Skip to main content

Performance Modeling of the Consensus Mechanism in a Permissioned Blockchain

  • Conference paper
Computer Networks (CN 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1039))

Included in the following conference series:

Abstract

We consider a permissioned blockchain and analyze the dissemination and commitment processes of blocks among its corresponding miner nodes in the underlying peer-to-peer network. We propose a Markovian non-purging (nk) fork-join queueing model to analyze the delay performance of the synchronization process among these miner nodes that apply a vote-based consensus procedure. We determine the impact of the most influential design and load parameters on the resulting commitment delay of new blocks that are appended to the blockchain after successful commitment decisions and the approval by the fully distributed consensus procedure. The proposed analysis of a permissioned blockchain is illustrated by means of a simple example of a fully interconnected P2P graph applying mean-value analysis techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Fuqaha, A., et al.: Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015). Fourth Quarter

    Article  Google Scholar 

  2. Atzori, L., et al.: Internet of Things: a survey. Comput. Netw. 54, 2787–2805 (2010)

    Article  MATH  Google Scholar 

  3. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Oliveira, R., Felber, P., Hu, Y.C. (eds.) Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, 23–26 April 2018, pp. 30:1–30:15. ACM (2018)

    Google Scholar 

  4. Bessani, A., Sousa, J., Alchieri, E.: State machine replication for the masses with BFT-SMART. In: 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 355–362. IEEE (2014)

    Google Scholar 

  5. Brody, P., Pureswaran, V.: Device democracy: saving the future of the Internet of Things. IBM, September 2014

    Google Scholar 

  6. Buterin, V.: Ethereum White Paper: A Next-Generation Smart Contract and Decentralized Application Platform (2013). https://www.blockchainresearchnetwork.org/research/whitepapers/. Accessed 22 Nov 2017

  7. Cachin, C., Vukolić, M.: Blockchains consensus protocols in the wild. arXiv preprint arXiv:1707.01873 (2017)

  8. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Seltzer, M.I., Leach, P.J. (eds.) Proceedings of the Third USENIX Symposium on Operating Systems Design and Implementation (OSDI), New Orleans, Louisiana, USA, 22–25 February 1999, pp. 173–186. USENIX Association (1999)

    Google Scholar 

  9. Cech, H.L., Großmann, M., Krieger, U. R.: A fog computing architecture to share sensor data by means of blockchain functionality. In: 2019 IEEE International Conference on Fog Computing (ICFC 2019) (2019, accepted paper)

    Google Scholar 

  10. Chandy, K.M., Herzog, U., Woo, L.: Parametric analysis of queuing networks. IBM J. Res. Dev. 19(1), 36–42 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the Internet of Things. IEEE Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  12. Conoscenti, M., Vetrò, A., De Martin, J.C.: Blockchain for the Internet of Things: a systematic literature review. In: IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA) (2016)

    Google Scholar 

  13. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In: 13th IEEE Conference on Peer-to-Peer Computing, pp. 1–10 (2013)

    Google Scholar 

  14. Göbel, J., Keeler, H.P., Krzesinski, A.E., Taylor, P.G.: Bitcoin blockchain dynamics: the selfish-mine strategy in the presence of propagation delay. Perform. Eval. 104, 23–41 (2016)

    Article  Google Scholar 

  15. Großmann, M., Eiermann, A., Renner, M.: Hypriot Cluster Lab: An ARM-powered cloud solution utilizing Docker. In: 23rd International Conference on Telecommunications (ICT 2016), Thessaloniki, Greece, 16–18 May 2016 (2016)

    Google Scholar 

  16. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  17. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://bitcoin.org/bitcoin.pdf. Accessed 30 Nov 2018

  18. Natoli, C., Gramoli, V.: The Balance Attack Against Proof-Of-Work Blockchains: The R3 Testbed as an Example, 30 December 2016. arXiv:1612.09426v1

  19. Nelson, R.D., Tantawi, A.N.: Approximate analysis of fork/join synchronization in parallel queues. IEEE Trans. Comput. 37(6), 739–743 (1988)

    Article  Google Scholar 

  20. Nguyen, G.-T., Kim, K.: A survey about consensus algorithms used in blockchain. J. Inf. Process. Syst. 14(1), 101–128 (2018)

    Google Scholar 

  21. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_2

    Chapter  Google Scholar 

  22. Shafagh, H., Hithnawi, A., Burkhalter, L., Duquennoy, S.: Towards blockchain-based auditable storage and sharing of IoT Data. arXiv Preprint arXiv:1705.08230 (2017)

  23. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT replication. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp. 112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4_9

    Chapter  Google Scholar 

  24. Wang, H., et al.: Approximations and bounds for (n, k) fork-join queues: a linear transformation approach. In: 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID) (2018)

    Google Scholar 

  25. Ziegler, M.H., Großmann, M., Krieger, U.R.: Integration of Fog Computing and Blockchain Technology Using the Plasma Framework. Technical report, University of Bamberg (2019, submitted)

    Google Scholar 

  26. Docker Inc.: Docker Overview (2018). https://docs.docker.com/engine/docker-overview/. Accessed 28 Aug 2018

  27. MultiChain: Multichain 1.0 Beta 2 and 2.0 Roadmap (2017). https://www.multichain.com/blog/2017/06/multichain-1-beta-2-roadmap/. Accessed 2 Sept 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo R. Krieger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Cite this paper

Krieger, U.R., Ziegler, M.H., Cech, H.L. (2019). Performance Modeling of the Consensus Mechanism in a Permissioned Blockchain. In: Gaj, P., Sawicki, M., Kwiecień, A. (eds) Computer Networks. CN 2019. Communications in Computer and Information Science, vol 1039. Springer, Cham. https://doi.org/10.1007/978-3-030-21952-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21952-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21951-2

  • Online ISBN: 978-3-030-21952-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics