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Abstract. Mealy machines transduce inputs to outputs, based on finite
memory. They are often used to model reactive systems. The require-
ments on their behaviour can be specified by formulas in Linear-time
Temporal Logic. We will study two interpretations of LTL for Mealy
machines: the synchronous semantics, where inputs and outputs occur
simultaneously; and the alternating semantics, where inputs and outputs
strictly alternate. We define and study Mealy-robust LTL properties,
which are insensitive to which of these interpretations is chosen.

The motivating application is in the context of black-box checking:
Given the interface to some reactive system, one would like to test that a
particular LTL property holds. To this end, we combine active automata
learning with model checking into sound black-box checking. Here the
LTL properties are already checked on intermediate hypotheses, in order
to speed up the learner. Finally, we perform an experiment on the Mealy
machines provided by the RERS challenge (Rigorous Examination of
Reactive Systems). We investigate how many LTL properties from the
RERS challenges in 2016 and 2017 are actually robust.

1 Introduction

The problem of black-box checking is to verify (or test) that a reactive system
satisfies a number of properties. Here the system is provided as black-box, acces-
sible through its input/output interface only. Assuming that the reactive system
has a finite number of states, it can be modeled by a Mealy machine [10]. The
properties on the system’s behaviour can be specified in Linear-time Temporal
Logic (LTL [13]). A solution to the black-box checking problem can be obtained
by combining active automata learning [1,6,17] and model checking [2].

A realisation of the black-box checking approach is provided by inte-
grating LearnLib1 [7,15] with LTSmin2 [9]. The yearly RERS challenge3

(Rigorous Evaluation of Reactive Systems [5,8]) provides an excellent testbed

1 The LearnLib: https://learnlib.de.
2 LTSmin: ltsmin.utwente.nl and https://github.com/utwente-fmt/ltsmin.
3 RERS challenge: http://rers-challenge.org.
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for checking properties on reactive systems. The combination of LearnLib +
LTSmin has been applied on the problems in the RERS Challenge 2017, as
reported in [11].

1.1 Motivating Context: Sound Black-Box Checking

The sound approach to black-box checking is illustrated in Fig. 1. A naive app-
roach to black-box checking would be to first learn a Mealy machine that mod-
els the System Under Learning (SUL) and to subsequently check the properties
on that automaton. Learning proceeds according to the Angluin-style active
automata-learning paradigm [1,6], adapted to Mealy machines in [17]. Here
the learner proceeds by performing I/O sequences (membership queries ∈) on
the system. When it believes that it has complete information, it generates a
hypothesis automaton (H). This hypothesis is validated on the system using a

∈ SUL

w ∈ L?

yes/no

until complete

|= MC

H

H |= φ?

yes/no:ce

∈ω SULω

no:ce

ce ∈ Lω?

yes/dk/no:w

no:w

= test

dk:H

no:w

yes

L(H) = L?

yes/no:w

Violation!

yes

Fig. 1. Sound black-box checking procedure, adapted and simplified from [11]
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model-based tester (=); this is an expensive step, involving many queries. This
procedure is iterated as long as testing reveals a counterexample (w). The final
hypothesis can be used to check the LTL properties, for instance using the Nested
Depth-First Search algorithm [3].

A smarter approach to black-box checking [12] applies the model checker
(MC) already on the intermediate hypotheses (�). If the model checker provides
a counter-example (ce) to the property, this is tested on the reactive system. If
the counter-example can be simulated on the system, we found a violation of the
property. If not, a prefix of the counter example (w) is provided to the learner,
saving one expensive test-procedure.

A complication is that the counter-example provided by the model checker is
an infinite path, presented by a lasso xyω. In principle, one can only check finite
unrollings xyn on the system. However, this yields an unsound method, unless
one knows an upperbound on the number of states of the reactive system.

A sound approach to black-box checking was proposed in [11]. We adapt
the check for infinite words (∈ω), by assuming that one can additionally save
states and check their equivalence. So we test the word and save intermediate
states x(s0)y(s1)y(s2), . . . , y(sn). As soon as we find that sk = sj for some
0 ≤ k < j ≤ n, we definitely know that xyω is a valid counterexample, and
report a violation. If the path cannot be continued, we have a found a finite
prefix w for the learner. Otherwise, we don’t know if xyω holds, and we proceed
to the tester.

The adapted procedure is sound, in the sense that it only reports true viola-
tions. However, it may miss some violations, so it is incomplete: First, the final
hypothesis may still not reflect all system behaviour. Second, the model checker
may have detected a lasso that could not be confirmed within the bound. Note
that the state recording facility could in principle be used for a full model check.

1.2 Problem Statement and Contribution

This paper, dedicated to Bernhard Steffen on the occasion of his 60th birthday, is
devoted to taking a closer look at the precise LTL semantics for Mealy machines.
In particular, we study the difference between the synchronous semantics and the
alternating semantics. The RERS organisers clearly stipulate that LTL proper-
ties are interpreted in the alternating semantics, i.e. interpreted over alternating
traces of the form i, o, i, o, . . . However, in the first RERS attempt in 2012 [14],
LTSmin used the synchronous semantics, interpreted over synchronous traces of
the form i/o, i/o, . . .

Surprisingly, this discrepancy leads to only very few wrong answers. When
applying sound black-box learning (Fig. 1) to the first 4 problems of the RERS
2017 challenge, with 100 LTL formulas each, we detect the following number of
LTL violations for the alternating, resp. synchronous semantics. So there is only
a 0.5% deviation! We will show a deviating LTL property from RERS 2017 in
Example 4.

We will try to explain this, by studying the class of Mealy-robust LTL proper-
ties, which are insensitive to choosing the synchronous or alternating LTL seman-
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Semantics Problem 1 Problem 2 Problem 3 Problem 4

Alternating 52 46 54 69

Synchronous 50 46 54 69

tics. In Sect. 2, we formally define (partial) Mealy machines, the synchronous
and alternating semantics of LTL properties, and the set of Mealy-robust LTL
properties. Section 3 studies Robust LTL in more detail; we restrict ourselves
to properties in LTL\X. To this end, we need to introduce a number of finer
distinctions (α-, α1-, σ and σ1-robustness). A Prolog program summarises and
automates the derivation rules for robustness. Its correctness depends on the
lemmas proved in Appendix A. Section 4 performs a small experiment on the
problems of the RERS challenge, checking how many of them we can detect to
be robust. Finally, we conclude with some problems left for future research.

2 Preliminaries: LTL Interpretations for Mealy Machines

s0

s2

s1

a/x

a/y
b/z b/z

b/z

Fig. 2. Mealy machine M with
I = {a, b} and O = {x, y, z}.

A (partial) Mealy machine M = (S, s0, I, O, δ)
consists of a finite set of states S, initial state s0 ∈
S, nonempty finite disjoint sets of input symbols
(I) and output symbols (O), and a partial transi-
tion function δ : S×I ↪→ O×S. An example is pro-
vided in Fig. 2. We will distinguish its synchronous
traces and alternating traces. In a synchronous
trace, inputs and outputs happen simultaneously,
for example a/x, a/y, a/x, a/y, b/z, b/z, . . .. In an
alternating trace, inputs and outputs happen in
strict alternation, as in a, x, a, y, a, x, a, y, . . ..

An (infinite) sequence over A is a function
N → A. Given a sequence π, we write πi for the
i-th element (so π = π0, π1, . . .) By πi we denote the suffix πi, πi+1, πi+2, . . ..

We formally define the set of synchronous traces Trs = N → I × O over I
and O, and the set of alternating traces Tra = π : N → I ∪ O, with πi ∈ I ⇐⇒
πi+1 ∈ O. The latter can be split in Trai (starting with an input: π0 ∈ I)
and Trao (starting with an output: π0 ∈ O). With Trs(M) (resp. Tra(M)) we
denote the synchronous (resp. alternating) traces that start in s0 and follow
transitions in M . Note that Tra(M) ⊆ Trai . For π ∈ Trai , we write σ(π) for the
corresponding synchronous trace. For π ∈ Trs , α(π) denotes the corresponding
alternating trace. Note that σ = α−1 forms a bijection between Trs and Trai .
However, traces in Trao still arise as suffixes.

Example 1. Let M be the Mealy machine in Fig. 2. Define the synchronous trace
π := a/x, a/y, a/x, a/y, . . . and the alternating trace ρ := a, x, a, y, b, z, b, z, . . .
Indeed, π ∈ Trs(M) and ρ ∈ Tra(M). In particular, ρ ∈ Trai and ρ1 ∈ Trao .
Finally, α(π) = a, x, a, y, a, x, a, y, . . ., while σ(ρ) = a/x, a/y, b/z, b/z, . . . How-
ever, σ(ρ1) is not defined.
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The distinction between synchronous and alternating traces may seem a small
technical detail, but it does have a crucial impact on the corresponding LTL
semantics. Let us first define action-based LTL formulas with atomic properties
in I ∪ O, using the following grammar (U is until; X is next):

Φ :: = I | O | ¬Φ | Φ ∧ Φ | Φ U Φ | XΦ

We permit the usual abbreviations φ ∨ ψ := ¬(¬φ ∧ ¬ψ), Fφ := true U φ
(future), Gφ := ¬F¬φ (globally), φRψ := ¬(¬φU¬ψ) (release), and φWUψ :=
(φ U ψ) ∨ (Gφ) (weak until). We also introduce conveniently defined atomic
properties: false := i0∧¬i0 (with i0 ∈ I arbitrary), true := ¬false, input :=

∨
i∈I i,

output :=
∨

o∈O o, which hold for none, all, all input, and all output actions,
respectively.

Next, we define the LTL semantics over both synchronous and alternating
traces, i.e. � ⊆ (Trs ∪ Tra) × Φ, by induction over φ:

π � i ⇐⇒ π0 ∈ {i/o, i}, for some o ∈ O

π � o ⇐⇒ π0 ∈ {i/o, o}, for some i ∈ I

π � ¬φ ⇐⇒ π �� φ

π � φ ∧ ψ ⇐⇒ π � φ and π � ψ

π � φ U ψ ⇐⇒ ∃j : (∀k < j : πk � φ) and πj � ψ

π � Xφ ⇐⇒ π1 � φ

We are now ready to define the synchronous and alternating semantics of
LTL. Note that the following definition discards finite executions of the Mealy
machine, even when they lead to a deadlock. The motivation for handling partial
Mealy machines, but ignoring finite traces, is simply to abide to the rules of the
RERS challenge.

Definition 2 (LTL semantics). For a Mealy machine M and LTL formula φ,
we define:

– M �s φ if and only if for all synchronous traces π ∈ Trs(M), π � φ
– M �a φ if and only if for all alternating traces π ∈ Tra(M), π � φ

The alternating semantics is the official LTL semantics of the RERS chal-
lenge. Indeed, it supports the intuition that the current state and the input
determine, so should precede, the next state and the output. However, when
mapping this to a standard LTS for model checking, one typically introduces
an “intermediate state” between an input and its subsequent output, which
seems unnatural and superfluous. This would lead to |S| · |I| extra states, which
makes model checking less efficient. The synchronous semantics avoids introduc-
ing intermediate states, so it would lead to a more efficient model checking pro-
cedure. This is in particular useful when applying brute-force white-box model
checking to the RERS problems, for which LTSmin has traversed state spaces
of over 5.109 states and 5.1010 transitions [14], but it is also convenient in the
black-box checking scenario.
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So the main question is: when is using the synchronous semantics justified?
We will call LTL properties that are insensitive to choosing the synchronous or
alternating semantics Mealy-robust.

Definition 3 (Mealy-Robust LTL properties). We call LTL formula φ
Mealy-robust if for all Mealy machines M , it holds that M �s φ ⇐⇒ M �a φ.

Example 4. Property 2 of Problem 1 of the RERS challenge 2017 is:
(false R (! ((oY & ! iC) & (true U iC)) | (! oU U (iB | iC))))

In standard notation: G(¬oY ∨ iC ∨ (G¬iC) ∨ (¬oU U (iB ∨ iC))). This happens
to be one of the examples from the Introduction (Sect. 1) where the alternating
and synchronous semantics differ, so it is not robust.

Example 6 will introduce some simpler robust and non-robust formulas.

3 Mealy-Robust LTL Properties

We will now investigate the following question: Which LTL formulas φ are Mealy-
robust? We start by defining a number of fine-grained robustness notions on
paths. Subsequently, we will prove preservation of robustness by LTL operators.
This will yield a procedure to identify a class of robust LTL properties.

3.1 Robustness Notions

Note that to prove robustness of φ, we can focus on the robustness for individual
paths. We need preservation in two directions, leading to the notions of α- and
σ-robustness. However, for the alternating semantics we also need to consider
the situation between an input and output action. Hence the notions of α1- and
σ1-robustness, which consider traces that start with an output action.

Definition 5 (Robustness w.r.t. paths).

– φ is α-robust if ∀π ∈ Trs : π � φ =⇒ α(π) � φ
– φ is σ-robust if ∀π ∈ Trai : π � φ =⇒ σ(π) � φ
– φ is α1-robust if ∀π ∈ Trs : π � φ =⇒ α(π)1 � φ
– φ is σ1-robust if ∀π ∈ Trai : π1 � φ =⇒ σ(π) � φ
– φ is input-universal (ι) if ∀π ∈ Trai : π � φ

The last notion states that a property holds universally on traces starting
with input (for instance: ¬o1 is input-universal). This will sometimes be needed
to “fill the gap” between two outputs.

Example 6. Recall the traces π ∈ Trs(M) and α(π) ∈ Trai(M) of Example 1:
π = a/x, a/y, a/x, a/y, . . . and α(π) = a, x, a, y, a, x, a, y, . . .. Let φ := G(x U y).
Clearly, π � φ, but α(π) �� φ, since in the first alternating action “a”, neither x
nor y holds. So φ is not α-robust.

On the other hand, let ψ = G(¬z U y). Then both π � ψ and α(π) � ψ.
Indeed, it will turn out that ψ is robust.
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3.2 Robustness Preservation by LTL\X Operators

Fig. 3. α/α1/σ/σ1-robustness,
input-universality and Mealy-
robustness for atomic formulas.

We will now first check how robustness is pre-
served by the Boolean connectives conjunction
and disjunction, and establish a duality for nega-
tion. Subsequently, we will discuss robustness of
the atomic properties (cf. Fig. 3). Finally, we will
investigate the robustness properties of the until-
operator. Robustness of the neXt-operator is left
for future research.

All lemmas in this section are summarised
in Fig. 4, in the form of a Prolog program. This
program can actually be run. For a formula P,
if robust(P) succeeds, then robustness is guar-
anteed. However, if the query fails, the property
may still be robust. We do not claim that our
derivation rules are complete. The soundness of all rules is proved in detail in
Appendix A.

First, we establish that α-robustness and σ-robustness are dual, and so are
α1- and σ1-robustness. Next, all notions of robustness are preserved by ∧ and
∨. Also, we claim compositionality of input-universality for ∧ and ∨.

Lemma 7 (Boolean connectives).

1. φ is α-robust, if and only if ¬φ is σ-robust.
2. φ is α1-robust, if and only if ¬φ is σ1-robust.
3. If φ, ψ are α/σ/α1/σ1-robust, then so are φ ∧ ψ and φ ∨ ψ.
4. If φ and ψ is input-universal, then so is φ ∧ ψ. If either of φ or ψ is input-

universal, then also φ ∨ ψ is.

Next, we check the robustness of atomic properties and their negations. These
results are also tabulated in Fig. 3. We also show whether the atomic properties
are input-universal, and Mealy-robust.

Lemma 8 (Robustness of atomic properties).

1. Let i ∈ I. Then i and ¬i are α-robust and σ-robust.
2. Let o ∈ O. Then o and ¬o are α1-robust and σ1-robust.
3. Let i ∈ I. Then i is σ1-robust and ¬i is α1-robust.
4. Let o ∈ O. Then o is σ-robust and ¬o is α-robust.
5. Let o ∈ O. Then ¬o is input-universal.
6. Let i ∈ I. Then i and ¬i are Mealy-robust.

Obviously, o is not α-robust, since it holds in i/o, π but not in i, o, α(π).
Similarly, i is not α1-robust, since it holds in i/o, π, but not in o, α(π).
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Fig. 4. Prolog program for deriving robustness of LTL properties. This program can
be viewed as a summary of Lemmas 7–11.

Fig. 5. Illustration of subcases of Lemmas 9 and 10
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We now get to the main lemmas, first providing the criteria for the
α-robustness of until-formulas (cf. Fig. 5, left):

Lemma 9 (α-Robustness of Until-formulas).

1. Let φ be α-robust and α1-robust; let ψ be α-robust. Then φ U ψ is α-robust.
2. Let φ be α1-robust and input-universal; let ψ be α1-robust. Then φ U ψ is

α-robust and α1-robust.

We will now apply Lemmas 8 and 9 to derive α-robustness of basic Until
formulas (see also Fig. 6). From Lemma 8 we obtain that ¬i and ¬o are α- and
α1-robust. Also, we obtain that i, ¬i and ¬o are α-robust (∀i ∈ I, o ∈ O). Hence,
by Lemma 9, Case 1, the first six shapes below are α-robust. Furthermore, by
Lemma 8, ¬i, o and ¬o are α1-robust. Note that ¬o is input-universal, since
iπ � ¬o (∀o ∈ O, i ∈ I, π ∈ Trao). Hence by Lemma 9, Case 2, we obtain that
last three shapes below are α-robust. In total this gives 7 α-robust shapes. Only
the last three are guaranteed to be α1-robust.

¬i1 U i2 | ¬i1 U ¬i2 | ¬i1 U ¬o2 | ¬o1 U i2 | ¬o1 U ¬i2 | ¬o1 U ¬o2 | ¬o1 U o2

Recall that this means that whenever a synchronous trace π satisfies one of
those formulas, the corresponding alternating trace α(π) satisfies it as well. The
last three are even satisfied by α(π)1.

We continue with σ-robustness of Until-formulas (cf. Fig. 5, right).

Lemma 10. σ-Robustness of Until-formulas

1. Let φ be σ-robust. Let ψ be both σ-robust and σ1-robust. Then φ U ψ is σ-
robust.

2. Let φ be σ1-robust. Let ψ be both σ-robust and σ1-robust. Then φ U ψ is
σ-robust and σ1-robust.

Note that if φ is just σ-robust and ψ is both σ- and σ1-robust, it is not
necessary that φ U ψ is σ1-robust. For instance, take π = o1, i2, o2, . . . ∈ Trao .
Then π � ¬i1 U o1. However, we don’t have i1/o1, i2/o2, . . . � ¬i1 U o1.

Since i, ¬i, o and ¬o are all σ- or σ1-robust, and since only i and o are
σ1-robust, we obtain the following 8 σ-robust basic Until formula shapes. Since
¬i is not σ1-robust, only the last six are also σ1-robust.

¬i1 U i2 | ¬i1 U o2 | i1 U i2 | i1 U o2 | o1 U i2 | o1 U o2 | ¬o1 U i2 | ¬o1 U o2

Lemma 11 (Input-universal Until). If ψ is input-universal, then φ U ψ is
input-universal.

Theorem 12 (Correctness). If the Prolog program in Fig. 4 derives the goal
robust(φ), then φ is Mealy-robust.
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Fig. 6. α/α1/σ/σ1-robustness
and input-universality for sim-
ple until-properties. The last
column concludes whether the
property is robust for all Mealy
machines.

Figure 6 indicates the robustness of basic
until formulas without nesting. Here ✓ means
that robustness can be proved using previous
theorems. ✗ only means that the property can-
not be proved, but these might still hold for spe-
cial cases. The last row deserves some attention:
If o1 = o2, then ¬o1 U ¬o2 = ¬o1, which is
really not σ-robust. However, if o1 �= o2, then
¬o1 U ¬o2 = true, since the first action can-
not be both o1 and o2, so this is σ-robust. Also,
∀π ∈ Trai : π � φU¬o2. So φU¬o2 is trivially α-
robust. Finally, note that inputUoutput is input-
universal, but not recognized by our derivation
rules.

All theorems in this section are proved in
Appendix A. The theorems in this section can be
turned into derivation rules, as presented in the
Prolog program in Fig. 4. Given an LTL property
P , it tries to derive robust(P) by applying the
rules, proving α/σ-robustness where necessary.
However, this program may fail on some robust
formulas since we don’t guarantee completeness.
Also, it cannot handle formulas that contain the
neXt-operator.

4 Experiment: Robustness of RERS Constraints

Fig. 7. Experiments on the LTL
properties from RERS 2016 and
RERS 2017.

We applied our Prolog program to the con-
straints of the sequential LTL properties from
the RERS 2016 and 2017 problems [4,8] (after
a syntactic transformation). Both years fea-
tured 9 problems, with 100 LTL properties
each. We first filtered out the properties that
contain the X-operator. For each property P ,
we ran the query robust(P) in Prolog. The
results are displayed in Fig. 7. Here #\X shows
the number of X-free formulas; #R shows the
number of LTL formulas proven robust.

Apparently, 30% of the formulas was
X-free. From these formulas 38% could be
established robust. We conclude that this
result only partly explains why applying an
“alternating model checker” to the “syn-
chronous RERS problems” resulted in a couple
of errors only. Either, some formulas are robust but are not recognized by our
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method, or they are not robust, but the Mealy machines corresponding to these
problems don’t distinguish the two interpretations.

5 Conclusion

We introduced robustness of LTL properties, which indicates that they are insen-
sitive to their interpretation over synchronous or alternating traces. We proved
a number of derivation rules for robust properties, implemented them in Prolog,
and tested them on the RERS 2016 and 2017 challenges. We found that 38% of
the X-free LTL properties could be proven robust.

Of course, the model checker should be correct in all cases. We have solved
this in RERS 2017 [11] by transforming the Mealy machine M to an incomplete
DFA M ′, introducing an extra state for each edge, in between an input and the
subsequent output. On M ′ we can apply the standard model checking procedure.
For the transformed M ′, we have: M �a φ ⇐⇒ M ′ � φ. An alternative
procedure could be to transform formula φ instead, such that M �a φ ⇐⇒
M �s φ′. We leave the study of the feasibility of this approach for future research.

Future work also includes a complete (precise) characterisation and deci-
sion procedure for robust properties. This would also require a study of the
neXt-operator. Maybe previous work on stutter-invariant LTL properties can be
useful [16]. Another line would be to extend to input-output systems without
strict alternation, like I/O-automata. Finally, it would be interesting to consider
the robustness of model checking under general action refinement.

Acknowledgement. The authors are supported by the 3TU.BSR project and the
TTW project SUMBAT, grant 13859. We thank Mirja van de Pol for carefully reading
a preliminary version of this document. We also profited from the numerous suggestions
by the anonymous reviewers. Finally, we thank Bernhard Steffen and his team, for their
wonderful work in designing, maintaining and sharing the LearnLib, and organising the
RERS challenge series.

A Full Soundness Proofs for Robustness Derivation Rules

Lemma 7 (Boolean connectives)

1. φ is α-robust, if and only if ¬φ is σ-robust.
2. φ is α1-robust, if and only if ¬φ is σ1-robust.
3. If φ, ψ are α/σ/α1/σ1-robust, then so are φ ∧ ψ and φ ∨ ψ.
4. If φ and ψ is input-universal, then so is φ ∧ ψ. If either of φ or ψ is input-

universal, then also φ ∨ ψ is.

Proof. 1. ⇒. Let φ be α-robust. Let π ∈ Trai and assume π � ¬φ, so π �� φ.
Note that π = α(σ(π)). By α-robustness and contraposition, σ(π) �� φ, so
σ(π) � ¬φ. Hence ¬φ is σ-robust.
⇐: Similar, by noting that for π ∈ Trs , π = σ(α(π)).
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2. ⇒: Let φ be α1-robust. Let π ∈ Trai . Assume π1 � ¬φ, so π1 �� φ. Note that
π1 = α(σ(π))1 By α1-robustness and contraposition, σ(π) �� φ, so σ(π) � ¬φ.
Hence ¬φ is σ1-robust.
⇐: Similar, by noting that for π ∈ Trs : π = σ(α(π)).

3. Holds obviously for φ∧ψ by inspecting the LTL semantics. It follows for φ∨ψ
by dualities.

4. Trivial.

Lemma 8 (Robustness of atomic properties)

1. Let i ∈ I. Then i and ¬i are α-robust and σ-robust.
2. Let o ∈ O. Then o and ¬o are α1-robust and σ1-robust.
3. Let i ∈ I. Then i is σ1-robust and ¬i is α1-robust.
4. Let o ∈ O. Then o is σ-robust and ¬o is α-robust.
5. Let o ∈ O. Then ¬o is input-universal.
6. Let i ∈ I. Then i and ¬i are Mealy-robust.

Proof. 1. Let i ∈ I. Let π = i0/o0, π
′. Note that α(π) = i0, o0, α(π′). Then

π � i ⇐⇒ i = i0 ⇐⇒ α(π) � i.
2. Let o ∈ O. Let π = i0/o0, π

′. Note that α(π)1 = o0, α(π′). Then π � o ⇐⇒
o = o0 ⇐⇒ α(π)1 � o.

3. Let i ∈ I and π ∈ Trao . Then π = o, π′, so π �� i. So i is trivially σ1-robust,
and ¬i is α1-robust by Lemma 7.

4. Let o ∈ O and π ∈ Trai . Assume π = i0, o0, π
′. Then π �� o (since I and O

are disjoint). So o is trivially σ-robust. Hence ¬o is α-robust by Lemma 7.
5. Any trace in Trai is of the form i, o, π′, so π � ¬o.
6. These formulas are both α- and σ-robust, so they agree on the synchronous

and alternating traces from any Mealy machine.

Lemma 9 (α-Robustness of Until-formulas)

1. Let φ be α-robust and α1-robust; let ψ be α-robust. Then φU ψ is α-robust.
2. Let φ be α1-robust and input-universal; let ψ be α1-robust. Then φ U ψ is

α-robust and α1-robust.

Proof. 1. (cf. case 1 in Fig. 5, left) Let φ be α- and α1-robust and let ψ be α-
robust. Let π ∈ Trs ; assume π � φ U ψ. Then ∃j : (∀k < j : πk � φ) ∧ πj � ψ.
Note that ∀k : α(πk) = α(π)2k. By α-robustness of ψ, α(π)2j � ψ. By α- and
α1-robustness of φ, for each k < j, α(π)2k � φ and α(π)2k+1 � φ. Hence, for
j′ = 2j, we obtain: ∃j′ : (∀k < j′ : α(π)k � φ) ∧ α(π)j′ � ψ, so α(π) � φ U ψ.

2. (cf. case 2 in Fig. 5, left) The proof is similar, but now for j′ = 2j + 1 we
obtain α(π)j′ � ψ. For k′ = 2k < j′, we derive φ because it is input-universal.
For k′ = 2k+1 < j′, we derive φ because it is α1-robust. Hence, α(π) � φUψ.
In this case, α1-robustness follows as well (even if j = 0).

Lemma 10 (σ-Robustness of Until-formulas)

1. Let φ be σ-robust. Let ψ be both σ-robust and σ1-robust. Then φ U ψ is
σ-robust.
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2. Let φ be σ1-robust. Let ψ be both σ-robust and σ1-robust. Then φ U ψ is
σ-robust and σ1-robust.

Proof. We first prove the conclusions on σ-robustness, then σ1-robustness.

– σ-robustness: Let φ be σ- or σ1-robust; let ψ be σ- and σ1-robust. Let π ∈ Trai
be given, with π � φ U ψ. Then ∃j : (∀k < j : πk � φ) ∧ πj � ψ. Note that
σ(π)k = σ(π2k). If j = 2j′ (case 1 in Fig. 5, right), then σ(π)j′ � ψ because ψ
is σ-robust. If j = 2j′ + 1 (case 2 in Fig. 5, right), then σ(π)j′ � ψ because ψ
is σ1-robust. In both cases, for k′ < j′, we obtain σ(π)k′ � φ either from π2k′

(if φ is σ-robust), or from π2k′+1 (if φ is σ1-robust). So indeed σ(π) � φ U ψ.
– σ1-robustness: Similar, but we start with π ∈ Trao with π � φ U ψ. We now

need σ1-robustness of φ to infer φ at the first state of σ(π).

Lemma 11. If ψ is input-universal, then φ U ψ is input-universal.

Proof. Trivial: If π � ψ then π � φ U ψ (at π0).

Theorem 12 (Correctness). If the Prolog program in Fig. 4 derives the goal
robust(φ), then φ is Mealy-robust.

Proof. Note that α- and σ-robustness imply robustness. All other rules of the
program correspond to previous lemmas.
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