))]Rc

= [(E, v′(D))]Rc
.

Finally, v′ ∈ guard∀(g,E,D).

Vol. 17:2 INSTRUCTIONS 13:65

Appendix J. Proof of Lemma 4.13

Lemma 4.13 (recalled). Let (E,D) be a p–PDBM for Rp and v ∈ Rp.
Let g be a parametric guard. If v ∈ p-guard∃(g,E,D), then for all v′ ∈ Rp,
v′ ∈ p-guard∃(g,E,D).

Proof. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. Let g be a parametric guard and
suppose v ∈ p-guard∃(g,E,D). After applying a projection on parameters, we obtain
constraints on elements of PLT . By hypothesis, all these constraints are satisfied by v.
Suppose v′ ∈ Rp. By definition of our parameter regions, and since v and v′ both belong
to Rp, v

′ satisfies the same constraints on elements of PLT . Therefore, the same constraints
is satisfied by v′ and v′ ∈ p-guard∃(g,E,D).

Appendix K. Proof of Proposition 6.1

Proposition 6.1 (recalled). Let Rp be a parameter region. Let A be an R-U2P-PTA

and R(A) its parametric region automaton over Rp. There is a run σ : (`0, (E0, D0))
e0−→

(`1, (E1, D1))
e1−→ · · · (`f−1, (Ef−1, Df−1))

ef−1−→ (`f , (Ef , Df)) in R(A) iff for all v ∈ Rp
there is a run ρ : (`0, w0)

e0−→ (`1, w1)
e1−→ · · · (`f−1, wf−1)

ef−1−→ (`f , wf) in v(A) s.t. for
all 0 ≤ i ≤ f , wi ∈ (Ei, v(Di)).

Proof.⇐ By induction on the length of the run.
Let v ∈ Rp. As the basis for the induction, in the initial location (`0, {0}H) the only

valuation is reachable by an empty run of v(A). Moreover {0}H∈(E0, v(D0)) the initial
p–PDBM containing only 0. Therefore the initial location (`0, (E0, v(D0))) is reachable by
an empty run of R(A).

For the induction step, suppose for all v, there is run in v(A) of length f − 1 we have
our result.

Let v ∈ Rp and ρ = (`0, w0)
e0−→ · · ·

ef−2−→ (`f−1, wf−1)
ef−1−→ (`f , wf) be a run of v(A)

of length f . By induction hypothesis, there is a run σ = (`0, (E0, D0))
e0−→ · · ·

ef−2−→
(`f−1, (Ef−1, Df−1)) in R(A) and for all 0 ≤ i ≤ f − 1, wi ∈ (Ei, v(Di)).

Consider ef−1. By Definition 5.1 of the parametric region automaton, it is also in its
set of edges ζ ′. Three cases show up:
– If ef−1 = 〈`f−1, a, g, unp, `f 〉 contains no parametric guard nor parametric update. Us-

ing Definition 2.2 there is a delay δ (possibly 0) s.t. (`f−1, wf−1)
δ7→ (`f−1w

′
f−1)

ef−17→
(`f , wf) where w′f−1 |= g and wf = [w′f−1]unp

. As wf−1 ∈ (Ef−1, v(Df−1)) there

is (E′f−1, D
′
f−1) ∈ Succ((Ef−1, Df−1)) s.t. from Proposition 4.11 we have w′f−1 ∈

(E′f−1, v(D′f−1)). As w′f−1 |= g by construction of our p–PDBMs (see Section 4.4)

any other clock valuation belonging to (E′f−1, v(D′f−1)) satisfies g. Therefore v ∈
guard∀(g,E

′
f−1, D

′
f−1) and from Lemma 4.12, Rp ⊆ guard∀(g,E

′
f−1, D

′
f−1). Now,

as wf = [w′f−1]unp
consider the open–p–PDBM (Ef , Df) = update((E′f−1, D

′
f−1), unp);

from Lemma 4.4 we have wf ∈ (Ef , v(Df)). Finally there is an edge

(`f−1, (Ef−1, Df−1))
ef−1−→ (`f , (Ef , Df)).

13:66 É. André, D. Lime, and M. Ramparison Vol. 17:2

– If ef−1 = 〈`f−1, a, g, u, `f 〉 contains a parametric guard and a parametric update. Using

Definition 2.2 there is a delay δ (possibly 0) s.t. (`f−1, wf−1)
δ7→ (`f−1, w

′
f−1)

ef−17→
(`f , wf) where w′f−1 |= v(g) and wf = [w′f−1]v(u). As wf−1 ∈ (Ef−1, v(Df−1)) there

is (E′f−1, D
′
f−1) ∈ Succ((Ef−1, Df−1)) s.t. from Proposition 4.11 we have w′f−1 ∈

(E′f−1, v(D′f−1)). As w′f−1 |= v(g), v ∈ p-guard∃(g,E
′
f−1, D

′
f−1) and from Lemma 4.13,

Rp ⊆ p-guard∃(g,E
′
f−1, D

′
f−1). Now, as wf = [w′f−1]v(u) consider the point–p–PDBM

(Ef , Df) = update((E′f−1, D
′
f−1), u); (Ef , v(Df)) contains only one clock valuation,

precisely defined by the fully parametric update v(u) so we have wf ∈ (Ef , v(Df)).

Finally there is an edge (`f−1, (Ef−1, Df−1))
ef−1−→ (`f , (Ef , Df)).

– The case where ef−1 contains a non parametric guard and a parametric update is similar
to the previous one.

Finally, there is a run σ′ = σ
ef−1−→ (`f , (Ef , Df)) of length f in R(A) s.t. for all 0 ≤ i ≤ f ,

wi ∈ (Ei, v(Di)).
⇒ By induction on the length of the run.

Let v ∈ Rp. As the basis for the induction, the initial location (`0, (E0, v(D0))) is

reachable by an empty run of R(A). Moreover, as {0}H∈(E0, v(D0)), the initial location

(`0, {0}H) is reachable by an empty run of v(A).
For the induction step, suppose it is true for all run in R(A) of length f − 1.

Let v ∈ Rp and σ = (`0, (E0, D0))
e0−→ · · ·

ef−2−→ (`f−1, (Ef−1, Df−1))
ef−1−→ (`f , (Ef , Df))

be a run of R(A) of length f . Consider ef−1. By Definition 5.1 of the parametric region
automaton, it is also in the set of edges ζ of A. Two cases show up:
– If ef−1 = 〈`f−1, a, g, unp, `f 〉 contains no parametric guard nor parametric update.

By induction hypothesis, there is a run ρ = (`0, w0)
e0−→ · · ·

ef−2−→ (`f−1, wf−1) of
v(A) of length f − 1 s.t. for all 0 ≤ i ≤ f − 1, wi ∈ (Ei, v(Di)). Using Defi-
nition 5.1 there is (E′f−1, D

′
f−1) ∈ Succ((Ef−1, Df−1)), Rp ⊆ guard∀(g,E

′
f−1, D

′
f−1)

and (Ef , Df) = update((E′f−1, D
′
f−1), unp). From Proposition 4.11 we have w′f−1 ∈

(E′f−1, v(D′f−1)) and a delay δ s.t. w′f−1 = wf−1 + δ. As Rp ⊆ guard∀(g,E
′
f−1, D

′
f−1)

from Lemma 4.12 we have v ∈ guard∀(g,E
′
f−1, D

′
f−1) and w′f−1 |= g. Moreover,

since (Ef , Df) = update((E′f−1, D
′
f−1), unp), we define wf = [w′f−1]unp

and therefore

from Lemma 4.4, wf ∈ (Ef , v(Df)). Finally there is an edge (`f−1, wf−1)
ef−1−→ (`f , wf)

and a run ρ′ = ρ
ef−1−→ (`f , wf) in v(A) of length f s.t. for all 0 ≤ i ≤ f , wi ∈ (Ei, v(Di)).

– If ef−1 = 〈`f−1, a, g, u, `f 〉 contains a parametric guard and a parametric update. Using
Definition 5.1 there is (E′f−1, D

′
f−1) ∈ Succ((Ef−1, Df−1)), Rp ⊆ p-guard∃(g,E

′
f−1, D

′
f−1)

and (Ef , Df) = update((E′f−1, D
′
f−1), u). From Lemma 4.13 we can take w′f−1 ∈

(E′f−1, v(D′f−1)) s.t. w′f−1 |= v(g). Let wf = [w′f−1]v(u). Clearly, (Ef , Df) =

update((E′f−1, D
′
f−1), u) is a point–p–PDBM; as (Ef , v(Df)) contains only one clock val-

uation precisely defined by the fully parametric update v(u), we have wf ∈ (Ef , v(Df)).
From Proposition 4.11 as w′f−1 ∈ (E′f−1, v(D′f−1)) there is a delay δ and a wf−1 ∈
(Ef−1, v(Df−1)) s.t. w′f−1 = wf−1 + δ. Using the induction hypothesis, there is a run

ρ = (`0, w0)
e0−→ · · ·

ef−2−→ (`f−1, wf−1) of v(A) of length f − 1 s.t. for all 0 ≤ i ≤ f − 1,

Vol. 17:2 INSTRUCTIONS 13:67

wi ∈ (Ei, v(Di)). Finally there is an edge (`f−1, wf−1)
ef−1−→ (`f , wf) and a run ρ′ =

ρ
ef−1−→ (`f , wf) in v(A) of length f s.t. for all 0 ≤ i ≤ f , wi ∈ (Ei, v(Di)).

– The case where ef−1 contains a non parametric guard and a parametric update is similar
to the previous one.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	1.1. Contribution
	1.2. Related work
	1.3. Outline

	2. Preliminaries
	3. A decidable subclass of U2P-PTAs
	4. Operations on p-PDBMs
	4.1. Non-parametric update
	4.2. Parametric update
	4.3. Time elapsing
	4.4. Non-parametric guard
	4.5. Parametric guard

	5. Parametric region automaton
	6. Decidability of EF-emptiness and synthesis
	7. Parametric updates and stopwatches
	8. Case study
	9. Conclusion and perspectives
	References
	Appendix A. Proof of Lemma 3.4
	Appendix B. Proof of Lemma 3.7
	Appendix C. Proof of Lemma 3.8
	Appendix D. Proof of Lemma 4.3
	Appendix E. Proof of Lemma 4.4
	Appendix F. Proof of Lemma 4.6
	Appendix G. Proof of Lemma 4.10
	Appendix H. Proof of Proposition 4.11
	Appendix I. Proof of Lemma 4.12
	Appendix J. Proof of Lemma 4.13
	Appendix K. Proof of Proposition 6.1

