Skip to main content

Pseudodifferential Inpainting: The Missing Link Between PDE- and RBF-Based Interpolation

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11603))

Abstract

Inpainting with partial differential equations (PDEs) has been used successfully to reconstruct missing parts of an image, even for sparse data. On the other hand, sparse data interpolation is a rich field of its own with different methods such as scattered data interpolation with radial basis functions (RBFs).

The goal of this paper is to establish connections between inpainting with linear shift- and rotation-invariant differential operators and interpolation with radial basis functions. The bridge between these two worlds is built by generalising inpainting methods to handle pseudodifferential operators and by considering their Green’s functions. In this way, we find novel relations of various multiquadrics to pseudodifferential operators. Moreover, we show that many popular radial basis functions are related to processes from the diffusion and scale-space literature. We present a single numerical algorithm for all methods. It combines conjugate gradients with pseudodifferential operator evaluations in the Fourier domain. Our experiments show that the linear PDE- and the RBF-based communities have developed concepts of comparable quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM J. Appl. Math. 70(1), 333–352 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of SIGGRAPH 2000, New Orleans, LA, pp. 417–424, July 2000

    Google Scholar 

  3. Bucur, C.: Some observations on the Green function for the ball in the fractional Laplace framework. Commun. Pure Appl. Anal. 15(2), 657–699 (2016)

    Article  MathSciNet  Google Scholar 

  4. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  5. Burgeth, B., Didas, S., Weickert, J.: The Bessel scale-space. In: Olsen, O.F., Florack, L., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 84–95. Springer, Heidelberg (2005). https://doi.org/10.1007/11577812_8

    Chapter  Google Scholar 

  6. Chen, Y., Ranftl, R., Pock, T.: A bi-level view of inpainting-based image compression. In: Kúkelová, Z., Heller, J. (eds.) Proceedings of 19th Computer Vision Winter Workshop, Křtiny, Czech Republic, pp. 19–26, February 2014

    Google Scholar 

  7. Duchon, J.: Interpolation des fonctions de deux variable suivant le principe de la flexion des plaques minces. Revue française d’automatique, informatique, recherche opérationelle. Analyse numérique 10(12), 5–12 (1976)

    Article  Google Scholar 

  8. Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. J. Math. Imaging Vis. 20(3), 267–298 (2004)

    Article  MathSciNet  Google Scholar 

  9. Fasshauer, G.E., Ye, Q.: Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators. Numerische Mathematik 119(3), 585–611 (2011)

    Article  MathSciNet  Google Scholar 

  10. Felsberg, M., Sommer, G.: The monogenic scale-space: a unifying approach to phase-based image processing in scale-space. J. Math. Imaging Vis. 21(1), 5–26 (2004)

    Article  MathSciNet  Google Scholar 

  11. Franke, R., Nielson, G.M.: Scattered data interpolation and applications: A tutorial and survey. In: Hagen, H., Roller, D. (eds.) Geometric Modeling: Methods and Applications, pp. 131–160. Springer, Berlin (1991). https://doi.org/10.1007/978-3-642-76404-2_6

    Chapter  Google Scholar 

  12. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.: Image compression with anisotropic diffusion. J. Math. Imaging Vis. 31(2–3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  13. Hoeltgen, L., Setzer, S., Weickert, J.: An optimal control approach to find sparse data for Laplace interpolation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 151–164. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40395-8_12

    Chapter  Google Scholar 

  14. Hoffmann, S., Plonka, G., Weickert, J.: Discrete Green’s functions for harmonic and biharmonic inpainting with sparse atoms. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 169–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14612-6_13

    Chapter  Google Scholar 

  15. Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotechnical Lab. 26, 368–388 (1962). (in Japanese)

    Google Scholar 

  16. Iske, A.: Multiresolution Methods in Scattered Data Modelling. Lecture Notes in Computational Science and Engineering, vol. 37. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-18754-4

    Book  MATH  Google Scholar 

  17. Kozhekin, N., Savchenko, V., Senin, M., Hagiwara, I.: An approach to surface retouching and mesh smoothing. Visual Comput. 19(8), 549–564 (2003)

    Article  Google Scholar 

  18. Lehmann, T., Gönner, C., Spitzer, K.: Survey: Interpolation methods in medical image processing. IEEE Trans. Med. Imaging 18(11), 1049–1075 (1999)

    Article  Google Scholar 

  19. Madych, W.R., Nelson, S.A.: Polyharmonic cardinal splines. J. Approximation Theory 60(2), 141–156 (1990)

    Article  MathSciNet  Google Scholar 

  20. Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.: Edge-based image compression of cartoon-like images with homogeneous diffusion. Pattern Recogn. 44(9), 1859–1873 (2011)

    Article  Google Scholar 

  21. Mainberger, M., Hoffmann, S., Weickert, J., Tang, C.H., Johannsen, D., Neumann, F., Doerr, B.: Optimising spatial and tonal data for homogeneous diffusion inpainting. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 26–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24785-9_3

    Chapter  Google Scholar 

  22. Masnou, S., Morel, J.: Level lines based disocclusion. In: Proceedings of 1998 IEEE International Conference on Image Processing, . Chicago, IL, vol. 3, pp. 259–263, October 1998

    Google Scholar 

  23. Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J.: Evaluating the true potential of diffusion-based inpainting in a compression context. Signal Process. Image Commun. 46, 40–53 (2016)

    Article  Google Scholar 

  24. Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J., Bruhn, A.: Understanding, optimising, and extending data compression with anisotropic diffusion. Int. J. Comput. Vis. 108(3), 222–240 (2014)

    Article  MathSciNet  Google Scholar 

  25. Schmidt, M., Weickert, J.: Morphological counterparts of linear shift-invariant scale-spaces. J. Math. Imaging Vis. 56(2), 352–366 (2016)

    Article  MathSciNet  Google Scholar 

  26. Schönlieb, C.B.: Partial Differential Equation Methods for Image Inpainting. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  27. Stein, M.L.: Interpolation of Spatial Data - Some Theory for Kriging. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-1494-6

    Book  MATH  Google Scholar 

  28. Uhlir, K., Skala, V.: Radial basis function use for the restoration of damaged images. In: Wojciechowski, K., Smolka, B., Palus, H., Kozera, R., Skarbek, W., Noakes, L. (eds.) Computer Vision and Graphics, Computational Imaging and Vision, vol. 32, pp. 839–844. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-4179-9_122

    Chapter  Google Scholar 

  29. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  30. Yuille, A.L., Grzywacz, N.M.: A computational theory for the perception of coherent visual motion. Nature 333, 71–74 (1988)

    Article  Google Scholar 

Download references

Acknowledgement

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 741215, ERC Advanced Grant INCOVID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Augustin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Augustin, M., Weickert, J., Andris, S. (2019). Pseudodifferential Inpainting: The Missing Link Between PDE- and RBF-Based Interpolation. In: Lellmann, J., Burger, M., Modersitzki, J. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science(), vol 11603. Springer, Cham. https://doi.org/10.1007/978-3-030-22368-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22368-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22367-0

  • Online ISBN: 978-3-030-22368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics