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Abstract. Optical marker-based motion capture is a vital tool in appli-
cations such as motion and behavioural analysis, animation, and biome-
chanics. Labelling, that is, assigning optical markers to the pre-defined
positions on the body, is a time consuming and labour intensive post-
processing part of current motion capture pipelines. The problem can be
considered as a ranking process in which markers shuffled by an unknown
permutation matrix are sorted to recover the correct order. In this pa-
per, we present a framework for automatic marker labelling which first
estimates a permutation matrix for each individual frame using a dif-
ferentiable permutation learning model and then utilizes temporal con-
sistency to identify and correct remaining labelling errors. Experiments
conducted on the test data show the effectiveness of our framework.

Keywords: Labelling · Motion capture · Computer Animation · Deep
Learning.

1 Introduction

Optical motion capture is an important technology for obtaining high accuracy
human body and motion information. Motion capture has been widely used in
applications such as human motion analysis [20,4], producing realistic character
animation [11,14], and validation of computer vision and robotic tasks [18,10]
During the recording step, the motion of passively reflecting markers, which are
attached to the body according to a predefined marker layout, are tracked by
multiple high-resolution (spatial and temporal) infrared cameras. Then, the 3D
positions of markers are computed from 2D data recorded by each of the cali-
brated cameras by means of triangulation. The result of this process is a set of
3D trajectories listed in random order. Each trajectory represents the motion
of a single marker in terms of its 3D position over time. The first step after
recording phase is to label each trajectory, therefore assigning it to a specific
body location. This process can be very time-consuming and therefore a friction
point for many motion capture systems. Furthermore, this process is susceptible
to user errors. Labelling is more challenging when one or multiple markers are
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occluded (for simplicity we use term occlusion for any type of missing marker in
the data) over time, hence splitting the motion of these markers into multiple
trajectories. Commercial motion capture softwares have designed frameworks to
reduce the amount of manual work in this step. In these frameworks, a model can
learn the geometry of that participant’s body and applies it to label subsequent
measurements. However, they typically require manual initialization where one
or more motion capture sequences have to be labelled manually for each partici-
pant. Here, we are proposing an end-to-end, data-driven approach for automatic
labelling which does not require a manual initialization. We formulated the la-
belling at each frame as a permutation estimation where shuffled markers are
ranked based on a pre-defined order. Then, in a trajectory labelling step, tem-
poral consistency is used to correct mislabelled markers. Our framework can be
reliably run in real time that potentially results in a faster, cheaper, and more
consistent data processing in motion capture pipelines.

2 Related Works

Typically, motion capture labelling comprises of two main steps: the initialization
step, where the initial correspondences are established for the first frame, and
the tracking step which can be defined as keeping track of labelled markers in the
presence of occlusion, ghost markers, and noise. A number of approaches have
been introduced to address the tracking of manually initialized motion capture
data. Holden [8] proposed a deep de-noising feed-forward network that outputs
the joint locations directly from corrupted markers. Herda et al. [7] proposed an
approach to increase the robustness of optical markers specifically during visibil-
ity constraints and occlusions by using the kinematics information provided by a
generic human skeletal model. Yu et al. [21] proposed an online motion capture
approach for multiple subjects which also recovers missing markers. They used
the standard deviation of the distance between each pair of markers to cluster
the markers into a number of rigid bodies. Having fitted rigid bodies, they la-
belled the markers using a structural model for each rigid body and a motion
model for each marker. Loper [11] proposed a marker placement refinement by
optimizing the parameters of a statistical body model in a generative inference
process. Another group of approaches attempt to minimize user intervention by
automating the initialization step as well. Holzreiter [9] trained a neural network
to estimate the positions of sorted markers from a shuffled set. Labelling of the
markers was carried out by pairing up the estimated marker locations with the
shuffled set using the nearest neighbour search. Meyer et al. [13] estimated the
skeletal configuration by least-squares optimization and exploited the skeletal
model to automatically label the markers. They applied the Hungarian method
for optimal assignment of observation to markers while requiring each subject to
go into a T-pose to initialize the skeletal tracker. Schubert et al. [17] improved
their approach by designing a pose-free initialization step, searching over a large
database of poses. Finally, Han et al. [5] and Maycock et al. [12] proposed auto-
labelling approaches specifically designed for hands. Han et al. [5] proposed a
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technique to label the hand markers by formulating the task as a keypoint re-
gression problem. They rendered the marker locations as a depth image and fed
it into a convolutional neural network which outputs the labelled estimated 3D
locations of the markers. Then, they used a bipartite matching method to map
the labels onto the actual 3D markers. Maycock. et. al [12] used inverse kine-
matics to filter out unrealistic postures and computed the assignment between
model nodes and 3D points using an adapted version of the Hungarian method.
Although their approach was focused on hands, it can be applied to human body
motion.

3 System Overview

The first stage of our framework is a preprocessing step which is applied on
individual frames, making the array of markers invariant to spatial transforma-
tions. For the next stage, we propose a data-driven approach that avoids the
need for manual initialization by formulating automatic labelling as a permuta-
tion learning problem for each individual frame. Towards this end, we present a
permutation learning model which can be trained end-to-end using a gradient-
based optimizer. We exploited the idea of relaxing our objective function by
using doubly-stochastic matrices as a continuous approximation of permutation
matrices [1]. During the running phase, each individual frame is automatically
labelled using the proposed permutation learning model. The result is a sequence
of individually labelled frames where each trajectory might be assigned to mul-
tiple labels over time. We then evaluate temporal consistency in the resulting
trajectories and use it to identify and correct the labelling errors that occurred
during the previous stage. To correct the inconsistencies in each marker trajec-
tory, a score is computed for each candidate label using a confidence-based score
function. Then, the label with the highest score will be assigned to the marker
trajectory in a winner-takes-all scheme. Fig. 1 shows the block diagram of our
main framework.

3.1 Data Preprocessing

Prior to applying our permutation learning model, we ensure that the input data
are invariant to translation, orientation, and the size of the subjects. We first
calculated the centroid of the array of markers for each frame and then sub-
tracted from the marker locations to make each frame invariant to translation.
To make the data invariant to the orientation of the subject, we applied princi-
pal component analysis (PCA) to the cloud of the markers. We first aligned the
direction with the largest principal component with the z-axis. Then, the second
principal component was aligned to the x-axis to make the poses invariant to
the rotations around z-axis. Finally, the size of the subject was normalized by
scaling the values between 0 and 1 independently for each of the three spatial
dimensions.
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Fig. 1: An overview of our proposed framework: the input to our system is a
sequence of unlabelled (shuffled) 3D trajectories. After the preprocessing stage,
the label for each marker is estimated by applying permutation learning to each
individual frame. The resulting labelled frames are then concatenated to form
trajectories again. These trajectories are then used as input to the trajectory
labelling stage where a temporal consistency constraint is used to correct misla-
belled markers

3.2 Permutation Learning Model

The motion capture data at each frame can be represented by the 3D positions
of N markers utilized in the recording process. Labelling is defined as assigning
the 3D positions of these markers to specific, fixed body locations. This process
can be described as permuting a set of shuffled 3D elements to match a pre-
defined order. Let us define a labelled frame as X = [m1, m2, . . . , mN ]

>
, to be

an ordered array of N markers, where mi represents the 3D position of the ith
marker. Then, a shuffled frame X̃ = PX can be considered as a permuted version
of X where the markers are permuted by a permutation matrix P ∈ {0, 1}N×N .
Hence, given a shuffled frame, the original frame can be recovered by multiplying
the shuffled version with the inverse of the respective permutation matrix. It
should be noted that for a permutation matrix P , P> = P−1. Our goal in this
step is to design a trainable parameterized model fθ : XN → SN which takes
a shuffled frame X̃ as input and estimates the permutation matrix P that was
originally applied to the frame. Then, having the permutation matrix P we can
recover the sorted frame X, X = P>X̃.

The main difficulty in training a permutation learning model using back-
propagation is that the space of permutations is not continuous which prohibits
computation of the gradient of the objective function with respect to the learn-
ing parameters since it is not differentiable in terms of the permutation matrix
elements. To address this problem, Adams et al. [1] proposed the idea of utilizing
a continuous distribution over assignments by using doubly-stochastic matrices
as differentiable relaxations of permutation matrices. This approach has been
successfully exploited in other applications [16,15]. A DSM is a square matrix
populated with non-negative real numbers where each of the rows and columns
sums to 1. All N × N DSM matrices form a convex polytope known as the
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Fig. 2: An overview of our permutation learning model: In (a), the learning phase
is depicted, where the parameters of the learning module are optimized to min-
imize the cross-entropy loss. In (b), the running phase is illustrated, where the
Hungarian algorithm is applied to the outputted DSM to estimate the optimal
permutation matrix.

Birkhoff polytope BN lying on a (N − 1)2 dimensional space where the set
of all N × N permutation matrices are located exactly on the vertices of this
polytope [3]. Therefore, DSMs can be considered as continuous relaxations of
corresponding permutation matrices. We can interpret each column i of a DSM
as a probability distribution over labels to be assigned to the ith marker. Also,
all rows summing to 1 ensures the inherent structure of permutation matrices.
Accordingly, instead of mapping directly from 3D positions to the permutation
matrices, we propose to learn a model gθ : XN → WN , where WN is the set of
all N ×N DSMs. That way, computing the permutation matrix from the DSM
simply becomes a bipartite matching problem.

Our permutation learning model is composed of two main modules: the learn-
ing module and the Sinkhorn normalization (see Fig. 2). The learning module
hθ : XN → RN×N+ is the parameterized component of our model, which learns
the feature representation of the data structure from the available poses, taking
the 3D positions in each frame and outputting an unconstrained square matrix.
We implement this module as a feed-forward deep residual neural network [6].
The last dense layer consists of N×N nodes with a sigmoid activation outputting
a N ×N non-negative matrix. The learning module is illustrated in Fig. 2. One
näıve approach would be to treat the problem as a multi-class, multi-label classi-
fication task with N2 classes. However, this approach would ignore the inherent
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structure of permutation matrices with the possibility of resulting in impossible
solutions. To enforce the optimizer to avoid these erroneous solutions we need our
model to output a DSM which replicates the inherent structure of permutation
matrices. An effective way to convert any unconstrained non-negative matrix to
a DSM is using an iterative operator known as Sinkhorn normalization [19,1].
This method normalizes the rows and columns iteratively where each pair of
iteration is defined as:

Si(M) =

{
M if i = 0

TR(TC(Si−1(M))) otherwise,
(1)

where T i,jR (M) =
Mi,j∑
kMi,k

and T i,jC (M) =
Mi,j∑
kMk,j

are the row and column-wise

normalization operators, respectively. The Sinkhorn normalization operator is
defined as S∞ : RN×N+ → WN where the output converges to a DSM. We ap-
proximate the Sinkhorn normalization by an incomplete version of it with i <∞
pairs of iteration. The defined Sinkhorn normalization function is differentiable
and the gradients of the learning objective can be computed by backpropagating
through the unfolded sequence of row and column-wise normalizations, uncon-
strained matrix, and finally learning module parameters.

During the running phase, a single permutation matrix P
′

must be predicted
by finding the closest polytope vertex to the doubly-stochastic matrix D pro-
duced by the model. This can be formulated as a bipartite matching problem
where the cost matrix is C = 1 − D. As a result, we use the Hungarian algo-
rithm over the cost matrix to find the optimal solution of the matching problem.
Finally, each individual frame is sorted (labelled) by the transpose of the corre-
sponding estimated permutation. The learning and running phases are illustrated
in Fig. 2.

3.3 Trajectory Labelling

After applying our permutation learning model to all the frames in the entire
sequence, we have a sequence of individually labelled frames ordered in time.
However, the integration of sequences of individual marker locations into trajec-
tories that extend over time, which is already conducted by the motion capture
system during data collection, and the expectation that labels should remain
constant during the motion trajectory, can be used to enforce temporal consis-
tency. Each trajectory can be defined as the sequence of tracked marker locations
which ends with a gap or when recording stops. Therefore, in each motion sam-
ple, the movement of each marker might be presented in multiple trajectories
over time. We can exploit the temporal consistency of each trajectory to correct
the wrong predictions for each marker during the trajectory. One näıve idea is
to assign each trajectory to the label with the highest number of votes in the
assignment predictions for the corresponding marker. However, there are situa-
tions where a label has been assigned to a marker with the highest number of
times but with low confidence. Thus, we propose a winner-takes-all approach
where a score is computed for each label which has been assigned at least once
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to the marker in the trajectory. Then the winner with the highest score will be
assigned to the corresponding trajectory. The score for label i assigned to the
query marker j is computed as follows:

Si = |Ti|q
(∑
t∈Ti

|c(t)i,j |
p

) 1
p

(2)

where Ti is the set of frame indices at which label i has been assigned to the
query marker during its trajectory. |Ti| is the cardinality of Ti. p and q are
hyperparameters which are chosen during validation step. The second term for

p = 0 is defined as |Ti|. c(t)i,j represents the degree of confidence for assigning the

label i to the marker j at frame t. The details of c
(t)
i,j formulation are discussed

in section 3.4.

3.4 Degree of Confidence

During the running phase, each column of the outputted DSM matrix represents
a distribution over labels for the corresponding marker which can be interpreted
as the model’s belief in each label. When the model is confident in labelling all
markers, the estimated DSM matrix is close to the true permutation matrix on
the polytope surface and all of these distributions peak at the true label. On the
other hand, when a marker is hard to label, the corresponding distribution might
not have a sharp peak at the true label. We compute a degree of confidence for
each predicted label i assigned to marker j at frame t as the distance between
the model’s belief for label i and the highest belief, as follows:

c
(t)
i,j = D

(t)
i,j − max

1≤k≤N
k 6=i

D
(t)
k,j , (3)

where D(t) is the DSM matrix produced by Sinkhorn normalization at frame t.

Note that the defined c
(t)
i,j can be negative in the situations where the assigned

label and the index of maximum value in the distibution are not the same.
Therefore, we use a min-max normalized version of it (ci,t ← ci,t+1

2 ) in equation
2 to make sure its range is between 0 and 1.

4 Experiments and Evaluations

4.1 Data

To evaluate our method we used a subset of Biomotion dataset [20] recorded
from 115 individuals at 120 frames per second using Vicon system. The subset
includes four types of actions namely walking, jogging, sitting, and jumping,
where each recording contains the 3D trajectories of 41 markers. Some actions
where recorded multiple times from the same individual. On average, we used
11.5 sequences per subject for a total of 1329 sequences. The total number of
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Fig. 3: Schematic diagram of the feed-forward deep residual neural network used
for permutation learning.

frames in our dataset is around 630k frames. Data from 69 individuals were used
for training, while the data from 46 different individuals were held out for testing
and validation (23 each).

4.2 Training

The feed-forward residual network implemented as our learning module was
designed with three residual blocks where each block contains three dense layers
followed by a Leaky ReLU activation (see Fig. 3). The residual connections
showd a smoothing behavior on our optimization landscape. Hyper-parameters
of the network were chosen using a random search scheme [2].

The original training set was constructed by applying 16 random permuta-
tions on each of the 378k training frames resulting in around 6.4 million shuffled
training frames. Then, to augment the training data with the occlusions, up to 5
markers in each generated shuffled frame were randomly occluded by replacing
the 3D position values by the center location (0.5, 0.5, 0.5). Both the numbers of
occlusions and the index of occluded markers were drawn from uniform distri-
butions.

For training the model, we used an Adam optimizer with batches of size 32.
The learning rate was initially set to 5 × 10−5 and was reduced by a factor of
2 after each epoch when the validation loss increased. Our model was trained
for 100 epochs using a cross-entropy loss function. The number of Sinkhorn
iterations was set to 5 since for each additional iteration the improvement in
performance was very small while the running time was increased linearly. By
performing these 5 Sinkhorn iterations on our unconstrained matrix, the sum of
squared distances between 1 and the row- and column-wise sums of the resulting
matrix was less than 10−17.

4.3 Permutation Learning Model Evaluation

To evaluate our permutation learning model, we synthesized an evaluation set
by applying 16 random permutations followed by randomly introducing 0 to 5
occlusions into each frame of the test set. Table 1 shows the performance of
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Table 1: A comparison of performance of different models in labelling a single test
frame as an initialization step in the presence of a varying number of occlusions
in the test frames (show in each column). The first and second rows illustrates the
performance when the model is trained with and without occlusions, respectively.
Third row, shows the results when the Sinkhorn layer is replaced by a Softmax
function. It can be seen that the model trained on occlusion augmented training
set outperforms the rest when having occlusions in the frames.

Method
# Occs

0 1 2 3 4 5

Ours + Occs 97.11% 96.56% 96.13% 95.87% 95.75% 94.9%

Ours + No Occs 98.72% 94.41% 92.15% 88.75% 86.54% 85.0%

Ours w/o SN 94.03% 91.12% 88.1% 84.27% 81.62% 77.78%

Maycock et al. 83.18% 79.35% 76.44% 74.91% 71.17% 65.83%

Holzreiter et al. 88.16% 79.0% 72.42% 67.16% 61.31% 52.1%

our model in different setups and compares them with the initialization steps
proposed by Holzreiter et al. [9] and Maycock et al. [12]. First and second rows
in the table 1 show the accuracy results when the model was trained on the
original training set and the occlusion augmented set, respectively. As antici-
pated, introducing occlusions into the training data improves the results for the
test frames with occluded markers, which is usual in real scenarios. On the other
hand, when the model is trained without occlusions the performance on occluded
frames significantly decreases.

To evaluate the influence of Sinkhorn normalization, we replaced the Sinkhorn
layer with a Softmax function over the rows of outputted DSM matrix and
trained the parameters from scratch. The results for this setups are illustrated
in the third row of table 1. Without Sinkhorn normalization, the output matrix
ignores the inherent structure of permutation matrices resulting in a drop in the
labelling performance.

Having defined the degree of confidence, there is the option to only assign
a label to a marker if the corresponding degree of confidence is higher than a
threshold. Otherwise, the marker is left unlabelled. This allows the model to set
a trade-off between the precision (the fraction of correctly labelled markers over
labelled markers) and accuracy (the fraction of correctly labelled markers over
all markers). Fig. 4 shows the accuracy-precision curves. It can be seen that a
high proportion of the markers can be labelled with no error (89% when there is
no occlusion and 87.3% with an average of 2.5 markers occluded in each frame)
and leaving less than 12.7% markers to be labelled manually.

4.4 Trajectory Labelling Evaluation

So far, we looked at frames individually. In the next stage, we integrate frame-
by-frame labelling with information about the temporal order of the frames in an
effort to label continuous trajectories. To evaluate the trajectory labelling stage,
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Fig. 4: Plot of accuracy-precision curves for labelling frames without and with
occlusions. In the latter case an average of 2.5 markers was missing in each frame.

Table 2: The performance of trajectory labelling with different settings of p and
q in our scoring function.

Method
Occs Ratio

0 2% 4% 6% 8% 10%

No trajectory labelling 97.13% 96.55% 96.17% 95.91% 95.68% 94.82%

p = 0, q = 0 97.52% 96.81% 96.55% 96.09% 96.51% 95.43%

p = 1, q = 0 98.77% 98.01% 97.78% 97.32% 97.12% 96.85%

p = 1, q = −1 97.35% 96.51% 96.42% 96.06% 95.89% 94.37%

p = 2, q = −1/2 99.85% 99.54% 99.47% 99.25% 99.07% 98.76%

we used the original unlabelled test set and introduced occlusions to each motion
sample with different occlusion ratios. Here, the occlusions are introduced as gaps
with different lengths into trajectories. As a result, the motion of the marker is
fragmented into two or more trajectories. Table 2 shows the performance of
trajectory labelling with different settings of p and q in our scoring function.
When p = 0 and q = 0, this stage acts as a voting function (Si = |Ti|). Thus, the
degree of confidence does not have an influence on the final result. For p = 1 and
q = 0, the scoring function computes the sum of confidences for the frames that
the label has been assigned to the marker. Also, when p = 1 and q = −1, the
score for each label is considered as the average of confidences. Therefore, the
number of times that a label is assigned to a marker is neutralized by averaging.
Best performance in our hyper-parameters search was achieved when p = 2 and
q = −1/2. In this case, the influence of Ni on the score is less than when q = −1.
Also, since p is set to 2, the role of the high degree of confidences is more than
other settings.



Auto-labelling of Markers in Optical MoCap by Permutation Learning 11

5 Conclusion

In this paper, we presented a method to address the problem of auto-labelling
markers in optical motion capture pipelines. The essence of our approach was
to frame the problem of single-frame labelling as a permutation learning task
where the ordered set of markers can be recovered by estimating the permuta-
tion matrix from a shuffled set of markers. We exploited the idea of using DSMs
to represent a distribution over the permutations. Also, we proposed a robust
solution to correct the mislabelled markers by utilizing the temporal information
where the label with a higher confidence score is assigned to the whole trajectory.
We demonstrated that our method performed with very high accuracy even with
only single-frame inputs, and when individual markers were occluded. Further-
more, the trajectory labelling will further improve if longer gap-free trajectories
are available. Our method can be considered as both initialization and tracking.
Once the model is trained, it easily runs on a medium-power CPU at 120 frames
per second and can therefore be used for real time tracking.

6 Future Works

Our model makes fast and robust predictions and is easy to train. However, it
should be trained on a training set with the same marker layout. One solution
could be to synthesize desired training sets by putting virtual markers on the
animated body meshes from labelled data using body and motion animating
tools such as [11] and to record the motion of virtual markers.

We have addressed the problem of single-subject marker labelling, but have
not considered multi-subject scenarios. Future work could explore using clus-
tering approaches and multi-hypothesis generative approaches to separate the
subjects and apply the model on each of them.

Here, we have used a completely data-driven approach to label motion cap-
ture trajectories. The model could be further improved by integrating both an-
thropometric and kinematic information into our method where they can serve
as priors that further constrain the model.
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