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A New Iterative Method for CT
Reconstruction with Uncertain
View Angles

Nicolai André Brogaard Riis®™® and Yiqiu Dong

Department of Applied Mathematics and Computer Science, Technical University
of Denmark, Richard Petersens Plads, 2800 Kongens Lyngby, Denmark
nabr@dtu.dk

Abstract. In this paper, we propose a new iterative algorithm for Com-
puted Tomography (CT) reconstruction when the problem has uncer-
tainty in the view angles. The algorithm models this uncertainty by an
additive model-discrepancy term leading to an estimate of the uncer-
tainty in the likelihood function. This means we can combine state-of-the-
art regularization priors such as total variation with this likelihood. To
achieve a good reconstruction the algorithm alternates between updating
the CT image and the uncertainty estimate in the likelihood. In simu-
lated 2D numerical experiments, we show that our method is able to
improve the relative reconstruction error and visual quality of the CT
image for the uncertain-angle CT problem.

Keywords: Computed Tomography - Uncertain view angles -
Model error - Variational methods - Total variation -
Model discrepancy

1 Introduction

In this paper, we consider Computed Tomography (CT) where the geometry of
the physical set-up is only known approximately. The goal is to achieve recon-
structions that are stable in the presence of uncertainties in the geometric param-
eters. We restrict our attention to uncertainty in the view angles. We assume
that the actual view angles are realizations of some known probability distribu-
tion Tangles(-) and that the measured sinogram is corrupted by additive Gaussian
noise with known mean and covariance.

With the above assumptions, we formulate the CT reconstruction problem
under uncertain view angles as estimating the unknown attenuation coefficient
image x € R™ from a measured (noisy) sinogram b € R™ following the model

b=A0@)x+e, 6~ Tagles(0), € ~N(g,Co), (1)
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where e € R™ is the additive Gaussian noise with mean p, and symmetric
positive definite covariance Ce. The parameterized matrix A (@) € R™*™ is the
discrete approximation of the Radon transform with view angles 8 € R9. The
measurement at detector element [ from the view angle f; with i = 1,...,q,
ie., (A(6;)x), is a discretization of (Rf)(0;,s1) = [ f(s:V(6;) + tVL(Qi)) dt,
where s; gives the position of the [th pixel on the detector Wlth l=1,---,p,
and m = gp. Moreover, the function f is the continuous representation of x,
V(#) = (cos,sinf) and VL(0) = V(0 + 7/2). For more details on the mathe-
matical model of CT see e.g. [1]. We emphasize that the goal in this work is to
estimate the CT image x from a measured sinogram b according to the model
(1) with uncertain view angles € and noise e. Here, 8 and e are considered as
nuisance or uninteresting parameters, and they are only taken into account when
reconstructing x without being explicitly estimated.

1.1 Previous Work

Many variational methods have been proposed for CT reconstruction, see e.g.,
[2-4]. In general, variational models in these methods consist of a data-fitting
term and a regularization term, and these two terms are balanced by a regular-
ization parameter. In order to deal with the ill-posedness in CT reconstruction
problems, the choice of regularization is very important. Different regularization
techniques have been applied, for example, total variation (TV) regularization
[5] and framelet representations [2]. But these methods do not take parametric
uncertainty such as uncertainty in view angles into account. Therefore, good
performance of the methods is not guaranteed if the view angles are uncertain.

The CT reconstruction problem with uncertain view angles in (1) is generally
solved by estimating the view angles from some measurements. Geometrical
calibration of models in CT has been studied, see e.g. [6] for a review. Typically
such methods are based on reference objects or reference instruments for the
calibration. Recently, in the case of uncertain or unknown view angles a few
reconstruction methods that only use the measured sinogram without reference
objects or instruments have been proposed, see [7-9]. These methods aim to
estimate the view angles 6 in addition to the CT image x, and can be categorized
into two groups: (1) Estimating view angles directly from projection data and
then estimating the CT image and (2) simultaneously estimating view angles
and CT image.

In [9] it has been shown that if the scanned objects are asymmetrical then
view angles can be uniquely determined by sinogram measurements. Accord-
ing to this result, we can estimate angles directly from complete measurements.
However, if the object is partly symmetrical or the measurements are not suffi-
cient, we cannot obtain an accurate angle estimation, see [8]. Then, due to error
propagation, an inaccurate angle estimation would lead to an unsatisfactory
reconstruction.

The simultaneous methods such as Bayesian sampling-based methods [7]
can effectively avoid error propagation, but they are limited by computational
complexity and generally require many evaluations of the forward model (1),
which makes them unfeasible for large-scale problems.
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There are also a few methods for characterizing and reducing model errors
in general inverse problems, see [10-15]. Most of these methods are based on the
statistical description of the model error in a Bayesian setting. This leads to a
natural way of incorporating uncertainties and modelling errors in the model.
However, full Bayesian methods also suffer from computational complexity issues
except in cases when the object is assumed to follow a Gaussian distribution, in
which case closed-form solutions exist.

1.2 Owur Contribution

In this paper, we propose a new iterative algorithm for CT reconstruction with
uncertain view angles. The main step in the algorithm is based on a variational
method, which combines the state-of-the-art regularization such as TV with a
modified data-fitting term, that includes the uncertainty in the view angles via
a model-discrepancy term. Since the model-discrepancy term depends on the
estimated reconstruction, we update it and the reconstruction alternately. The
simulated numerical results show that the new algorithm is able to reduce the
relative error and improve the visual quality of the reconstructions.

2 Owur Method

The CT reconstruction with uncertain view angles is formulated in (1) with an
assumption of the probability distribution on the view angles. By including the
known expected view angles, 8, we can reformulate the problem as follows.

b=A@)x+n+e, eNN(H’e’Ce)v (2)
where the new random variable n = 7(8,x) = A(0)x — A(8)x with 6 ~
Tangles(0) models the uncertainties associated with the view angles. Note that (2)
is consistent with (1). By this reformulation, we basically shift the uncertainties
in the view angles to the model-discrepancy term n, which will be used to derive
our variational model.

Defining modelling errors as an additive model-discrepancy term was first
applied in [16] in the field of model calibration of physical and computer models.
The distribution of 7 was assumed as a Gaussian Process and determined as
a model correction term in addition to x. In [11,17], this idea was applied in
Bayesian inverse problems and named as the Approximation Error Approach
(AEA). The main differences are that in the AEA 7 is used to represent the
difference between two grid systems instead of a model discrepancy and it is
marginalized out in the likelihood function. The outputs of the AEA are the dis-
tributions of x and 7. To further improve the results, in [14] an iterative scheme
was introduced where the distributions of x and 1 are updated alternately.
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Inspired by the ideas of the AEA, we derive the likelihood according to the
model (2) by marginalizing out both 7 and e. Define v = n+e, and the likelihood
is given by

w(b\x):/Rm w(b,u\x)du:/Rm (b |x, ) [x)dv =1, | x(b— A@)x|x).  (3)

The conditional distribution of v |x may be rather complicated, but we can
approximate it by a simpler distribution such as a Gaussian. Gaussian approx-
imations has been shown experimentally to be reasonable in many applications
[11,13,14,17,18]. Here, we assume that n|x follows a Gaussian distribution
N(un 1x> Cn|x) with mean p, |, and covariance C,|x and e is independent
of x. Then we obtain the negative log-likelihood function

1 P 1 .
—logm(b|x) oc 7 ||b—A(6) x—p, |xllé;‘1x = 51T (b= A(8) x—p,, 1513, (4)

where p, |x = He + Hy|x: Cux = Ce + Cy|x Is the combined covariance

| x
of the measurement noise and model discrepancy, and Lzle,,|x = C;‘lx is
the Cholesky factorization of the inverse covariance. Applying regularization
techniques, we can formulate a variational model for (2) that gives a stable
solution with respect to the uncertain view angles and measurement noise using
the likelihood (4). TV regularization has shown good performance in CT [2], and

thus we use it as regularization term and obtain the following variational model
1 ;
min 2Ly x(b— A®)x — g, )} + NTV(x), (5)

with minimizer xgry and regularization parameter A > 0. We use TV(x) =
S, 1192, where [[Vdillz = v/(Vax)? + (V, )2, with (V4x); and (V,x),
denoting the derivatives of x; along horizontal and vertical directions with sym-
metric boundary condition, respectively. A non-negativity constraint is added

because the attenuation coefficients x cannot be negative.

2.1 An Iterative Algorithm

The variational model defined in (5) still leaves the question of how the mean
and covariance of 1| x are determined. Given a reconstruction x, one can gen-
erate Ngamp samples of n|x by drawing samples 8° following the distribution
Tangles(0), and then evaluate the model discrepancy by

n°=A0°)x — A(B)X, 6° ~ Tangies(8), s =1,..., Noamp- (6)

The sample mean and covariance given x can then be calculated by

Nsamp

1
samp __ s
H"? |x = Nsarnp Z; n, (7)
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and
Nbamp

Cix = Fy— D = ) (1 = )" (8)
s=1

If we have a good estimate of x, we can obtain good samples of the model dis-

crepancy, and then we can use the sample mean and covariance in the model (5)

to further improve the reconstruction result. This leads to an iterative scheme for

alternately updating the estimate of x and the estimates of mean and covariance

of m | x. The iterative scheme is shown in Algorithm 1.

Algorithm 1. Iterative update of reconstruction and likelihood
[0]

Inputs: b, A, 6, and Trangles(0). Initial choice of L,[,O]| and p,,

Output: x‘[;;]\,
l:for k=1,2,..., K

20 xliy) = argmineso 3ILY] (b — AB)x — plf] )13 + ATV (x)

3: fOI‘ S = 1 2 Nsamp

L = AG) X - AG) X for 0 ~ manges(0)
5  end

6:  Estimate p, |, and C, |x according to (7) and (8)

T u[f,*x” = Mo+ Hy |x

8 LY =chol ((Ce+Cyix)7")

9: end

Here, chol(C™!) gives the Cholesky factorization of the inverse covariance
C~!,ie., LTL = C~!. In the initialization, we use the measurement noise mean
and covariance to initialize L'[/O]| « = Le and ul[?]‘ « = Mo, where LIL, = C_1.

Compared with the AEA proposed in [14], our method has two main differ-
ences. First, our method deals with the uncertainties in the model parameters
and the accurate model is unknown, while in the AEA the accurate model is
known and the discrepancy is between two different grid systems. Secondly,
in our method, we apply a variational method incorporated with regulariza-
tion techniques to obtain a reconstruction result, which can be solved by many
advanced optimization methods, while in the AEA the distribution of the recon-
struction is obtained by applying Bayesian inversion methods, which leads to
much higher computational complexity.

2.2 Approximation of L, |«

Because of the computational complexity in calculating the inverse and Cholesky
factorization of the covariance matrix Ce + C, |, our method can be of lim-
ited use for solving large-scale CT problems. To overcome this limitation, we
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Fig. 1. An example of the absolute value of the full covariance C,, |, its approximation

C, | x according to (9), and their absolute difference for the uncertain angle CT problem
(2). We conclude that the approximation is reasonable for this problem.

approximate the covariance matrix C,|x € R™*™ by a block diagonal matrix
Cn |x given by
Cy [x,11
n|x,22
nlx = .. ) 9)

C

O)

n|x,q99

where C,,|x,;; € RP*P are the block diagonal parts of C, |, ¢ = m/p is the
number of view angles and p is the number of detector pixels. Then, if the
Gaussian measurement noise e is i.i.d., i.e., C¢ = 0?I,,, we can compute the
Cholesky factorization of the approximate inverse covariance (Ce + C,, 1x)
block-wise as follows

chol((Cyy |x,11 + o?L,)™1)
L,,|x = . (10)
chol((Cy; | x,q + o?1,)71)

If the full covariance was used multiplication of an vector with L, |, would
require O(m?) = O(p?q¢?) operations, whereas multiplication with I;,,‘x would
only be O(p?q) operations. Additionally, the matrix inversion and Cholesky fac-
torization is reduced from O(m?3) = O(p3¢?) to O(p3q) operations.

In Fig. 1, we show the absolute values of the full covariance C its approx-

n x>
imation C,, |« according to (9), and their absolute difference. The values in the
off-diagonal parts are much smaller than those in the block diagonal parts of
C,, | x- Hence, the approximation is reasonable for this problem. In the following

experiments line 8 in Algorithm 1 is therefore approximated by (10).

3 Numerical Experiments

In this section, we present simulated 2D numerical results to show the perfor-
mance of our method. The experiments are carried out in MATLAB and we use
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Table 1. The physical parameters in the simulated CT experiments.

Parameter Value
Beam type Fan-beam
Reconstruction domain size 50 cm X 50 cm
Source to center distance 50 cm
Source to detector distance 100 cm
Detector length 130 cm
Small example
Image pixels n =45 x 45
Detector pixels p=90
Number of view angles q =90
View angle standard deviation | § = 1.2°
Larger example
Image pixels n =135 x 135
Detector pixels p =270
Number of projection angles | g = 270
View angle standard deviation | § = 0.4°

the ASTRA toolbox [19] and “Spot Operators” [20] for matrix-free forward- and
back-projections, i.e., for multiplication with A (@) and A(0). In the simulated
CT problems arising from (1), the physical parameters are shown in Table 1.
In both examples, the distribution of the view angles is assumed to be i.i.d.
Gaussian with equidistant view angles from 0° to 360°, denoted by 8°4"9 as
mean and 62 as variance. These examples illustrate the physical case where the
measurements are acquired at equidistant view angles, but each measurement is
associated with some independent uncertainty. Note that the “small example”
has 90 view angles and standard deviation § = 1.2°, whereas the “larger exam-
ple” has 270 view angles with § = 0.4°. This is to ensure that the view angles are
unlikely to switch positions relative to each other from the added uncertainty.
In our numerical tests, we generate the measurements according to

b _ A(amachine))—(+e’ (11)
where X is either the Shepp-Logan or Grains phantom generated from AIR Tools
IT [21], and ™M denotes the actual view angles, which is a realization of
N (019 §21). Here e ~ N(0,02T), where o = 0.005] A (0™*"")x]|5/y/m. We
solve the TV minimization problem using the Chambolle-Pock algorithm in [22]
and stopping when the relative change in the objective function is below 1076.
In our method, we set the maximum iteration number K = 10 and the number
of samples Ngamp = 5000.



Tterative CT Reconstruction with Uncertain View Angles 163

We compare our results with the non-negative TV reconstruction that does
not take the uncertainty in the view angles into account, i.e.,

15 b~ AB)%)[3 + TV (), 12)

XTy = arg min
x>
where § = 8°1Y. In addition, we also show the results from the non-negative
TV reconstruction with the actual view angles ™21 which would be the
best-case scenario:

XTVoopt = arg min b — A (™M) x) |12 + ATV (x). (13)

min 53l

3.1 The Small Example

In Fig.2 we show the expected view angles 8 = 6°9'd and 3 realizations of
Tangles(0) = /\/’(0‘%‘“(17 5°1), i.e. 3 examples of gmachine The realizations are used
to generate noisy sinograms according to (11). We compare the reconstructions
xsry from our method (Algorithm 1) with the ones obtained by solving (12) and
(13). In the left column of Fig.3 we plot the relative error Ix-Xll2 of the three

lI%Il2

methods with the regularization parameter A varying from 107 to 1072. We can
see that except for large A, where the influence of the data-fitting term becomes
weak, the reconstructions from our method has lower relative errors compared
to xrv from (12). With the optimal A\ choice, which gives the smallest relative
error, the improvement by our method is significant. It shows the importance of
taking the uncertainty in the view angles into account. In the right column of
Fig. 3 we numerically show the convergence of the relative errors in our method.

In order to visually compare the reconstructions from these three methods,
in Fig.4 we show the reconstruction results for the same A values, which corre-
sponds to the optimal choice in (13). It is clear that our method can effectively
reduce the artifacts due to the uncertain view angles.

For this small example, in our method we can also compute the full covariance
C,, | x € R™*™ instead of using the approximation C,, |x introduced in Sect. 2.2.
Since the relative errors by using the full covariance are almost identical to using
the approximation, we do not show them here.
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Fig. 2. For the small experiment in Tablel. From left to right: The expected view
angles 6 = 6°19 and three realizations of Tangles(8).
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Fig. 3. For N = 45 in Table 1. Top: Shepp-Logan. Bottom: Grains. Left: Relative error
vs. regularization parameter. Right: Relative error vs. iteration number in Algorithm 1.
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Fig. 4. Reconstructions for N = 45 in Table 1. Top: Shepp-Logan. Bottom: Grains.

STV (A=3-10" TV-opt (A =310~



Tterative CT Reconstruction with Uncertain View Angles

3.2 The Larger Example

We also compute a larger example according to the parameters in Table 1. In
Fig. 5 we show a zoomed part of the expected view angles 6 as well as a realization
of Tangles(0) that is used to generate the data. In Fig.6 we show the plots of
the relative errors with different choices of A and along the iterations in our
method. In this case the difference between xv from solving (12) and Xrv_opt
from solving (13) is not as big as in the small example, and the main reason
is that the variance 42 in the view angles is much smaller. However, we can
still clearly see that our method improves the reconstruction quality in terms
of relative error. To compare the reconstruction visually, in Fig.7 we give the

reconstruction results from three methods.

000000000,

000000 0000,

o00°' %00,
o

.-"...

Fig. 5. For the larger experiment in Table 1. Left: the expected view angles 6. Right:

, o000t Smoen, |

-~ ~

a realization of mangles(0). Here we zoomed in on a part of the view angles.
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Fig. 6. For the experiment with N = 135 in Table1. Top: Shepp-Logan. Bottom:
Grains. Left: Relative error vs. regularization parameter. Right: Relative error vs. iter-

ation number in Algorithm 1.
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(A=1.33-10"*

(A=3.16-10"* STV (A=3.16-10"* TV-opt (A =3.16-10"*

Ja ATk

Fig. 7. Reconstructions for N = 135 inl Table 1. Top: Shepp-Logan. Bottom: Grains.

STV (A =1.33-10"*

TV-opt (A= 1.33-104)

Based on our tests, if we increase the image size n and keep the same number
of measurements, the quality of the reconstruction by our method gets closer to
the one from (12). The reason is that the reconstruction problem becomes more
ill-posed and therefore more difficult to deal with. In this case, we would need

a better initial guess on f‘,[,o]\x and H,[,O]\x in order to obtain a good estimate of

X. Another idea would be to update the estimate of 0 and Tangles(-) in each
iteration. We leave this to the future study.

4 Conclusion

We proposed a new iterative algorithm for the uncertain angle CT problem. The
method models the uncertainty of the view angles in the likelihood function.
We showed numerically that combining this likelihood with a strong prior such
as total variation can significantly improve the relative error and visual quality
of reconstructions. Furthermore, we showed a method for approximating the
likelihood by a block-diagonal approximation of the covariance, which leads to
an algorithm that can run on large-scale CT problems.
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