Skip to main content

The Influence of Induced OWA Operators in a Clustering Method

  • Conference paper
  • First Online:
Fuzzy Techniques: Theory and Applications (IFSA/NAFIPS 2019 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1000))

Included in the following conference series:

  • 689 Accesses

Abstract

In this work we present an adaptation of the well known k-means algorithm for clustering. The proposal increases the flexibility of the algorithm to calculate the representative value of each cluster. To do so, we work with Induced Ordered Weighting Averaging operators. These instances of aggregation functions are able to increase or decrease the influence of the data in the final result depending on the specific values of the weights. We present an experimental study to show how these operators are able to modify the representatives of the clusters. We also compare our results over some standard datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcala-Fdez, J., Sanchez, L., Garcia, S., del Jesus, M.J., Ventura, S., Garrell, J., Otero, J., Romero, C., Bacardit, J., Rivas, V., Fernandez, J.C., Herrera, F.: KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13, 307–318 (2009)

    Article  Google Scholar 

  2. Alcala-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garcia, S., Sanchez, L., Herrera, F.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 17, 255–287 (2011)

    Google Scholar 

  3. Calvo, T., Mayor, G., Mesiar, R. (eds.).: Aggregation Operators: New Trends and Applications, pp. 3–104. Physica-Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21, 768–769 (1965)

    Google Scholar 

  6. Garcia, S., Fernandez, A., Luengo, J., Herrera, F.: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput. 13, 959–977 (2009)

    Article  Google Scholar 

  7. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)

    Article  Google Scholar 

  8. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)

    Article  Google Scholar 

  9. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Y. Dodge (ed.) Statistical Data Analysis Based on the \(L_{1}\)–Norm and Related Methods, pp. 405–416. North-Holland (1987)

    Google Scholar 

  10. Lloyd, S.P.: Least square quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  11. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  12. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  13. Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures, 2nd edn. Chapman & Hall/CRC, London (2006)

    MATH  Google Scholar 

  14. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  15. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  MathSciNet  Google Scholar 

  16. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  Google Scholar 

  17. Yager, R.R.: Families of OWA operators. Fuzzy Sets Syst. 59, 125–148 (1993)

    Article  MathSciNet  Google Scholar 

  18. Yager, R.R., Filev, D.: Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybern. 29, 141–150 (1999)

    Article  Google Scholar 

  19. Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9, 149–184 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Public University of Navarra under the project PJUPNA13 and by the Spanish Government under the project TIN2016-77356-P (AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aranzazu Jurio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jurio, A., Sesma-Sara, M., Sanz Delgado, J.A., Bustince, H. (2019). The Influence of Induced OWA Operators in a Clustering Method. In: Kearfott, R., Batyrshin, I., Reformat, M., Ceberio, M., Kreinovich, V. (eds) Fuzzy Techniques: Theory and Applications. IFSA/NAFIPS 2019 2019. Advances in Intelligent Systems and Computing, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-030-21920-8_3

Download citation

Publish with us

Policies and ethics