
HAL Id: hal-02365496
https://inria.hal.science/hal-02365496

Submitted on 15 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

DiRPOMS: Automatic Checker of Distributed
Realizability of POMSets

Roberto Guanciale

To cite this version:
Roberto Guanciale. DiRPOMS: Automatic Checker of Distributed Realizability of POMSets. 21th
International Conference on Coordination Languages and Models (COORDINATION), Jun 2019,
Kongens Lyngby, Denmark. pp.237-249, �10.1007/978-3-030-22397-7_14�. �hal-02365496�

https://inria.hal.science/hal-02365496
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

DiRPOMS: automatic checker of Distributed
Realizability of POMSets

Roberto Guanciale1 [0000−1111−2222−3333]

KTH, Sweden robertog@kth.se

Abstract. DiRPOMS permits to verify if the specification of a distributed system
can be faithfully realised via distributed agents that communicate using asyn-
chronous message passing. A distinguishing feature of DiRPOMS is the usage of
set of pomsets to specify the distributed system. This provides two benefits: syntax
obliviousness and efficiency. By defining the semantics of a coordination language
in term of pomsets, it is possible to use DiRPOMS for several coordination mod-
els. Also, DiRPOMS can analyze pomsets extracted by system logs, when the
coordination model is unknown, and therefore can support coordination mining
activities. Finally, by using sets of pomsets in place of flat languages, DiRPOMS
can reduce exponential blows of analysis that is typical in case of multiple threads
due to interleaving. 1 2

Keywords: Pomsets · choreography · realisability · CFSMs.

1 Introduction

Choreographic approaches advocate two views of the same distributed system: a global
view that describes ordering conditions and constraints under which messages are ex-
changed, and local views that are used by each party to build their components. Here,
the global view is a specification that is realised by combination of the local systems. As
observed in [1], a source of problems is that there are some global specifications that are
impossible to implement using distributed agents in a given communication model.

DiRPOMS is a tool designed to analyze realisability of choreographies. A chore-
ography is formalized as a set of pomsets, were each pomset represents the causalities
of events in one single branch of execution. Local views are modeled via finite state
machines that communicate via asynchronous message passing. DiRPOMS checks re-
alizability by verifying two closure conditions of the input pomsets and outputs the
corresponding counterexamples:

WS-CDL

DiRPOMS

1 Demo video available at https://youtu.be/ISYdBNMxEDY
2 Tool available at https://bitbucket.org/guancio/chosem-tools/

https://youtu.be/ISYdBNMxEDY
https://bitbucket.org/guancio/chosem-tools/

244 Roberto Guanciale

The first use case of our tool is design time analysis, where an architect checks if a
choreography is realizable. In this case, violations of the closure conditions (i.e. the
counterexamples) enable to identify behaviors that are not included in the choreography
but are necessary in any distributed system that implements it (using finite state machines
and asynchronous message passing). The usage of set of pomsets allows this analysis to
be syntax oblivious, since the semantics of several existing choreographic models (i.e.
[11], [6], [8]) can be expressed using set of pomsets.

The second use case is choreography mining. In this case an analyst extracts a
hypotheses choreography from (partial) execution logs of a distributed system. Here,
violations of the closure conditions enable to identify behaviors of the distributed system
that are not included in the logs, so supplementing partial information regarding the
system under test and reducing the number of executions needed to extract a model of
the system.

The paper is organized as follows. In Section 2 we present the models for local and
global views and in Section 3 we briefly recall the theory supporting our tool. Section 4
presents some examples of faulty choreographies, which cannot be implemented using
communicating finite state machines. Section 5 shows an example of choreography
mining, where the tool is used to identify missing traces from a partial execution log.
Usage, implementation, and evaluation of the tool are presented in Sections 6, 7, and 8.

2 Local and global views of choreographies

We assume a set P of distributed participants (ranged over by A, B, etc.) and a set M of
messages (ranged over by m, x, etc.). Participants communicate by exchanging messages
over channels, that are elements of the set C = (P ×P). The set of (communication)
labels L , ranged over by l and l ′, is defined by

L =L !∪L ? where (outputs) L ! =C×{!}×M and (inputs) L ? =C×{?}×M

we shorten (A,B, !,m) as AB!m and (A,B,?,m) as AB?m. The subject of output and
input are the sender (sbj

(
AB!m

)
= A) and receiver (sbj

(
AB?m

)
= B) respectively.

Local systems are modeled in terms of communicating fine state machines [1].

Definition 1. An A-communicating finite state machine (A-CFSM) M = (Q,q0,F,→)
is a finite-state automaton on the alphabet {l ∈ L | sbj

(
l
)
= A} such that, q0 ∈ Q is the

initial state, and F ⊆ Q are the accepting states. A (communicating) system is a map S
assigning an A-CFSM to each participant A ∈ P .

Figure 1 presents a system with three participants: A, B, and C. Participant C always
sends message x to B. Participant A sends two messages to B: the first message is x or y;
the second message is always z. Participant B receives the first message from A and C in
any order, then it receives the second message of A.

A configuration of a communicating system consists of a state-map~q, which maps
each participant to its local state, and buffer-map ~b, which maps each channel and
message to the number of outputs that have been consumed. A configuration is accepting
if all buffers are empty and the local state of each participant is accepting while it is a

DiRPOMS: automatic checker of Distributed Realizability of POMSets 245

A0

A1

A2

A3

AB!x

AB!y

AB!z

AB!z

B0B1 B2

B3B4

B5

B6

AB?x AB?y

CB?xCB?x

AB?x

AB?z

CB?x

AB?y

AB?z

C0 C1
CB!x

MA MB MC

Fig. 1: A system consisting of CMFSs. Initial states are A0, B0, and C0. Accepting states
are A3, B5, and C1.

deadlock if no accepting configuration is reachable from it. The initial configuration is
the one where, for all A ∈ P ,~q(A) is the initial state of the corresponding CFSM and all
buffers are empty.

The semantics of communicating systems is defined in terms of a labeled transition
relation between configurations. Each transition models one action performed by one
machine: an output, which adds a message to a channel, or an input, which consumed
a pending message from a channel. Formally 〈~q ; ~b〉 l=⇒〈~q′ ; ~b′〉 if there is a message
m ∈M such that either (1) or (2) below holds:

1. l =AB!m, q(A) l−→ q′(A), q′(C)= q(C) for all C 6=A∈P , and~b′(AB)=~b(AB)[m 7→
~b(AB)(m) + 1]

2. l = AB?m, q(B) l−→ q′(B), q′(C) = q(C) for all C 6= B ∈ P , ~b(AB)(m) > 0 and
b′(AB) = b(AB)[m 7→ b(AB)(m)−1]

where, f [x 7→ y] represents updating of a function f in x with a value y.

Definition 2. The language of a communicating system S is the set L(S) ∈ L? of se-
quences l0 . . . ln−1 such that exist a trace labeled with l0 . . . ln−1 that start in the initial
configuration and ends in an accepting configuration.

The notion of realisability is given in terms of the relation between the language of
the global view and the one of a system of local views “implementing” it [1].

Definition 3 (Realisability). A language L ⊆ L? is weakly realisable if there is a
communicating system S such that L = L(S); when S is deadlock-free we say that L is
safely realisable.

We model the global views in terms of sets of pomsets, where each pomset models
one branch of execution.

Definition 4 (Pomsets [4]). A labelled partially-ordered set (lposet) is a triple (E ,≤,λ),
with E a set of events, ≤⊆ E ×E a reflexive, anti-symmetric, and transitive relation on
E , and λ : E → L a labelling function mapping events in E to labels in L .

A partially-ordered multi-set (of actions), pomset for short, is an isomorphism class of
lposets, where (E ,≤,λ) and (E ′,≤′,λ′) are isomorphic if there is a bijection φ : E →E ′
such that e≤ e′ ⇐⇒ φ(e)≤′ φ(e′) and λ = λ′ ◦φ.

246 Roberto Guanciale


 AB!x

AB!z

AB?x

AB?z

CB?x CB!x

 ,

 AB!y

AB!z

AB?y

AB?z

CB?x CB!x

 
Fig. 2: A set of two pomsets that represents the global view of the system of Figure 1

Pomsets allow to represent scenarios where the same communication occurs multiple
times. Intuitively,≤ represents causality; if e< e′ then e′ is caused by e. Note that λ is not
required to be injective: λ(e) = λ(e′) means that e and e′ model different occurrences of
the same action. In the following, [E ,≤,λ] denotes the isomorphism class of (E ,≤,λ),
symbols r,r′, . . . (resp. R,R′, . . .) range over (resp. sets of) pomsets, and we assume that
pomsets r contain at least one lposet which will possibly be referred to as (Er, ≤r,λr).
The projection r�A of a pomset r on a participant A ∈ P is obtained by restricting r to
the events having subject A. We will represent pomsets as (a variant of) Hasse diagrams
of the immediate predecessor relation.

A pomset is well-formed if (1) for every output AB!m there is at most one immediate
successor input AB?m, (2) for every input AB?m there exists exactly one immediate
predecessor output AB!m, (3) if an event immediately precedes an event having different
subjects then these events are matching output and input respectively, (4) ordered output
events with the same label cannot be matched by inputs that have opposite order. A
pomset is complete if there is no output event in without a matching input event.

Definition 5. Given a pomset r = [E ,≤,λ], a linearization of r is a string in L? obtained
by considering a total ordering of the events E that is consistent with the partial order
≤ , and then replacing each event by its label. The language of a pomset (L(r)) the
set of all linearizations of r. The language of a set of pomsets R is simply defined as
L(R) =

⋃
r∈RL(r).

The set of pomsets of Figure 2 represents the global view of the system of Figure 1,
i.e. the two views have the same language. The two pomsets represents two different
scenarios (i.e. branches): in the left scenario A sends x, in the right scenario A sends y.

3 Realisability conditions

Our tool uses the verification conditions for realisability identified in [5]. These condi-
tions requires to introduce the following definitions.

Definition 6 (Inter-Participant Closure). Let (rA)A∈P be the tuple where rA = rA�A
for all A ∈ P . The inter-participant closure �((rA)A∈P) is the set of all well-formed pom-
sets [

⋃
A∈P ErA , ≤I ∪

⋃
A∈P ≤rA ,

⋃
A∈P λrA] where ≤I⊆ {(eA,eB) ∈ ErA ×ErB ,A,B ∈

P
∣∣ λrA(e

A) = AB!m,λrB(e
B) = AB?m}.

The inter-participant closure takes one pomset for every participant and generates all
“acceptable” matches between output and input events. We use the following tuple of

DiRPOMS: automatic checker of Distributed Realizability of POMSets 247

pomsets (rA,rB) to illustrate the inter-participant closure.

rA =



AB!x

e1 e2

AB!x AB!x

e3 e4


rB =



AB?x

e5 e6

AB?x

AB?x

e7


Pomset rA represents a fork while pomset rB represents a join. The inter-participant
closure of (rA,rB) consists of four well-formed pomsets:

AB!x

e1 e2

AB!x AB!x

e3 e4

AB?x

e5 e6

AB?x

AB?x

e7





AB!x

e1 e2

AB!x AB!x

e3 e4

AB?x

e5 e6

AB?x

AB?x

e7





AB!x

e1 e2

AB!x AB!x

e3 e4

AB?x

e5 e6

AB?x

AB?x

e7





AB!x

e1 e2

AB!x AB!x

e3 e4

AB?x

e5 e6

AB?x

AB?x

e7


Definition 7 (More permissive relation). A pomset r′ is more permissive than pomset
r, written r v r′, when Er = Er′ , λr = λr′ , and ≤r⊇≤r′ .

The more permissive relation guarantees language inclusion, i.e. if r v r′ then L(r)⊆
L(r′).

Definition 8 (Prefix pomsets). A pomset r′ = [E ′,≤′,λ′] is a prefix of pomset r =
[E ,≤,λ] if there exists a label preserving injection φ : E ′ → E such that φ(≤′) =≤
∩(E ×φ(E ′)).

A prefix of a pomset r is a pomset on a subset of the events of r that preserves the order
and labelling of r.

The realisability conditions presented in [5] are two closure conditions, which are
formalized by the following theorem

Theorem 1. If R satisfies CC2-POM then L(R) is weak realisable, if R also satisfies
CC3-POM then its language is safe realisable, where

– CC2-POM(R), for all tuples (rA)A∈P of pomsets of R, for every pomset r ∈�((rA�A
)A∈P), there exists r′ ∈ R such that r v r′.

– CC3-POM(R), for all tuples of pomsets (r̄A)A∈P such that r̄A is a prefix of a pomset
rA ∈ R for every A, and for every pomset r̄ ∈�((r̄A�A)A∈P) there is a pomset r′ ∈ R
and a prefix r̄′ of r′ such that r̄ v r̄′.

Intuitively CC2-POM requires that if all the possible executions of a pomset cannot be
distinguished by any of the participants of R, then those executions must be part of
the language of R. Similarly, CC3-POM requires that if all partial executions cannot be
distinguished by any of the participants of R, then those executions must be a prefix of
the language of R.

248 Roberto Guanciale

4 Realisability by examples

In this section we give some examples of the problems related to implementing pomset-
based choreographers using CFSMs. Distributed choices can prevent faithful imple-
mentations in case of lack of coordination. For example, the set R1 models two branches.
Participants A and C should both send the message x or both send the message y. How-
ever, A and C do not coordinate to achieve this behaviour; this makes it impossible for
them to distributively commit to a common choice. R1 satisfies CC2-POM. However,
pomset r1, which represents the case A and C do not agree on the message to deliver, is
in the inter-participant closure of prefixes and violates CC3-POM.

 AB!x

AB!z

AB?x

AB?z

CB?x CB!x

 ,


AB!y

AB!z

AB?y

CB?y

AB!z

CB!y



 AB!y

AB!z

AB?y CB!x


R1 r1

A different problem affects R2. Here the two branches describe different orders of
the same set of events. The behaviour of A (and D) is the same in both branches: A
(resp. D) concurrently sends message x (resp. y) to B and C. The behaviours of B and C
differ: in the left branch they first receive the message from A then the one from D, in the
right branch, they have the same interactions but in opposite order. This choreography
cannot be realised since, intuitively, it requires B and C to commit on the same order of
reception without communicating with each other. Pomset r2, which captures the case
when B and C do not agree on the order of message reception, is in the inter-participant
closure and violates CC2-POM.



AB!x AB?x

DB?y DB!y

AC?xAC!x

DC?y DC!y


,


DB?y DB!y

AB?xAB!x

DC!yDC?y

AC?xAC!x






DB?y DB!y

AB?xAB!x

AC?x AC?x

DC!yDC?y


R2 r2

The last example demonstrates problems led by the usage of the same message
in the concurrent threads. The set R3: consists of a single pomset, which represents
two concurrent sub-choreographies. The usage of message x in both threads can cause
the following problem: (1) the left thread of A executes AC!l1 and AB!x; (2) after the
output BC!r2, the right thread of B executes the input AB?x, so “stealing” the message
x generated by the left thread of A and meant for the left thread of B; (3) the right thread
of B executes BC!r3. Pomset r3, which represents this case, is in the inter-participant
closure and violates CC2-POM.

DiRPOMS: automatic checker of Distributed Realizability of POMSets 249



AC!l1

BC!l2

AB?xAB!x

BC!l3

AC?l1

BC?l2

AC?l3

AC!r1 AC?r1

BC!r2

AB?xAB!x

BC!r3

BC?r2

AC?r3







AC!l1

BC!l2

AB?xAB!x

BC!l3

AC?l1

BC?l2

AC?l3

AC!r1 AC?r1

BC!r2

AB?xAB!x

BC!r3

BC?r2

AC?r3


R3 r3

5 Identifying missing execution logs for choreography mining

Choreography (and process) mining [10] consists of extracting a hypothesis choreogra-
phy from a partial execution log of a distributed system. In this section we show that
violations of the closure conditions can be used to identify behaviors of the distributed
system that are not included in the log. Therefore the closure conditions can support the
mining and testing activities.

Let the partial execution log of the system of Figure 1 contains the following traces

A log | B log | C log
−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−
AB! x ; AB! z | AB?x ;CB?x ;AB?z | CB! x
AB! x ; AB! z | CB?x ;AB?x ;AB?z | CB! x
AB! y ; AB! z | AB?y ;CB?x ;AB?z | CB! x

A choreography that precisely represents these traces is the following set of pomsets:
 AB!x

AB!z

AB?x

AB?z

CB?x CB!x

 ,

 AB!y

AB!z

AB?y

AB?z

CB?x CB!x

 
This set of pomsets satisfies CC2-POM, but it does not satisfy CC3-POM. The following
pomset is in the inter-participant closure of prefixes and violates CC3-POM: AB!y

AB!z

CB?x CB!x


This pomset represents the fact that there must be an execution of the system where A
sends y and B receives the first message from C, i.e.:

A log | B log | C log
−−−−−−−−−−−+−−−−−−−−−−−−−−−−+−−−−−−−
AB! y ; AB! z | CB?x ; . . . | CB! x

This information can be used to fix the hypothesis choreography, by enabling the traces
that are necessarily part of the behaviors of the distributed system. The set of pomsets
of Figure 2 satisfies both closure conditions and its language includes the initial partial
execution log.

250 Roberto Guanciale

6 Tool usage

DiRPROM is written in Python and provides a set of API to build and manipulate
pomsets and to check the closure conditions. The API can be invoked by any Python
development environment (in the demo video we use org-mode [9] for analyzing the
examples using literate programming).

A typical DiRPOM session starts by defining the set of pomsets modeling the chore-
ography. Pomsets can be loaded using the existing formats (including GEXF, GraphML,
and JSON), be generated by translating other choreography models, or be dynamically
generated. For example, the following snippet creates R1 as input choreography:

a choreography i s a l i s t o f pomsets
g loba l v iew = []

a pomset i s a def ined using a d i r ec ted graph
l e f t pomset o f R1
gr1 = nx . DiGraph ()
add pa i r (gr1 , A, B, n , m) creates two node ” out−n ” and ” in−n ”
labe led wi th AB!m and AB?m, connects the two events and re tu rns
the p a i r (out−n , in−n)
abx = add pa i r (gr1 , ” a ” , ” b ” , 1 , ” x ”)
cby = add pa i r (gr1 , ” c ” , ” b ” , 2 , ” x ”)
abz = add pa i r (gr1 , ” a ” , ” b ” , 3 , ” z ”)
Inpu t pomsets do not need to be t r a n s i t i v e (t r a n s i t i v e c losure
i s done i n t e r n a l l y)
gr1 . add edge (abx [1] , abz [1])
gr1 . add edge (cby [1] , abz [1])
gr1 . add edge (abx [0] , abz [0])
g loba l v iew . append (gr1)

r i g h t pomset o f R2
gr2 = nx . DiGraph ()
abx = add pa i r (gr2 , ” a ” , ” b ” , 1 , ” y ”)
cby = add pa i r (gr2 , ” c ” , ” b ” , 2 , ” y ”)
abz = add pa i r (gr2 , ” a ” , ” b ” , 3 , ” z ”)
gr2 . add edge (abx [1] , cby [1])
gr2 . add edge (cby [1] , abz [1])
gr2 . add edge (abx [0] , abz [0])
g loba l v iew . append (gr2)

The closure condition CC2-POM can be checked using

cc2c = cc2c losure (g loba l v iew) # cc2c i s the l i s t o f pomsets
cc2res = cc2pom (cc2c , g loba l v iew)

The result cc2res is a map that yields for each index i of cc2c the index of global_view
matching it or None if cc2c[i] is a counterexample. Similarly closure condition CC3-
POM can be checked using

(cc3c , p re f) = cc3c losure (g loba l v iew) # cc3c and p r e f i x are l i s t s
cc3res = cc3pom (cc3c , p re f)

DiRPOMS: automatic checker of Distributed Realizability of POMSets 251

The list pref contains the list of prefixes of the input choreography, and the result
cc3res maps each index of cc3c to an index of pref or None. The counter examples
can be rendered using:

e r r o r s = counterexamples (cc3c , cc3res)
debug graphs (er ro rs , ” output−f o l d e r ”) # generates p i c t u r e s o f e r r o r s

DiRPOM also provides a command line utility, which uses GraphML format for
input and output of pomsets. The left pomset of R1 can be defined by the following
GraphML file:

<?xml vers ion= ’ 1.0 ’ encoding= ’ u t f−8 ’ ?>
<graphml>

<key a t t r . name= ” l a b e l ” a t t r . type= ” s t r i n g ” f o r = ” node ” i d = ” d0 ” />
<graph edgedefau l t= ” d i r ec ted ”>

<node i d = ” b−2”><data key= ” d0 ”>CB?x</ data></ node>
<node i d = ” b−3”><data key= ” d0 ”>AB?z</ data></ node>
<node i d = ” b−1”><data key= ” d0 ”>AB?x</ data></ node>
<node i d = ” a−1”><data key= ” d0 ”>AB! x</ data></ node>
<node i d = ” a−3”><data key= ” d0 ”>AB! z</ data></ node>
<node i d = ” c−2”><data key= ” d0 ”>CB! x</ data></ node>
<edge source= ” b−2” t a r g e t = ” b−3” />
<edge source= ” b−1” t a r g e t = ” b−3” />
<edge source= ” a−1” t a r g e t = ” a−3” />
<edge source= ” a−1” t a r g e t = ” b−1” />
<edge source= ” a−3” t a r g e t = ” b−3” />
<edge source= ” c−2” t a r g e t = ” b−2” />

</ graph>
</ graphml>

Each GraphML must contain a key element, specifying the existence of the node attribute
label of type string. Each node has a unique identifier and a data sub-element, which
defines the node label. The following command executes the analysis of a choreography:

dirpom [i npu t] [output1] [output2] −−draw −−graphml

The parameter input specifies the path of a directory that contains one GraphML file for
each pomset of the choreography. The tool produces one GraphML file in the output1
and output2 for each violation of CC2-POM and CC3-POM respectively. Additionally,
if the --draw option is specified, the tool renders the counterexamples as .png in the
same directories.

7 Tool implementation

DiRPROM relies on the NetworkX package for graph operations. In fact, pomsets are
represented as direct labelled acyclic graphs. The tool consists of five modules:

– utils: provides export of pomsets to png and utilities to build pomsets
– pomset: provides functions to process pomsets, e.g. query lists of participants and

messages, projections per participant or message, transitive closure and reduction,
enumeration of prefixes, enumeration of linearizations

252 Roberto Guanciale

– inter_closure: implements inter-participant closure
– ccpom: generates the two closure sets and verifies the closure conditions
– dirpom: provides the command line utility

In order to demonstrate the implementation of the analyses and the internal API, we
report the implementation of CC3-POM:

def cc3c losure (graphs) :
r e t r i e v e s the l i s t o f p r i n c i p a l s i n graphs
p r i n c i p a l s = pomset . g e t a l l p r i n c i p a l s (graphs)
p r o j e c t s the inpu t graphs on p r i n c i p a l s and y i e l d s a map mapping
p r i n c i p a l s to l i s t o f ” l o c a l ” pomsets (avoids dup l i ca tes)
l o c a l t h r e a d s = pomset . g e t p r i n c i p a l t h r e a d s (graphs , p r i n c i p a l s)
l o c a l p r e f i x e s = {}
f o r p i n p r i n c i p a l s :

computes a l l p r e f i x e s o f a l l graphs i n l o c a l t h r e a d s [p]
(avoids dup l i ca tes)
l o c a l p r e f i x e s [p] = pomset . g e t p r e f i x e s (l o c a l t h r e a d s [p])

generates a l l t up les i n the product o f l o c a l p r e f i x e s
tup les = i n t e r c l o s u r e . make tuples (l o c a l p r e f i x e s)
computes the i n t e r−p a r t i c i p a n t c losure o f a l l the tup les
(avoids dup l i ca tes)
i pc = i n t e r c l o s u r e . i n t e r p r o c e s s c l o s u r e (tup les)
computes a l l p r e f i x e s o f the i npu t graphs (avoids dup l i ca tes)
p r e f i x e s = pomset . g e t p r e f i x e s (graphs)
r e t u r n (ipc , p r e f i x e s)

def cc3pom (ipc , p r e f i x e s) :
matches = {}
f o r i i n range (len (ipc)) :

matches [i] = None
f o r j i n range (len (graphs)) :

checks i f graph [j] i s more permiss ive than ipc [i]
i f (pomset . i s more permiss ive (graph [j] , i pc [i])) :

matches [i] = j
break

r e t u r n matches

8 Tool evaluation

The main primitive of NetworkX used by the tool is subgraph_is_ismorphic, which
returns true iff r1 is (label-preserving) isomorphic to a subgraph of r2. If r1 and r2 have
the same number of nodes and the predicates holds then r2 v r1.

DiRPOMS: automatic checker of Distributed Realizability of POMSets 253

impor t networkx . a lgo r i thms . isomorphism as iso
nm = iso . ca tegor ica l node match (’ l a b e l ’ , ’ ’)

def i s more permiss ive (g1 , g2) :
i f len (g1 . nodes ()) != len (g2 . nodes ()) :

r e t u r n False
m = iso . GraphMatcher (g1 , g2 , nm)
r e t u r n m. subgraph is isomorph ic ()

The complexity of finding a label-preserving graph isomorphism is in general expo-
nential in the number of events. However, since the graphs are acyclic, the complexity
can be bound to the number of concurrently-repeated actions: i.e. events that have the
same label, are unordered, and have the same number of predecessor with the same label
(e.g. AB!x in R3). If there are no concurrently repeated actions then isomorphism of
pomsetes can be checked in polynomial time with respect to the number of events.

We report the performance of our tool for the examples. The experiments have been
executed on a Intel 2.2 Ghz i7 with 16 GB of RAM. The table reports the size of the
closures, the number of counterexamples, and the processing time in milliseconds.

CC2-POM errors ms CC3-POM errors ms
R1 2 0 3 38 10 64
R2 2 1 9 100 18 340
R3 2 1 16 668 258 9297

In general the evaluation of closure conditions is fast for simple examples. However, the
number of prefixes to check in CC3-POM can be large when participant have several
concurrent threads.

One of the advantages of checking CC?-POM with respect to previous work [1] is
that the former does not require the explicit computation of the language of the family
of pomsets, which can lead to combinatorial explosion due to interleavings. In fact,
in case of concurrency, the number of prefixes is usually smaller than the number of
possible linearizations of a pomset. For example, the following pomset consists of two
independent threads, each one consisting of n sequential and distinguished events e1 e2 . . . en

e′1 e′2 . . . e′n


The closure condition in [1] requires to directly compute the language of the pomset,
which has 2n words. Instead, the prefix of the pomset are (n+1)2.

As a further example, the set of pomsets R3 contains one pomset and has two actions
that occur in both threads: AB!x and AB?x. The inter-participant closure has exactly
two pomsets: the element of R3 itself and r3. The left and right subpomsets of R3, which
represent the two threads, have 32 different linearizations, each one consisting of 8
events. Therefore the language of R3 consists of 32∗32∗28 = 218 words. On the other
hand, analyzing CC3-POM for R3 requires to check 668 prefixes.

254 Roberto Guanciale

9 Concluding remarks

Realisability of specifications is of concern for both practical and theoretical reasons.
Several works (e.g., [2,3,7]) defined constraints to guarantee soundness of the implemen-
tation of choreographies. These approaches address the problem for specific languages
and use conditions that rely on the syntactical structure of the specification. DiRPOMS
provides a language independent tool to check realisability of choreographies. Therefore,
it can be used for several choreographic models, as long as their semantics can be
expressed via set of partial orders.

There two main limitations of DiRPOMS that we plan to address. First, our tool
cannot analyze recursive choreographies, since their pomset based semantics is infinite.
Even if loops are bounded, naive loop unrolling can easily generate large sets of pomsets
which are intractable. Secondly, CC?-POM conditions are sufficient but not necessary
conditions for realisability. In fact, the same set of traces can be expressed using different
sets of pomsets by exploring different interleavings. We are currently investigating a
notion of normal forms for families of pomsets that can be used to guarantee that our
conditions are necessary.

We are also working on optimizing our tool. In particular we think that it is possible to
demonstrate equivalence between CC3-POM and a different formulation, which requires
to check only a subset of prefixes. For instance, in verifying CC3-POM for R3, the
analysis of the prefix

[
AC!l1 AC!r1

]
covers also the cases of the prefixes

[
AC!l1

]
and

[
AC!r1

]
.

References
1. Alur, R., Etessami, K., Yannakakis, M.: Inference of Message Sequence Charts. IEEE Trans.

Software Eng. 29(7), 623–633 (2003). https://doi.org/10.1109/TSE.2003.1214326
2. Bocchi, L., Melgratti, H.C., Tuosto, E.: Resolving non-determinism in choreographies. In:

ESOP. pp. 493–512 (2014). https://doi.org/10.1007/978-3-642-54833-8 26
3. Carbone, M., Honda, K., Yoshida, N.: A Calculus of Global Interaction based on Ses-

sion Types. Electronic Notes in Theoretical Computer Science 171(3), 127 – 151 (2007).
https://doi.org/10.1016/j.entcs.2006.12.041

4. Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation of functions.
In: LICS. pp. 72–85 (1987)

5. Guanciale, R., Tuosto, E.: Realisability of pomsets via communicating automata. CoRR
abs/1810.02469 (2018), http://arxiv.org/abs/1810.02469

6. Gunter, E.L., Muscholl, A., Peled, D.A.: Compositional Message Sequence Charts. In: TACAS.
pp. 496–511. Springer (2001). https://doi.org/10.1007/3-540-45319-9 34

7. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. Journal of the
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695, extended version of a paper
presented at POPL08

8. Lange, J., Tuosto, E., Yoshida, N.: From Communicating Machines to Graphical Choreogra-
phies. In: POPL15. pp. 221–232 (2015)

9. Schulte, E., Davison, D., Dye, T., Dominik, C., et al.: A multi-language computing envi-
ronment for literate programming and reproducible research. Journal of Statistical Software
46(3), 1–24 (2012)

10. Van Der Aalst, W.: Process mining: discovery, conformance and enhancement of business
processes, vol. 2. Springer (2011)

11. WSCDL Version 1.0. https://www.w3.org/TR/ws-cdl-10/ (2005)

https://doi.org/10.1109/TSE.2003.1214326
https://doi.org/10.1007/978-3-642-54833-8_26
https://doi.org/10.1016/j.entcs.2006.12.041
http://arxiv.org/abs/1810.02469
https://doi.org/10.1007/3-540-45319-9_34
https://doi.org/10.1145/2827695
https://www.w3.org/TR/ws-cdl-10/

	DiRPOMS: automatic checker of Distributed Realizability of POMSets

