Skip to main content

Cubic Curves and Cubic Surfaces from Contact Points in Conformal Geometric Algebra

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11542))

Abstract

This work explains how to extend standard conformal geometric algebra of the Euclidean plane in a novel way to describe cubic curves in the Euclidean plane from nine contact points or from the ten coefficients of their implicit equations. As algebraic framework serves the Clifford algebra Cl(9, 7) over the real sixteen dimensional vector space \(\mathbb {R}^{9,7}\). These cubic curves can be intersected using the outer product based meet operation of geometric algebra. An analogous approach is explained for the description and operation with cubic surfaces in three Euclidean dimensions, using as framework Cl(19, 16).

Soli Deo Gloria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The use of the factor one half in \(\tfrac{1}{2} (x^2 \mathbf {e}_{\infty 1} + y^2 \mathbf {e}_{\infty 2})\) is taken over from the point definition in standard CGA [6], and has importance in preserving the inner product to distance relationship of CGA in (26).

  2. 2.

    The operation \((\mathbf {x} \wedge \mathbf {I}_{\infty }^\rhd ) \lfloor \mathbf {I}_{o}^\rhd \) combining outer product and contraction is typical for projection operations in geometric algebra. For example, in Cl(3, 0) the projection of multivector \(\mathbf {a}\) onto a blade \(\mathbf {b}\) is given by \((\mathbf {a}\wedge \mathbf {b})\lfloor \mathbf {b}^{-1}\). Since \(\mathbf {I}_{\infty }^\rhd \) is a product of null vectors and has no inverse, the projection operation is completed by contracting with \(\mathbf {I}_{o}^\rhd \) from the right, see (16).

  3. 3.

    This is a strategy similarly employed by Perwass for conics [16] and in [11], and for quadrics in [3, 12]. Treating the outer product of contact points (33) as the actual algebraic representation of the geometric object in question, was essential for the formulation of rotations, translations and scaling by means of versors in [12]. We intuitively expect that this may turn out to be similar in the current cubic CGA Cl(9, 7).

References

  1. Abłamowicz, R.: Clifford algebra computations with maple. In: Baylis W.E. (eds), Clifford (Geometric) Algebras. Birkhäuser Boston (1996)

    Chapter  Google Scholar 

  2. Aragon-Camarasa, G., et al.: Clifford algebra with mathematica. In: Proceedings of the 29th International Conference on Applied Mathematics, Budapest (2015). Preprint: arXiv:0810.2412

  3. Breuils, S., Nozick, V., Sugimoto, A., Hitzer, E.: Quadric conformal geometric algebra of \(\mathbb{R}^{9,6}\). Adv. Appl. Clifford Algebras 28(35), 1–16 (2018). https://doi.org/10.1007/s00006-018-0851-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Breuils, S., Nozick, V., Fuchs, L.: GARAMON: geometric algebra library generator. In: Xambo-Descamps, S., et al. (eds.) Early Proceedings of the AGACSE 2018 Conference, 23–27 July 2018, Campinas, São Paulo, Brazil, pp. 97–106 (2018)

    Google Scholar 

  5. Buckley, A., Košir, T.: Determinantal representations of smooth cubic surfaces. Geom. Dedicata 125(1), 115–140 (2007). https://doi.org/10.1007/s10711-007-9144-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann, Burlington (2007)

    Google Scholar 

  7. Easter, R.B., Hitzer, E.: Triple conformal geometric algebra for cubic plane curves. Math. Methods Appl. Sci. 41(11), 4088–4105 (2018). https://doi.org/10.1002/mma.4597. Preprint: http://vixra.org/pdf/1807.0091v1.pdf

    Article  MathSciNet  MATH  Google Scholar 

  8. Hildenbrand, D.: Introduction to Geometric Algebra Computing. CRC Press, Taylor & Francis Group, Boca Raton (2018)

    MATH  Google Scholar 

  9. Hitzer, E.: The Creative Peace License. https://gaupdate.wordpress.com/2011/12/14/the-creative-peace-license-14-dec-2011/. Accessed 5 Apr 2019

  10. Hitzer, E., Tachibana, K., Buchholz, S., Yu, I.: Carrier method for the general evaluation and control of pose, molecular conformation, tracking, and the like. Adv. Appl. Clifford Algebras 19(2), 339–364 (2009). https://doi.org/10.1007/s00006-009-0160-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Hitzer, E., Sangwine, S. J.: Foundations of conic conformal geometric algebra and simplified versors for rotation, translation and scaling, to be published

    Google Scholar 

  12. Hitzer, E.: Three-dimensional quadrics in conformal geometric algebras and their versor transformations. Adv. Appl. Clifford Algebras 29, 46 (2019). https://doi.org/10.1007/s00006-019-0964-1. Preprint: http://vixra.org/pdf/1902.0401v4.pdf

    Article  MathSciNet  Google Scholar 

  13. Hrdina, J., Navrat, A., Vasik, P.: Geometric algebra for conics. Adv. Appl. Clifford Algebras 28(66), 21 (2018). https://doi.org/10.1007/s00006-018-0879-2

    Article  MathSciNet  MATH  Google Scholar 

  14. De Keninck, S.: ganja.js - geometric algebra for Javascript. https://github.com/enkimute/ganja.js. Accessed 03 May 2019

  15. Newstead, P.E.: Geometric invariant theory. In: Bradlow, S.B., et al. (eds.) Moduli Spaces and Vector Bundles, pp. 99–127. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9781139107037.005. https://www.cimat.mx/Eventos/cvectorbundles/newsteadnotes.pdf

    Chapter  Google Scholar 

  16. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89068-3

    Book  MATH  Google Scholar 

  17. Sangwine, S.J., Hitzer, E.: Clifford multivector toolbox (for MATLAB). Adv. Appl. Clifford Algebras 27(1), 539–558 (2017). https://doi.org/10.1007/s00006-016-0666-x. Preprint: http://repository.essex.ac.uk/16434/1/authorfinal.pdf

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Hitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hitzer, E., Hildenbrand, D. (2019). Cubic Curves and Cubic Surfaces from Contact Points in Conformal Geometric Algebra. In: Gavrilova, M., Chang, J., Thalmann, N., Hitzer, E., Ishikawa, H. (eds) Advances in Computer Graphics. CGI 2019. Lecture Notes in Computer Science(), vol 11542. Springer, Cham. https://doi.org/10.1007/978-3-030-22514-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22514-8_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22513-1

  • Online ISBN: 978-3-030-22514-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics