
Ray-Tracing Objects and Novel Surface
Representations in CGA

Sushant Achawal1[0000−0002−9847−329X], Joan Lasenby1[0000−0002−0571−0218],
Hugo Hadfield1[0000−0003−4318−050X], and Anthony

Lasenby2[0000−0002−8208−6332]

1 Cambridge University, Department of Engineering, Cambridge, UK,
{ssa43,jl221,hh409}@cam.ac.uk

2 Cambridge University, Department of Physics, Cambridge, UK,
a.n.lasenby@mrao.cam.ac.uk

Abstract. Conformal Geometric Algebra (CGA) provides a unified rep-
resentation of both geometric primitives and conformal transformations,
and as such holds great promise in the field of computer graphics [1–3]. In
this paper we implement a simple ray tracer in CGA with a Blinn-Phong
lighting model and use it to examine ray intersections with surfaces gen-
erated from interpolating between objects [7]. An analytical method for
finding the normal line to these interpolated surfaces is described. The
expression is closely related to the concept of surface principal curvature
from differential geometry and provides a novel way of describing the
curvature of evolving surfaces.

Keywords: Conformal Geometric Algebra · Ray-Tracing · Direct Object Inter-
polation · Surface Curvature.

1 Motivation and Related Work

The development of Conformal Geometric Algebra (CGA) has shown how simple
expressions can explain complex geometrical operations [1–3]. This suggests the
use of CGA in Computer Graphics, and indeed ray-tracers using CGA have
been implemented in the past [3–6]. Recent developments have explored direct-
interpolation and its use in generating surfaces and splines [7]. In this paper we
investigate some of the properties of these surfaces and their incorporation into
an experimental ray tracer.

2 Conformal Geometric Algebra, CGA

The ray-tracer used in this paper is constructed using CGA and all algebraic
expressions given will be in terms of elements of this algebra. CGA adds two
more basis vectors, e and ē, to the original basis vectors of 3D Euclidean space,
giving a complete basis for the 5D space with the following signature: e2

1 = e2
2 =

e2
3 = e2 = 1 and ē2 = −1. These extra basis vectors are used to define two null



2 S. Achawal et al.

vectors: n = e+ ē ≡ n∞ and n0 = n̄
2 = e−ē

2 . The mapping from a 3D vector, x,
to its corresponding CGA vector, X, is given by:

X = F (x) =
1

2

(
x2n+ 2x− n̄

) 1

2
≡ 1

2
x2n+ x− n0 (1)

All vectors formed from such a mapping are null. More background on CGA
can be found in [1–3].

3 Camera Model and Ray Casting

A pinhole camera model is used with the geometry shown in Figure 1. It is
defined by a rotor RMV incorporating rotation and translation that takes the
camera from the origin to its pose in space, a focal length f and two bounds
xmax and ymax on the size of the image plane.

Fig. 1. The camera is defined by a fo-
cal length, a transformation from the
origin, and bounds on the image plane.

Fig. 2. An image from the ray-tracer
containing examples of disks, spheres
and planes.

We take (i, j) = (0, 0) to be at the bottom left hand corner of the image. For
an image of width w and height h the world coordinates of the point Pij at the
centre of pixel (i, j) are given by:

Pij = RMV

[
F (fe2 −

xmax

2
(1− (2i/w))e1 −

ymax

2
(1− (2j/h))e3)

]
R̃MV (2)

We then generate the ray from the camera centre, Lij , that passes through Pij ,
via the expression

Lij = cam ∧ Pij ∧ n∞

4 Ray Tracing Evolved Circles

The intersection and reflection of lines with the other blades of CGA (planes,
disks, spheres) has already been investigated in [2, 3, 5] and we will not repeat



Ray-Tracing Objects and Novel Surface Representations in CGA 3

Fig. 3. Interpolation through circular control objects. (a) linear, (b) quadratic, (c)
cubic

those results here. Instead we will turn directly to an interesting class of surface
that arises from the direct interpolation of CGA circles [7], examples of which
are shown in Figure 3. In order to generate such a surface, a direct interpolation
is first performed between two boundary circles, C1 and C2:

Xα = αC1 + (1− α)C2 (3)

where we take α moving between 0 and 1, which moves us from C2 to C1. The
result of this interpolation is not itself a valid circle and needs to be ‘projected’
onto a blade via multiplication by a projector. This projector has only scalar and
4-vector parts and its construction is detailed in [7] and outlined in the following.
First form

Kα =

√
−XαX̃α (4)

where the square root is as defined in [8]. We then form K∗α by reversing the
sign of the 4-vector part, (K∗α = 〈Kα〉 − 〈Kα〉4), and use this to produce the
following expression for the interpolated circle:

Cα =
K∗α

K∗αKα
Xα α ∈ [0, 1] (5)

Given that these surfaces may find genuine applications in computer graphics
and CAD, it is desirable to explore their properties with respect to the ray
tracing framework. Specifically, for a given ray and scene object, the geometric
constructions of interest for lighting models are the point of intersection between
a ray and a surface, and the surface normal at that specific intersection point.

4.1 Intersection Point of Ray and Interpolated Surface

In the intersection of a ray with a circle, the meet produces the 1-vector Σ. If
Σ = 0 there are two intersections and if Σ2 = 0 there is one intersection [2] .
Therefore, to find the intersection point between our interpolated surface and a
ray L, we need to find a value of α for which:

(Cα ∨ L)2 = 〈CαL〉24 = 0



4 S. Achawal et al.

Fig. 4. Left: An image showing an example interpolated surface and a ray passing
through it, the circles in blue show the circles which have a meet squared of 0 with the
incident ray, the red circle shows where the meet squared is minimised. Right: A plot
showing the value of the meet squared as a function of alpha for this case.

Figure 4 provides a simple visual illustration of one example of the shape
of this curve as a function of α. While this example shown in the figure is par-
ticularly smooth, experiments indicate that in the general case this function is
not well approximated by low order polynomials and the roots of this function
have to be found by general non-linear root finding techniques such as a bisec-
tion search method. These general root finding methods are computationally
expensive and an analytical solution would be desirable.

4.2 Analytic Form for Normal

Given the α for which the ray intersects the surface, we have both the interpo-
lated circle, Cα, and the point of intersection X. We now use the result in [2] to
extract a tangental line LC in the plane of the circle at X:

LC = (X · Cα) ∧ n∞ (6)

We would now like an analytic form for the tangent to the surface corresponding
to evolving the surface through an increment of α, postulating that this will be
orthogonal to LC and that these two tangent vectors will then be the directions

of principal curvature. Clearly dC(α)
dα ≡ Ċα will be a key quantity in deriving this

additional tangent vector. A first observation is that the circle and its derivative
will be orthogonal to one another, i.e. Ċ ·C = 0, and that the geometric product
is minus itself under reversion, i.e. Ċ C = −C Ċ (note that here, and in what
follows, we will drop the α subscript on C). This follows from the fact that
C2 = C · C = 1 (our circles are all normalised), so that:

d

dα
(C · C) = C · Ċ + Ċ · C = 0 ,

d

dα
(C C) = C Ċ + Ċ C = 0 (7)

Since C · Ċ = −C · Ċ and they are both scalars, this tells us Ċ ·C = 0. Since
C Ċ = −C Ċ = −(C Ċ)˜, this further indicates that the product can only have



Ray-Tracing Objects and Novel Surface Representations in CGA 5

bivector parts (this is a standard construct in many areas, the most obvious
being rigid body dynamics [10]). Let us call this bivector, ΩC :

ΩC = CĊ (8)

Using the analogy with rigid body dynamics, we think of this bivector as the
angular velocity bivector of the circles as they evolve under the parameter α.
We note here that a similar construction would be possible for all other main
objects that we use in CGA, since they are all normalised to 1 or 0. The null
vectors representing points, X, have a constant ‘length’ due to normalisation,
so their ‘velocity’ can simply be found via the inner product with the angular
velocity bivector given in equation 8.

Ẋ = X ·ΩC = X · (CĊ) (9)

It can be shown that this in fact provides the tangential direction required,
so the line can be formed by:

LT = Ẋ ∧X ∧ n (10)

The fact that lines LC and LT are perpendicular can be verified by showing
that the quantity LTLC has only a bivector part (see [2] for a discussion of when
intersecting lines are orthogonal). Given these two tangent lines LC and LT , we
can construct the plane tangent to the surface at X by computing the join of the
two lines. Or, we can bypass the plane entirely and compute the surface normal
line directly as:

N = 〈LTLCI5〉3 (11)

5 Blinn-Phong Lighting Model

The ray-tracer employs the Blinn-Phong lighting model, this simple model is well
studied in the graphics literature, for more in depth information see [9]. Under
this model the intensity value for each pixel is given by the following expression:

Iλ = cλka+krIrλ+
∑
i

SifattIpiλ (cλkd (Li ·N) + ks (N ·H)
q
) ∀λ ∈ {R,G,B}

(12)
Note that traditionally the terms N , Li and H are standard 3-vectors. Since the
language of our ray-tracer is CGA, these terms in Equation 12 actually represent
the normalised lines which have the same directions as the 3-vectors which pass
through the ray-object intersection point. As all these lines are normalised such
that L2 = 1 the inner products between them will simply give the cosine of the
angles between them as in the traditional 3d vector case [10].

The normal line is required across multiple terms and is crucial to the lighting
model. This is given in CGA as N = L′−L where L′ is the reflected ray and L is
the incident ray. Note that L′ is necessarily calculated for tracing reflected rays.
The line Li specifying the direction to the ith light source is given by forming



6 S. Achawal et al.

the wedge product between the point of intersection of the incident ray and the
object, the point position of the ith light source and n∞. The half way line H
can be found by H = Li − V , where V is the line from the intersection point to
the viewer.

Fig. 5. Left: A scene composed of only an evolved surface in blue and a camera. Right:
The rendering of the scene from the camera

6 Examples of ray tracing simple objects and evolved
surfaces

Putting together the material from previous sections we can now raytrace both
simple objects and evolved surfaces. Figure 2 shows an example of simple objects,
spheres, planes and disks being rendered. Figure 5 shows an example of an
evolved surface being rendered on its own. The class of surfaces that are able to
be generated with the interpolation of circles is large and Figure 6 shows a more
unusual surface being rendered in a scene with a sphere and a plane.

7 Summary and Conclusions

In this paper we have outlined the basic workings of a CGA ray tracer that
can render geometric primitives as well as more advanced interpolated surfaces
defined by two circles and an evolution parameter, α. We have shown how the
ray-surface intersections and surface normals can be determined for these and
additionally, the analytic form of the normals for such surfaces promises to pro-
vide us with interesting future tools to relate CGA quantities with principal,
gaussian and mean curvatures, as well as other important differential geometry
concepts.



Ray-Tracing Objects and Novel Surface Representations in CGA 7

Fig. 6. Left: A scene composed of a ground plane in cyan, an evolved surface in blue
and a sphere in red. Right: The rendering of the scene from the camera.

References

1. Hestenes, D.: Old Wine in New Bottles: A New Algebraic Framework for Compu-
tational Geometry. In: Corrochano E.B., Sobczyk G. (eds) Geometric Algebra with
Applications in Science and Engineering. Birkhäuser, Boston, MA. (2001)

2. Lasenby, A., Lasenby, J. and Wareham, R.: A Covariant Approach to Geometry
Using Geometric Algebra., Cambridge University Engineering Department (2004).

3. Dorst, L., Fontijne, D. and Mann, S.: Geometric algebra for computer science: an
object-oriented approach to geometry. 1st edn. Elsevier; Morgan Kaufmann, Ams-
terdam (2007).

4. Breuils, S.,Nozick, V. and Fuchs, L.: GARAMON: GEOMETRIC ALGEBRA LI-
BRARY GENERATOR. In: AACA: Topical Collection AGACSE 2018, IMECC
UNICAM, Campinas, Brazil (2018).

5. Hildenbrand, D.: Geometric Computing in Computer Graphics using Conformal
Geometric Algebra. Computers & Graphics, Vol.29,No.5, pp. 802–810. (2005).

6. Wareham, R.J and Lasenby, J.: Generating Fractals Using Geometric Algebra. Ad-
vances in Applied Clifford Algebras 21(3):647-659. (2011).

7. Hadfield, H. and Lasenby, J.: Direct linear interpolation of conformal geometric ob-
jects. In: AACA: Topical Collection AGACSE 2018, IMECC UNICAM, Campinas,
Brazil (2018).

8. Dorst, L., Valkenburg, R.: Square Root and Logarithm of Rotors in 3D Conformal
Geometric Algebra Using Polar Decomposition. In: Guide to Geometric Algebra in
Practice. pp. 81-104. Springer, London (2011)

9. Blinn, J.: Models of light reflection for computer synthesized pictures. ACM SIG-
GRAPH Computer Graphics 11(2), 192–198 (1977)

10. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. 1st edn. Cambridge
University Press, Cambridge (2003)


