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Abstract. Design patterns are key in software engineering, for they
capture the knowledge of recurrent problems and associated solutions
in specific design contexts. Emerging distributed computing scenarios,
such as the Internet of Things, Cyber-Physical Systems, and Edge Com-
puting, define a novel and still largely unexplored application context,
where identifying recurrent patterns can be extremely valuable to main-
stream development of language mechanisms, algorithms, architectures
and supporting platforms—keeping a balanced trade-off between gener-
ality, applicability, and guidance. In this work, we present a design pat-
tern, named Self-organising Coordination Regions (SCR), which aims to
support scalable monitoring and control in distributed systems. Specifi-
cally, it is a decentralised coordination pattern for partitioned orchestra-
tion of devices (typically on a spatial basis), which provides adaptivity,
resilience, and distributed decision-making in large-scale situated sys-
tems. It works through a self-organising construction of regions of space,
where internal coordination activities are regulated via feedback/control
flows among leaders and worker nodes. We present the pattern, provide
a template implementation in the Aggregate Computing framework, and
evaluate it through simulation of a case study in Edge Computing.

Keywords: Coordination · Distributed systems · Design patterns ·
Decentralised orchestration · Self-organisation · Edge computing

1 Introduction

Design Patterns are paramount in software engineering. They capture expert
knowledge by describing reasoned solution schemas for a well-defined class of
repeatedly occurring problems in specific contexts [8]. Patterns help harnessing
complexity by characterising systems of forces arising in a context, and strate-
gies to resolve them [1], while abstracting from implementation details, denoting
intents and properties of solutions, providing motivated guidance towards desired
configurations, and supporting documentation and team communication through
a common vocabulary [8]. Over time, several classes of patterns have been dis-
covered to assist designers and implementors of software-based systems, resulting
in catalogues of patterns, e.g., for object-oriented software [21], concurrency [40],
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messaging [25], reactive systems [44], fault-tolerant software [23] etc. Moreover,
patterns can be classified into multiple taxonomies (e.g., by level of abstraction
into architectural, design patterns, and idioms [8]), can be related to each other
(e.g., by refinement, variance, and combination [8]), and can be presented using
different formats (e.g., Alexandrian [1], GoF [21], and POSA [8]).

In this paper, we consider the context of coordination in large-scale dis-
tributed systems. Specifically, we focus on scenarios – e.g., pervasive computing,
Collective Adaptive Systems (CAS), Internet of Things (IoT), Cyber-Physical
Systems (CPS), and Edge Computing – characterised by the following forces:

– Distribution. Having distributed components leads to concurrency, lack of
global clock, and independent (and often frequent) failure or unavailability of
components [14]—with corresponding implications.

– Situatedness. Components may be logically or physically immersed into an
environment such that their location and context are relevant, since their
inputs and outputs may be limited to the surroundings.

– Heterogeneity. Components may differ by their computational capabilities,
energy requirements, and general dependability.

– Large scale. Systems may be too large to be centrally orchestrated or manually
operated.

Given the rather intense research ongoing in these contexts, their broad scope,
complexity of the challenges, and proliferation of paradigms, some catalogues
of design patterns have emerged. Relevant examples include pattern catalogues
for multi-agent architectures [24] and ensemble structures [26], bio-inspired com-
puting [20], and decentralised control [49] and coordination [17] in self-adaptive
systems. They typically work at different levels of abstractions, from principles
and high-level behaviour components to mathematically-defined evolution rules,
and do not generally provide complete solutions for the complex problem of
scalable coordination of large-scale situated systems.

Accordingly, in this paper we provide three original contributions, namely,
we: (i) present a general, decentralised coordination design pattern for parti-
tioned orchestration that aims to provide adaptivity and resilience in large-scale
situated systems; (ii) improve over the existing instances by proposing a feed-
back loop dynamically resizing partitions, to be used e.g. for load balancing; (iii)
propose a possible implementation of the pattern in the Aggregate Computing
framework [4]; and (iv) show an application of the pattern in the context of edge
computing, through a case study.

The pattern we describe finds application in several scenarios where a sparse
set of leaders is expected to collect feedback from and enact decisions for a
subset of other participants—examples include distributed sensing [12], target
counting [37], group management for target tracking [32], decentralised ser-
vice orchestration [29], self-adaptative software [49], Wireless Sensor Networks
(WSN) [19,31], robot swarm control [48], crowd tracking and steering [4,10],
peer-to-peer clouds [13], and coordination in hierarchical thing/edge/fog/cloud
environments (as explored in this paper). We call this pattern Self-organising
Coordination Regions (SCR), since it works through an internally-regulated,
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adaptive construction of regions where activity is coordinated via feedback/con-
trol flows among master and worker nodes. In other words, it leverages asym-
metry in complex coordination scenarios and accordingly proposes a tunable
trade-off between centralised and decentralised decision-making.

The rest of this paper is structured as follows, with content following roughly
the GoF pattern template form [21]. Section 2 provides context, a motivating
example and discusses related work and patterns. Section 3 presents the pattern
by providing its intent, synonyms, structure, dynamics as well as known uses,
consequences and methodological guidelines of its application. Section 4 shows an
implementation in the Aggregate Computing framework, and discusses variants.
Section 5 provides empirical evaluation. Finally, Sect. 6 concludes the paper.

2 Motivation

2.1 Motivating Scenario

Background: Edge Computing. Fog and edge computing [7,41,43] are emerg-
ing paradigms with the goal of bringing cloud-like functionality at the edge of
the network, i.e., close to end users and to where data is generated and used
(or, generally, to where computational intelligence is most needed—cf., IoT and
CPS). There are at least three cases in which this is highly desirable: (i) when
the cloud is not available, e.g., because of lack of Internet connectivity; (ii) when
the cloud is available but it cannot satisfy application requirements, because of
data privacy issues or lack of real-time guarantees due to large round-trip time to
remote data centres; (iii) when the cloud is available and suitable but it is costly,
e.g., in terms of subscription or network bandwidth. That is, edge computing is
in some cases a necessity, but in general it represents a complementary model
to cloud computing which enables a whole new set of possibilities ranging from
infrastructure-level optimisations (like exploiting idle edge devices or filtering
data before sending it to the cloud) to flexibility in service-level agreements and
resilience through decentralisation.

Case Study. As paradigmatic case study, consider a multimedia application that
requires computation over user-generated video stream and low-latency commu-
nication. Example applications are, e.g., metropolitan collaborative surveillance
[16] and multiplayer gaming. For the latter, pervasive usage of multi-view and
360-degree-view video streams is currently limited by delay intolerance and exces-
sive bandwidth usage [5]. Moreover, relevance of low-latency video processing will
likely increase in the future with advancements in mobile augmented reality tech-
nology [39]. One wants such multimedia application to execute on a smart urban
environment, where users, equipped with mobile devices (smartphones, or even
augmented-reality equipment) can move. The smart city is populated with a net-
work of static (non-mobile) edge servers, with which mobile devices can commu-
nicate. The goal is to adaptively select a subset of edge nodes (enough to sustain
the computation) to work as local leaders, gather and redirect the video streams
from user devices to one leader edge device, process the data gathered, and finally
spread the computation result back to the users.
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2.2 Problem and Forces

The SCR pattern addresses the problem of coordination in situations where:

1. heterogeneity creates asymmetry in individual capabilities, or tasks are so
complex that collaboration is essential;

2. a locality principle holds, as context is key and cost is typically proportional
to the distance between sources, processes, and users;

3. neither full centralisation nor full decentralisation in control and decision
making is possible or desirable; and

4. the environment and system structure are dynamic (e.g., due to mobility or
failure).

2.3 Related Work and Patterns

The SCR pattern recurs in a number of scientific works and proposed solutions,
and is implemented variously.

Related Patterns and Abstractions. Related catalogues of design pattern
and abstractions include [17], addressing decentralised coordination in self-
organising emergent systems; [20], covering bio-inspired patterns; [49], focussing
on decentralised control in self-adaptive systems; and [45], providing a library
of reusable components of distributed behaviour. Some patterns there presented
constitute the foundations of the current work. Indeed, the SCR pattern is a
combination of three fundamental coordination (sub-)patterns:

– Multi-leader election. In distributed systems, it is sometimes useful to break
symmetry or introduce multiple local centralisation points to simplify deci-
sion making or coordination. This pattern consists in the election of multiple
leaders to uniformly cover a logical or physical space.

– Information propagation. Communication patterns that abstract from low-
level implementation or networking details are essential in distributed sys-
tems. This pattern consists of propagating information from one or more
sources outward, independently of the underlying system structure.

– Information collection. This pattern consists of collecting information from a
set of sources into one or more sinks, still abstracting from low-level details.

In order to account for situations where devices can fail or change, coherently
to the self-organisation principle, we should consider the above patterns as con-
tinuous processes (or, at least, as processes that are reactive [34] to failure or
change). This means that information (updates) must move continuously, as a
stream (logically, and despite potential optimisations), as captured by the infor-
mation flow abstraction, defined in [18] as follows:

An information flow is a stream of information from source localities
towards destination localities and this stream is maintained and regularly
updated to reflect changes in the system. Between sources and destinations,
a flow can pass other localities where new information can be aggregated
and combined into the information flow.
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A common way to implement information flows is by activating processes that
create and maintain structures for the communication paths. One such example
is the gradient [2,15,17,33], a self-healing distributed data structure mapping
any node of the system to its hop-by-hop estimated distance from source points:
it provides an underlying carrier for controlling effective directions of propaga-
tion/collection of data flows. Information flows can be naturally expressed in the
library of [45], which fosters the definition of collective behaviour of an ensemble
of devices through a composition of self-organising patterns, drawing inspiration
from biology [20]. The aforementioned sub-patterns are “building blocks” in [4],
where are respectively called S (for Sparse-choice—i.e., a scattered selection
from the set of participating devices), G (for Gradient-cast—i.e., a multicast
diffusing information along a gradient), and C (for Converge-cast—i.e., a mul-
ticast aggregating information to a sink device).

A well-known organisational meta-pattern for self-adaptive systems is
MAPE [30]: it suggests structuring the system feedback control loop into four
components: Monitor, Analyse, Plan, and Execute. In [49], several MAPE pat-
terns are provided for organising the adaptation logic in decentralised self-
adaptive systems. These are related and operate in a similar design context,
but their focus is on internal organisation of system adaptivity rather than on
external, application design. In particular, the Regional Planning pattern [49]
consists in distributing Planning components to different “software regions” (i.e.,
loosely coupled software subsystems); there, they collect data from Analyse com-
ponents (which are fed by Monitoring components) and command Execute com-
ponents for enaction of planned adaptations. SCR subsumes Regional Planning:
it enables the design of self-adaptation control loops but goes beyond that, by
covering various assignments of responsibilities to the participants and being
directly usable for application logic as well; e.g., leaders in SCR may gather
regional data, resolve contention, or propagate events.

Known Uses. Various forms and uses of the SCR pattern can be found in
literature. In [29], SCR is used to design a decentralised service orchestration
system; there, a workflow specification is split for scalability and performance
into sub-workflows executed by multiple collaborating engines that are migrated
to different network regions based on placement analysis. In [19], SCR is applied
in the design of a WSN middleware, TCMote, where the system is organised in
(possibly hierarchical) sensor regions governed by leaders with higher capabil-
ities than the other region nodes (called motes); TCMote uses tuple channels
for one-to-many and many-to-one communication between region sensors and
the region leader in a single-hop. In the WSN middleware TS-Mid [31], tuple
space-based logical regions are used for power saving; there, regional leaders dis-
patch operations to normal nodes and transmit results to sink nodes. In [48], the
authors leverage dynamically selected, human-controlled leaders to guide robot
swarms towards goal regions. Other known uses of the pattern include distributed
sensing [12], target counting [37], group management for target tracking [32],
design of self-adaptation control loops [49] (as discussed above), crowd tracking
and steering [4,10] in opportunistic IoT, as well as peer-to-peer clouds [13].
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Fig. 1. SCR from a structural perspective—see description in Sect. 3.1. Notation:
“gateway-like” nodes denote candidate leaders (red for active ones, grey for unelected
ones); small grey squares denote relays; small grey circles denote users/workers (Color
figure online)

3 Pattern Description

Intent. Support scalable control and monitoring of a distributed system, with
resiliency to failures and dynamicity, and balancing centralisation and decentral-
isation in decision making.

Name and Synonyms

– Self-organising Coordination Regions. This reflects the decentralised nature of
this pattern, as well as its support for coordination through scoped, endoge-
nous, emergent structures and dynamics.

– Decentralised Multi-Orchestration. This is also a suitable name, as the pattern
defines a decentralised coordination strategy for injecting multiple orchestra-
tion points into a system, creating corresponding system partitions regulated
through feedback loops.

– SGCG. This name denotes the chain of aggregate programming blocks that
provides a possible implementation schema of the pattern (see Sect. 4).

3.1 Structure and Participants

Structurally, the pattern is organised as of Fig. 1. The system is a network
of nodes on which spatially extended and dynamic structures, called regions,
emerge, each “containing” a subset of devices. These components can assume at
any time one or more of the following roles:

– Candidate leader : a device eligible for leader election—even though the pat-
tern itself makes no assumption on the network structure, on an edge deploy-
ment usually candidate leaders correspond to edge servers;
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– Leader : the device responsible for obtaining information from and propagat-
ing decisions within a region;

– User (or worker): device which sends/receives information to/from the leader
of the region it is part of;

– Relay : non-user and non-candidate device participating in the computation.

Fig. 2. SCR from a dynamical perspective—see description in Sect. 3.2. Notation: solid
arrows represent required inputs or unavoidable perturbations; dashed lines denote
possible feedback loops

3.2 Dynamics and Collaborations

The pattern induces a computational behaviour organised in four phases:

1. Election of leaders. Leaders are elected from the set of candidates.
2. Formation of regions. Structures are created such that each user is assigned

to a single leader, and information can flow in both directions through proper
communication paths.

3. Information flow from users to leaders. User nodes stream data or updates
needed by leaders to achieve the system goals, and some processing can occur
en-route—examples include sensor data, local events, service requests, or feed-
back information for the assigned tasks.

4. Information flow from leaders to users. Leaders stream computation results
to all members of their managed region—it may be a decision to be enacted,
a collective view to be propagated, instructions to be assigned, and so on.

Note that these phases are only conceptually sequential: they are rather
dynamical processes that happen concurrently, are continuously revised, and
are related by input/output dependencies (see Fig. 2). Specifically, the leader
election phase can be thought as an active process black box that can react to
various perturbations to automatically revise the selection of leaders and shape
of regions; then, as regions change, the corresponding collection and propagation
processes need to adapt. Moreover, the system can be configured with feedback
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loops: information propagated by leaders may produce an effect on workers that
can subsequently get perceived by leaders through collected data.

Variants and Extensions

– Leader election with pre-established regions. In some cases, the regions must
be decided before the corresponding leaders are elected.

– Connected leaders. In some scenario, communication between leaders is
desired to allow for global, system-wide coordination that goes beyond the
needs of individual regions.

– Hierarchical organisation. The pattern can be applied recursively: a region
can be split into sub-regions governed by sub-leaders, and so on.

– Overlapping regions. Multiple instances of the pattern may be concurrently
spawned with different regions, in order to provide in each device a superim-
posed view of its various “localities”. This requires the capability to execute
some parts of the distributed coordination algorithm concurrently.

3.3 Applicability

When to Apply. Use of the SCR pattern is encouraged in any of the following:

– A large-scale situated system needs to self-organise in such a way that its
components can be monitored and coordinated according to a view larger
than local, such as in complex situation recognition.

– A balance between centralisation and decentralisation is required to support
effective decision making in large-scale, dynamic contexts.

– All or part of the information should be processed nearby the users, because
of resource constraints like bandwidth, storage, energy, and so on.

– The underlying network structure is unknown, the system is open (new relays,
leader candidates and users can join and leave the system dynamically), fail-
ures are possible, or other events can dynamically change the network struc-
ture.

When Not to Apply. Adoption of the SCR pattern is discouraged (or would
lead to degenerate cases) in the following circumstances:

– Decision making can be carried out in a fully local way.
– Decision making must be entirely centralised (actually, this could be tackled

by electing a single leader, but more efficient solutions may exist for less
dynamic scenarios).

– The network structure is statically defined.
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3.4 Consequences

The SCR pattern has the following consequences:

– Hybrid decision making. Decisions are taken considering a tunable subset of
the whole system, de-facto creating a hybrid between centralised and decen-
tralised decision making.

– Sub-network isolation. Unless an extended version of the pattern is deployed,
users belonging to different regions do not participate in the same sub-system
(i.e., they do not exchange data).

– Reduced dependence from deployment and network structure. SCR creates
a sort of dynamic, adaptive network overlay structure on top of the existing
communication infrastructure. By merely organising application logic on that
overlay, the specific shape of the underlying network can be abstracted away,
allowing for easier porting to diverse setups (e.g. cloud, edge, purely P2P).

– Eventual consistency. Temporal mobility, loss of messages, and device failures,
only temporarily affect the values collected in leaders, and hence, deviation
from the actual global view.

4 Implementation

In this section, we describe some possible variants in the implementation strategy
of the four phases described in previous section (Sect. 4.1), and then provide an
example specification in the framework of Aggregate Computing (Sect. 4.2).

4.1 Implementation Issues

Election of Leaders and Formation of Regions

– Consensus strategy. Consensus on leadership may involve centralised algo-
rithms, or resort to (more challenging) algorithms for distributed and asyn-
chronous systems [42].

– Candidate leaders. In general, there could be constraints or preferences con-
cerning which nodes can be selected as leaders: coordinators are usually
preferably static, dependable nodes with significant computational and net-
work resources, and little or no power saving concern—such as edge gateways
or fog nodes. Trust could also be used to rate and therefore include/exclude
nodes from the candidate set based on observed activity [9].

– Time of election. Leaders can be elected statically (i.e., before system execu-
tion) or be dynamically reconsidered, continuously or after a delay.
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– Objectives. The goal is usually a configuration of leaders that must be valid
or optimised with respect to a particular property—e.g., uniformity in spa-
tial coverage (as of a smart city environment) or balancing of load (tasks,
workers).

– Adaptivity and resilience. A new leader election process must be activated
when the current leader configuration gets invalidated. E.g., this could happen
due to mobility, change of load, or failure of some leader.

Information Spreading

– Gossip. One way to implement spreading of information is through gossip pro-
tocols [6], which are suitable for letting information flow from leaders to users
under the condition that the generated information is monotonic (namely, it
can only change in a single direction). Whenever such an assumption does not
hold, gossip algorithms should get periodically reset (or overlapping replicates
of the algorithm should execute in parallel [36]).

– Gradient-based information cast. A class of algorithms for distributed infor-
mation spreading is rooted on the idea of carrying information along with a
monotonically-increasing (logical or physical) distance from the information
source. This is suitable both for generating regions once leaders are elected
(by selecting the closest leader) and for propagating information from lead-
ers to users. Several implementations of the algorithm exist, ranging from
distributed adaptive Bellman-Ford [15] to advanced versions and compound
algorithms taking into account aspects like time, speed, and acceleration of
devices [2].

Information Accumulation

– Gossip. Information accumulation is generally a tougher task than informa-
tion spreading. As for spreading, accumulation can be realised by gossiping
information such that the leader is reached with messages from all nodes in
the region: however, this effectively works only in the case of small regions.

– Spanning tree techniques. A more scalable technique is based on building a
spanning tree over the network (locally selecting as parent the closest neigh-
bour to the source), then accumulating along such tree towards the leader.
Spanning trees, however, are highly fragile to changes in the network: disrup-
tion and creation of links may lead to different configurations, making naive
versions of this algorithm unsuitable for mobile scenarios.

– Multi-path techniques. Multi-path techniques aggregate information along the
source using multiple spanning trees rather than a single one. They are usually
more robust to changes in the network structure, but take more time to
converge in case of stable networks [45].
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4.2 Sample Code

We propose an implementation draft for the pattern in the paradigm of aggregate
computing [4,46]—used in next section as a basis for evaluating a smart city case
study. The reason for this choice is rooted in the rather straightforward mapping
between the sub-patterns of SCR and the building blocks available in existing
aggregate computing languages, which allow for a concise implementation.

Background: Computational Fields and Aggregate Computing [4,46].
Aggregate computing is founded on the idea of programming systems from a
global perspective, declaratively [47], by functional manipulation of (computa-
tional) fields data structures—time-evolving maps from devices to values. The
field calculus [3,46] is the formal, universal, minimal language for functionally
composing and manipulating fields, based on which domain-specific languages
(DSL) like ScaFi [12] and Protelis [38] have been introduced to specify, simulate
and run self-organising behaviours and collective coordination logic.

In the field calculus, a program describes a collective behaviour by neglect-
ing the single-device viewpoint. However, the operational semantics [3] defines
how the single device can “continuously” process the program and sustain the
overall system behaviour, by cyclic steps encompassing: (i) assessment of a local
context (previous state, environment perception, collection of input messages
received so far); (ii) interpretation of the aggregate program against such a con-
text (producing a new state, messages to be sent, and actions to be executed);
(iii) execution of actions and spread of messages to neighbours.

Pattern Implementation Schema. In ScaFi, a Scala-internal DSL for aggre-
gate programming, the pattern can be encoded as follows1 (for the implementa-
tion of the sub-patterns in ScaFi and details on the syntax, refer to [11]) (Fig. 3):

class SCR extends AggregateProgram with BlockG with BlockC with BlockS {

def main = {

// selects a field of leaders , with at least grain distance

val leader = branch(isCandidate) { S(grain) } { false }

// creates a gradient from leaders based on a given metric

val potential = distanceTo(leader , metric)

// gathers localInput values towards leaders by aggregation

val convergeCast = C(potential , localInput , aggregationFun)

// on leaders , takes a local decision based on received data

val decision = decisionMaking(leader , convergeCast)

// broadcast decisions and take action

val divergeCast = G(leader , metric, decision)

localAction(divergeCast)

}

}

1 Purple symbols are non-primitive aggregate building blocks, grey symbols are con-
figuration parameters, and bold symbols denote methods for local activity to be
tailored to the application.
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Fig. 3. A snapshot of the simulation in execution. Edge servers are depicted as square
nodes, users as circular nodes. Leaders are black, big squares; unelected leaders (work-
ing as relays) are smaller, greyed squares. The colour of the circular dot identifies the
id of the region assigned to that node (Color figure online)

5 Evaluation

In this section, we present an example implementation of the pattern in the
context of smart cities and edge computing (as introduced in Sect. 2.1) and
evaluate it by simulation to reveal its intrinsic self-organisation character.

5.1 Scenario Description

We consider a scenario of multiple edge servers (specifically, 126) in the centre
of the Italian city of Cesena, all participating in the system as leader candidates.
Their positions form an irregular grid, and vary on different simulation runs. We
dynamically select a subset of these leader candidates to work as leaders, and let
the others participate in the system as relays. More precisely, the edge servers
elect a leader for every region of 200 m in radius, competing using the S building
block (namely, breaking symmetry using a device local id, and favouring already
established leaders if in a proper range).

The goal of the system is to collect data streams generated by users, aggregate
it, and diffuse to the whole region the number of streams being processed. Users
are modelled as devices moving along roads open to pedestrian traffic (data
obtained from OpenStreetMap [22]) at a constant speed of 1.4m

s . Bidirectional
communication is considered established between users and edge servers, and
among edge servers, if physical distance is within WiFi range (100 m). Users do
not directly communicate with each other. In our experiment, we let the system
run for 10 simulated minutes, then we simulate a disruptive event: elected leaders
fail with probability ρ—e.g. as would happen due to a city-wise power shortage.
After this event, we simulate 10 further minutes of system evolution.
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Table 1. Free variables for the scenario in exam

Name Description Values

u Active user devices count [50, 100, 200, 500, 1000]

α Backoff algorithm parameter [0, 10−3, 10−2, 10−1, 1]

ρ Probability for a leader to shut down after 10 min [0, 0.25, 0.5, 0.75, 1]

fb Determines whether the feedback loop is enabled [true, false]

Table 2. Measures for the case study

Name Description Unit

E of feedback
adjustment

Mean of the feedback adjustment for every leader. It
measures how much the radius of the coordinated region is
extended. Lower values indicate bigger regions

m

σ of feedback
adjustment

Standard deviation of the feedback adjustment for every
leader. It is an indication of how much the radius of the
coordinated region varies among leaders. Higher values
indicate higher disparity in such values, meaning that the
feedback system is altering the region sizes more intensively

m

∑
of clients per

edge server
Overall number of users served. The value should ideally
match the number of users in the system. Higher values
indicate streams being processed by multiple leaders (due to
users changing region), lower values indicate non-served users

users

σ of clients per
edge server

Standard deviation of number of users served by each leader.
Indication of load balancing. Higher values indicate that
more computational capacity is required for some leaders
w.r.t. others. The lower, the better balanced is the load

users

We compare two implementations of the SCR pattern, a classic one (as
described in Sect. 4) and a version with a feedback loop. In the latter, leaders try
to coordinate and resize their regions in the attempt to cover approximately the
same number of users, so as to reduce disparities in elaboration load that would
cause slowdowns on overloaded edge servers. We implement self-organising adap-
tation of region size by feeding the information on the number of served users
back to the leader, and using it to dynamically change the region size (the more
users, the smaller the region), competing with other leaders. In order to prevent
sharp oscillations of the region sizes, with possible resonance phenomena, we
don’t feed the served user count back to the algorithm input directly, but we
filter it using an exponential backoff (a low pass filter), namely, the feedback
value is αut + (1 − α)ut−1, where ut is the count of served users at time t.

We first evaluate good values for α in our scenario, by looking at how different
values affect the size of regions and their stability. We then measure performance
and resilience for both the base and the optimal-α versions of the SCR pattern
varying the number of users and ρ, and observe the number of users served
in total and by each edge server. A summary of the free variables for the case
study is given in Table 1; measures are instead summarised and explained in
Table 2.
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Fig. 4. Evaluation of the backoff parameter. Values are averaged along all values of u
and ρ. Not considering new values (α = 0) has a similar effect to disabling feedback
entirely. Plugging the feedback directly, without filtering, makes the system oscillate.
Other values show how α tunes the trade-off between reactivity and stability, with
α = 0.01 both smooth and with an impact on the system comparable to α = 0.1

The pattern has been implemented in Protelis [38], and simulations have been
performed using Alchemist [35]. We executed 100 replicas of the experiment for
each configuration in the cartesian product of the parameters values, varying
displacement of edge devices, initial position of users and their waypoints, and
execution times of devices. Data has been processed using Python xarray [27] and
matplotlib [28]. The experiments include a reference implementation of the SCR
pattern, they are entirely open-sourced, automated, and reproducible using the
instructions provided in a publicly accessible repository2. Confidence intervals
are not pictured in charts reported on this paper, but can be obtained by using
the full data and processing tools available in the aforementioned repository.

5.2 Results

We initially measure the benefits of using the feedback system and the impact
of different values for α. Results are depicted and described in Fig. 4, and show
how α = 10−2 is the best choice among the analysed values.

We then evaluate correctness and performance of the algorithm both without
and with feedback enabled (α = 10−2). Results presented in Fig. 5 show that
the system is able to serve all the users, actually serving some users twice at the
moment they cross the boundary between neighbouring regions.

Finally, we study resilience of the system to failures by analysing its behaviour
with different sudden disruptions hitting the leaders. Figure 6 shows the pattern
reaches stability in few seconds even when disruption is large, and regardless
of the feedback system. At disruption time, several nodes are not served and
several others get instead apparently overserved, as they are in an inconsistent
state and participating in multiple, quickly changing regions, with their streams

2 https://bitbucket.org/danysk/experiment-2019-coordination-dynamic-
orchestration.

https://bitbucket.org/danysk/experiment-2019-coordination-dynamic-orchestration
https://bitbucket.org/danysk/experiment-2019-coordination-dynamic-orchestration
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getting lost because of the time required to recover both regions and spanning
trees for data accumulation. The feedback system has a negligible impact on
resilience, but improves load balancing both before and after disruption.

Fig. 5. System correctness. Warm colours are results with feedback system disabled,
cold colours are results with feedback system enabled and α = 10−2. Both configu-
rations serve all the users, and actually slightly “overserve” them. This is due to the
fact that users joining a different region, have, for some time, their streams counted
also in the region they left due to network propagation and elaboration times. The
feedback system provides benefits in terms of load balancing, as depicted in the right
chart: the lower σ means lower disparity among leaders in the number of served users
(Color figure online)

Fig. 6. System resilience to disruption. Both the pattern configurations provide
resilience to disruptions. The system is able to find new leaders in few seconds even if
the whole set of previously selected leaders is shut off. The feedbacked system seems
to achieve slightly better performance for smaller disruptions, but takes more time to
stabilise in the worst case. As seen in Fig. 5, the feedbacked system achieves visible
better performance in terms of load balancing, both before and after the disruptive
event, regardless of its entity
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6 Conclusion

In this paper, we introduce Self-organising Coordination Regions, an adaptive
coordination pattern for dynamic, opportunistic scenarios where neither com-
plete centralisation nor full decentralisation of control and decision making are
possible or desirable. The pattern fits a problem of potentially growing relevance,
and it is particularly suitable for edge systems and for deploying a coordination
stance that covers more than pure locality yet without requiring any global coor-
dinator. To show applicability and benefits, we also present a case study in edge
computing, showing that the pattern is able to create semi independent coordi-
nation regions, aggregate information, and propagate results to region members.
The pattern is also easily extensible: we show, e.g., how a simple feedback mecha-
nism could be devised to improve the load balancing across different leaders. We
believe the presented pattern, along with easy implementation on the Aggregate
Computing framework and its library of reusable blocks, can streamline pro-
totype and development of a wide class of advanced coordination mechanisms,
especially in the context of edge computing.
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