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Abstract. In this paper, we establish a connection between image pro-
cessing, visual perception, and deep learning by introducing a mathe-
matical model inspired by visual perception from which neural network
layers and image processing models for color correction can be derived.
Our model is inspired by the geometry of visual perception and couples
a geometric model for the organization of some neurons in the visual
cortex with a geometric model of color perception. More precisely, the
model is a combination of a Wilson-Cowan equation describing the ac-
tivity of neurons responding to edges and textures in the area V1 of the
visual cortex and a Retinex model of color vision. For some particular
activation functions, this yields a color correction model which processes
simultaneously edges/textures, encoded into a Riemannian metric, and
the color contrast, encoded into a nonlocal covariant derivative. Then,
we show that the proposed model can be assimilated to a residual layer
provided that the activation function is nonlinear and to a convolutional
layer for a linear activation function. Finally, we show the accuracy of
the model for deep learning by testing it on the MNIST dataset for digit
classification.

Keywords: Differential Geometry · Variational Model · Image process-
ing · Vision · Neural Network.

1 Introduction

Deep learning techniques based on artificial neural networks (ANNs) provide
state-of-the-arts results in many computer vision tasks [18]. The original goal of
the ANN approach was to solve problems in the same way as a human brain.
However, over time, attention moved to performing specific tasks, leading to de-
viations from biology. Nonetheless, some layers like the convolutional layers [25]
and the residual units [19],[20], which are at the core of some efficient ANNs,
combine linear and nonlinear operators mimicking the neuronal activity (see e.g.
[27] and references therein).
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The linear operator involved in ANNs is mainly the standard (Euclidean)
convolution operator. One of the success of the convolution operator for deep
learning tasks is, besides its simplicity which enables fast computation, its ability
to generate different types of filters, like isotropic/anisotropic and low-pass/high-
pass. Another key property satisfied by the convolution operator is the fact that
it commutes with translations, as ANNs satisfying invariance/equivariance with
respect to group transformations are desirable in many computer vision tasks
like the ones involving recognition or classification. Starting with the seminal
convolutional neural network (CNN) [25] involving the standard convolution op-
erator, ANNs enlarging the symmetry group to the Euclidean transformations
have been developed by applying the convolution on the special Euclidean Lie
group SE(2) [2] or some of its subgroups [12, 13].

Based on the following two properties of the convolution on SE(2), we are
led to propose a new operator in the context of ANNs. First, the convolution
on SE(2) is related to the interactions between neurons located at different ori-
entation columns in the area V1 of the visual cortex. However, this convolution
does not take into account the specificity of these interactions, with the pres-
ence of horizontal connections between these neurons and a function modeling
neurons activation. Then, the convolution on SE(2) requires the lifting of the
visual input from the 2D domain to SE(2). Nonetheless, no lifting is required
to reach Euclidean invariance, as this latter can be obtained by means of well-
chosen differential operators on the 2D domain. Hence, our proposal is to first,
consider a model describing the activity of a population of neurons responding
to spatial features in V1 called the Wilson-Cowan equations [29, 30, 7, 10, 14],
then to derive an operator from a 2D version of the Wilson-Cowan equations.

The main contribution of this paper is two-folds. On one hand, we estab-
lish a connection between the proposed operator and ANNs by showing that a
linear activation of the neurons yields a convolutional layer corresponding to a
polynomial of order 1 of a differential operator as in [22, 23], whereas a non-
linear activation yields a residual unit [19]. On the other hand, we establish a
connection with image processing by showing that, for some nonlinear activa-
tion function, the proposed operator is related to a variational model refining
the color correction models in [4, 1], and a linear activation yields a quadratic
relaxation of the variational model.

In Section 2, we first present a recent form of the Wilson-Cowan equations
for neurons responding to edges and textures and its main properties [10],[14].
Then, we introduce a 2D simplification of this model by making use of a cell
selectivity principle [11]. Finally, we show for some particular activation func-
tions, that the proposed 2D simplification corresponds to the gradient descent
equations of variational models for image processing refining the one in [4].
In Section 3, we improve the model developed in Section 2 by coupling the sim-
plified Wilson-Cowan equations with a model of color perception introduced in
[1] and inspired by the Retinex theory of color vision [24]. For particular activa-
tion functions, we show that the coupling model represents the gradient descent
equations of variational models refining the one in [1].
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In Section 4, we first derive an operator from the variational models developed
in Section 3 and establish a connection between this operator and ANNs. In par-
ticular, we show that a linear activation function yields an accurate convolution
operator by showing the ability of this operator to generate different types of
local filters and commute with isometries. Finally, we apply this operator in the
context of deep learning by inserting it into a simple ANN and test this latter
on the MNIST dataset for digit classification.

2 From Wilson-Cowan equations to image processing

2.1 Wilson-Cowan equations encoding the edges and textures

It has been shown by Hubel and Wiesel that there exist neurons responding
selectively to the local orientation of the visual input in the area V1 of the vi-
sual cortex [21]. The Wilson-Cowan equations [29, 30, 7, 8] describe the temporal
evolution of the mean activity of these neurons. More recently, the existence of
populations of neurons in V1 encoding the structure tensor T ∈ SPD(2,R), see
[15], and organized as a column at each cortical position has been suggested
by Chossat and Faugeras [10]. Here, SPD(2,R) denotes the cone of symmetric
positive definite matrices equipped with the affine invariant metric and corre-
sponding distance function dSPD(2,R). Based on this and inspired by the Wilson-
Cowan equations, an evolution equation describing the temporal activity of such
neurons has been proposed in [8]. Treating V1 as a planar sheet Ω, the evolution
of the mean activity a : Ω×SPD(2,R)× [0,∞)→ R of a population of cells with
cortical coordinates x ∈ R2 and structure tensor preference T can be modeled
(for low firing rates) with the following integro-differential equation (generalized
Wilson-Cowan equations)

∂a(x, T , t)
∂t

=− αa(x, T , t) + h(x, T , t)

+

∫
Ω

∫
SPD(2,R)

w((x, T ), (y, T ′))σ(a(y, T ′, t)) dT ′ dy, (1)

where α ≥ 0, σ is an activation function, h the visual input and w the synaptic
weights.

2.2 Properties of the equations.

On the synaptic weights. Following the decomposition of the synaptic weights
in the original Wilson-Cowan equations into vertical and horizontal terms [9],
Faye and Chossat [14] suggested that the synaptic weights in (1) are of the form

w((x, T ), (y, T ′)) = wver(dSPD(2,R)(T , T ′)) δ(x−y)+λwκhor((x, T ), (y, T ′))(1−δ(x−y)),
(2)

which are split into vertical connections wver between neurons in the same col-
umn and horizontal connections wκhor between neurons in different columns.
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Here, λ is a trade-off parameter whose sign indicates whether the horizontal
connections have a net excitatory or inhibitory effect. In particular, they pro-
pose the horizontal connections of the form

wκhor((x, T ), ( y, T ′)) = Kρ

(√
(x− y)T (I2 + κT )(x− y)

)
×K(dSPD(2,R)(T , T ′)),

(3)
where Kρ is a Gaussian kernel of variance ρ, κ ≥ 0, and K is an even positive
function of compact support.

Equivariance with respect to group transformations. One of the key
property of the original Wilson-Cowan equations is their equivariance with re-
spect to E(2) transformations (assuming that h is 0) [7]. Faye and Chossat [14]
show that, under some action of E(2) on R2 × SPD(2,R), the Wilson-Cowan
equations (1) satisfy an E(2)-equivariance as well. Moreover, in the limit case
where κ = 0, they point out that the equation admits a GL(2,R) symmetry.

On the activation function. As mentioned by Wilson and Cowan [30], the
qualitative properties of solutions of the original Wilson-Cowan equations do not
depend on the particular form of the activation function σ and it is likely that σ
will differ across the neocortex. Then, assuming that the same property holds for
the Wilson-Cowan equations (1), and following the way Bertalmı́o and Cowan
rewrote the activation function of the original Wilson-Cowan equation in [6], we
replace the term σ[a(y, T ′, t)] by σ[f(a(x, T , t), a(y, T ′, t))] for some real-valued
function f .

The activation function σ is often assumed to be nonlinear and having a
specific form, i.e. it is taken as a non-decreasing function such that σ(0) = 0,
saturating at the infinity, and shaped as a sigmoid. In this context, a linear
function can be seen as the limit of such a function when increasing its stiffness,
and linear activations have actually been considered as well (see e.g. [28]).

2.3 Connection to image processing models

Simplifying the Wilson-Cowan equations through cell selectivity. In
[11], the visual cortex is abstracted as R2×S1, so that the columns only encode
the orientations. Here, it is supposed that the simple cells sensitive to the orien-
tation of the gradient of the visual input are maximally activated and selected.
Assuming that the same property holds for the columns encoding edges and
textures, the cell sensitives to the structure tensor Th of the visual input h are
maximally activated and selected at each cortical position.

Together with the rewriting of the activation function aforementioned, it
yields the following simplified Wilson-Cowan equation

∂a(x, t)

∂t
= −αa(x, t) + h(x, t) + λ

∫
Ω

w(x, y)σ[f(a(x, t), a(y, t))] dy, (4)
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Fig. 1. Contrast modification model (9). From left to right: Result of the model for
λ < 0 - Original image - Result of the model for λ > 0.

where the weight function w is of the form

w(x, y) = Kρ

(√
(x− y)T (I2 + κTh(x)) (x− y)

)
×K

(
dSPD(2,R)(Th(x), Th(y))

)
.

(5)
This simplified Wilson-Cowan equation differs from the one in [6]. Indeed, whereas
the weight function (5) encodes the structure tensor of the visual input at each
cortical position, the simplification in [6] produces weights of the form

w(x, y) = Kρ(‖x− y‖). (6)

where ‖ · ‖ stands for the Euclidean vector norm.

Image restoration model with a nonlinear activation function. Assum-
ing in the following that the weight w is symmetric, the input h is constant in
time, α = 1, and the activation function is of the form

σ[f(a(x, t), a(y, t))] = sε(w(x, y)[a(x, t)− a(y, t)]),

where sε is a differentiable approximation of the sign function, the evolution
equation (4) can be seen as the gradient descent equation of a differentiable
approximation of the variational model

arg min
a

1

2

∫
Ω

(a(x)− h(x))
2
dx− λ

2

∫
Ω2

w(x, y)| a(y)− a(x)| dx dy. (7)

Note that the weight (5) can be symmetrized in a straightforward way if we
replace Th(x) by (Th(x) + Th(y))/2 in the first term.

For w of the form (6), we recover the variational model in [4], which realizes
contrast enhancement for λ > 0 and contrast reduction for λ < 0 provided that
the variance ρ is large.

Image restoration model with a linear activation function. Assuming
that the activation function is of the form

σ[f(a(x, t), a(y, t))] = w(x, y)[a(x, t)− a(y, t)],
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the evolution equation (4) corresponds to the gradient descent of the following
variational problem

arg min
a

1

2

∫
Ω

(a(x)− h(x))
2
dx− λ

2

∫
Ω2

w2(x, y)( a(y)− a(x))
2
dx dy. (8)

In particular, for w being a normalized Gaussian kernel, the solution of the
corresponding Euler-Lagrange equations is

a = F−1
(

F(h)

(1− λ)− λF(w2)

)
(9)

where F ,F−1 are the Fourier transform and its inverse, respectively.

Fig. 1 shows the results of applying formula (9) to each channel of the input
image h in Fig. 1 (center), where the variance of the Gaussian kernel w is taken
large, and for two opposite signs of λ. As in the nonlinear case (7), the model
performs contrast enhancement for λ > 0 (Fig. 1 (right)) and contrast reduction
for λ < 0 (Fig. 1 (left)).

3 Wilson-Cowan equations and color perception models

3.1 A geometric model of color perception

Retinex models of color vision aim to reproduce the perception of the colors of a
scene inspired by psychophysical/physiological knowledge about color vision [5,
31]. They can be interpreted as the averaging of perceptual distances between
image pixels, as pointed out in [1].

Given an RGB color image u = (u1, u2, u3), the perceived image L = (L1, L2, L3)
is, according to Kernel-Based Retinex [5], given for k = 1, 2, 3, by

Lk(x) =

∫
y:uk(y)≥uk(x)

w(x, y)

[
A log

(
uk(x)

uk(y)

)
+ 1

]
dy+

∫
y:uk(y)<uk(x)

w(x, y) dy,

where w is a Gaussian kernel and A is a constant, which can be rewritten as

Lk(x) =

∫
y∈Ω

w(x, y) ζ (log[uk(x)]− log[uk(y)]) dy

=

∫
y∈Ω

w(x, y) ζ

(∫
γy,x

∇log(uk)(γy,x(t))dt

)
dy (10)

for some nonlinear function ζ, and for any path γy,x joining y to x, see [1].
The quantity ∇log(uk) can be interpreted as the perceived gradient of the image
according to Weber’s law in vision. However, Weber’s law suffers from several
limitations, and formula (10) can be improved replacing ∇ log(uk) by a more
accurate representation of the perceptual gradient.



A connection between image processing and artificial neural networks layers 7

Based on the assumption that the color constancy property comes from an
equivariance of the perceived gradient with respect to light changes, Georgiev
[16] suggested that a well-chosen covariant derivative ∇E on a vector bundle E
is a good candidate to describe the perceived gradient, due to the invariance of
this differential operator with respect to moving frame changes.

Coupling formula (10) with Georgiev’s approach yields the following expres-
sion of the perceived image

L(x) =

∫
y∈Ω

w(x, y) ζ

(∫
γy,x

∇Eγ′
y,x(t)

u(γy,x(t)) dt

)
dy

=

∫
y∈Ω

w(x, y) ζ
(
u(x)− τEy,x,γy,x

u(y)
)
dy, (11)

where τEy,x,γy,x
denotes the parallel transport map with respect to ∇E along a

path γy,x joining y to x.
Finally, let us mention that the vector bundle framework is consistent with

neurophysiological studies suggesting the existence of neurons in V1 responding
to colors and organized as a column at each cortical coordinates [21, 26], and
with the presence of horizontal connections between color columns suggested in
[3]. Indeed, the columns can be assimilated to the fibers of the bundle and the
horizontal connections between the columns to the parallel transport map.

3.2 Connection to image processing models

Section 3.1 revealed a close relation between the formula (11) describing the
perceived colors of a scene and the integral term in (4). In what follows, we
assume that the vector bundle is equipped with a metric ‖ · ‖ and a covariant
derivative ∇E compatible with this metric. Again, we assume that α = 1, h
constant in time and w symmetric.

Image restoration model with a nonlinear activation function. Assum-
ing that the activation function in (4) is of the form

σ[f(a(x, t), a(y, t))] = sε(w(x, y)[a(x, t)− τEy,x,γy,x
a(y, t)]),

where sε = z/
√
‖z‖2 + ε is the differentiable approximation of s(z) = z/‖z‖,

then the evolution equation (4) corresponds to the gradient descent equation of
a differentiable approximation of the variational problem

arg min
a

1

2

∫
Ω

‖a(x)− h(x)‖2 dx − λ

2

∫
Ω2

w(x, y)‖ τEy,x,γy,x
a(y)− a(x)‖ dx dy.

(12)
Our variational model (12) is a refinement of the one for color image correction
introduced in [1] as the weight function in this latter is of the form (6), whereas
the proposed weight function, which is a symmetrization of the weight (5), en-
codes the structure tensor, such that our model can take the edges and textures
of the image into account.
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Fig. 2. Comparison of two contrast enhancement models. From left to right: Original
image ”Giocondarioca” - Result of the model (9) - Result of the model (14).

Image restoration model with a linear activation function. Assuming
that the activation function in (4) is of the form

σ[f(a(x, t), a(y, t))] = w(x, y)[a(x, t)− τEy,x,γy,x
a(y, t)],

the evolution equation (4) corresponds to the gradient descent equation of the
variational model

arg min
a

1

2

∫
Ω

‖a(x)− h(x)‖2 dx− λ

2

∫
Ω2

w2(x, y)‖ τEy,x,γy,x
a(y)− a(x)‖2 dx dy.

(13)
In the particular case where the covariant derivative is flat and the weight w

is a normalized Gaussian kernel, the solution of the Euler-Lagrange equations is

a = P

(
F−1

(
F(P−1h)

(1− λ)− λF(w2)

))
, (14)

where P is the moving frame in which the covariant derivative is trivial.
Fig. 2 compares the model (14) for a flat covariant derivative encoding some

brightness perception phenomenon, called the Helmholtz-Kohlrausch effect (see
Sect. 5.5.2 in [1] for the expression of the moving frame P ), to its Euclidean
restriction (9). Both models are applied with the same parameter λ > 0 and the
same large variance for the Gaussian kernel. We observe that the model (14)
provides a better result as it preserves more the colors of the original image.

4 Connection to artificial neural networks

4.1 A new operator and its connections to existing layers

The proposed operator. An ANN can be described as a sequence of functions
{al}, l = 0, · · · , L, with al : Ωl −→ Rnl and operators {H l}, such that al+1 =
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H l(al). Hence, an operator in an ANN should be able to modify the dimension of
its input. Then, together with the coupling between the simplified Wilson-Cowan
equation (4) and the color perception model (11), we derive the following layer

H l(al) : x 7−→W l al(x)+Ql
∫
Ωl

w(x, y)β(w(x, y)[τE
l

y,x,γy,x
W lal(y)−W lal(x)]) dy,

(15)

where β is antisymmetric, W l ∈ End(Rnl ;Rnl+1), Ql ∈ End(Rnl+1) and τE
l

is

the parallel transport map associated to a covariant derivative ∇El.

Connection to convolutional layers. It is common to call convolutional any
layer where the operator H l is linear. Then, assuming that β = Id, the operator
(15) writes

H l(al) = W lal +Ql∆E
w

lNL

W lal, (16)

where the operator ∆E
w
lNL

: =
1

2
∇Ew

lNL
∗
∇Ew

lNL
corresponds to an extension

of the (Euclidean) nonlocal Laplacian [17] to vector bundles, called generalized
nonlocal Laplacian, with

∇Ew
NL

u : (x, y) 7−→ w(x, y)[τEy,x,γy,x
u(y)− u(x)]

being the nonlocal covariant derivative induced by a covariant derivative ∇E
and a weight function w, and

∇Ew
NL∗

η : x 7−→
∫
Ω

w(x, y)[τEy,x,γy,x
η(y, x)− η(x, y)]dy

its adjoint (see [1] for more details).
The layer (16) is a polynomial of degree 1 of a differential operator, as in the

graph convolutional networks [22] and surface networks [23] approaches.

Connection to residual layers. A residual layer is of the form

al+1 = W lal + F l(al), (17)

where the so-called residual function F l combines linear and nonlinear operators.
Then, we can observe that, for β nonlinear, the operator (15) can be consid-

ered as a residual layer where

F l = Ql∇Ew
lNL

∗
β∇Ew

lNL

W l.

4.2 Learning the parameters of the operator.

In deep learning, the parameters of the key layers of an ANN (e.g. convolutional
or residual layers) are learned on a well-chosen training data, this latter depend-
ing on the task to be performed (classification, recognition, denoising, etc). In
what follows, we show that the parameters of the operator (15) have to satisfy
some constraints in order for this operator to be consistent in the context of
deep learning.
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Avoid Overfitting. One of the main constraint when designing an ANN for
deep learning is to avoid overfitting, as this latter makes the ANN memorize
rather than learn the training data, and which greatly affects the results on the
test data afterwards. Overfitting can occur if the number of trainable parameters
is too big. In the CNN approach [25], this problem is addressed by convolving
the signal with a spatially invariant template of small support. Then, in the
context of the operator (15), this problem can be addressed in a two-folds way:
first, by reducing the spatial support of the weight function; then, by making the

structure tensor T l and the connection 1-forms ωE
l

be constant on the whole
domains Ωl. This makes the weight function be layer dependent and of the form

wl(x, y) = Kρ

(√
(x− y)T (I2 + κT l) (x− y)

)
for some structure tensor T l, where the inner term corresponds to the distance
between x and y induced by the metric gl : = I2 + κT l.

Generate different types of local filters. It is crucial to make the key layers
of an ANN be able to generate a large variety of filters. In the CNN approach,
this is achieved by learning the template to which the signal is convolved. More-
over, the spatial invariance of the template makes the convolutional layer be
equivariant with respect to translations, and consequently makes the neural net-
work satisfy some invariance with respect to translations, which is a desirable
property in many computer vision tasks.

We claim that the operator (15) can generate a great variety of filters as well

by making the parameters T l, ωEl,Wl, Ql be trainable. For instance, the oper-
ator can be a low-pass or a high-pass filter, depending on the values of Wl and
Ql. Moreover, the metric gl determines whether the filter is isotropic (gl ≡ I2)
or anisotropic (gl 6≡ I2), and invariance with respect to the isometries of (Ωl, gl)

can be achieved for (15) of the form (16) and ∆E
w
lNL

reduced to its local form.

Finally, the parallel transport maps τE
l
make the operators H l mix the channels,

yielding new types of filters.

4.3 Experiments

We test the operator (15) for the task of digit classification on the MNIST
dataset. The experiment consists in, given an ANN well-designed for this task,
replacing the key layer in this ANN by the operator (15), and test the subsequent
ANN for three different configurations of the operator.

The ANN we consider here is inspired by the one available in https://

github.com/keras-team/keras, and stacks the following layers: 1 convolution
(32 features), 1 activation (LeakyReLU), 1 maxpooling, 1 convolution (64 fea-
tures), 1 activation (LeakyReLU), 1 maxpooling, 1 convolution (64 features), 1
activation (LeakyReLU), 1 maxpooling, 1 dropout, 1 flatten, 1 dense, 1 activa-
tion (ReLU), 1 dropout, 1 dense. Here, we consider the form (16) of the operator.
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Table. 1 shows the mean scores after 50 epochs over 10 tests for each con-
figuration of the operator, where the size of the spatial support of the weight w
is 3x3. The chosen optimizer is Adam with learning rate parameter 10−3. We
observe that the best scores are obtained when both the metric and the connec-
tion 1-form are learned, which corresponds to the most accurate configuration
in terms of visual perception.

Table 1. Mean scores of the proposed operator tested on the MNIST dataset.

Configuration of the operator Score after 50 epochs Highest score

Euclidean (g ≡ Id, ωE ≡ 0) 0.9927 0.9935 (after 39 epochs)

Vector bundle 1 (g ≡ Id, learning ωE) 0.9929 0.9938 (after 38 epochs)

Vector bundle 2 (learning g and ωE) 0.9933 0.9944 (after 39 epochs)

5 Conclusion

We showed that an operator inspired by vision neuroscience and psychophysics
connects image processing models and some layers in artificial neural networks.
In order to show the accuracy of this operator for deep learning tasks, we tested
it on a simple dataset for classification. Further work will be devoted to insert
this operator into deeper ANNs for more complex computer vision and image
processing tasks like denoising and deblurring. Moreover, the proposed geometric
framework enables to design ANNs on non-Euclidean domains in order to address
tasks involving geometric data like 3D shapes and graphs.
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