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Abstract. We address the problem of minimizing the aggregated fuel
consumption by the vessels in an inland waterway (a river) with a sin-
gle lock. The fuel consumption of a vessel depends on its velocity and
the slower it moves, the less fuel it consumes. Given entry times of the
vessels into the waterway and the deadlines before which they need to
leave the waterway, we decide on optimal velocities of the vessels that
minimize their private fuel consumption. Presence of the lock and pos-
sible congestions on the waterway make the problem computationally
challenging. First, we prove that in general Nash equilibria might not
exist, i.e., if there is no supervision on the vessels velocities, there might
not exist a strategy profile from which no vessel can unilaterally devi-
ate to decrease its private fuel consumption. Next, we introduce simple
supervision methods to guarantee existence of Nash equilibria. Unfortu-
nately, though a Nash equilibrium can be computed, the aggregated fuel
consumption of such a stable solution is high compared to the consump-
tion in a social optimum, where the total fuel consumption is minimized.
Therefore, we propose a mechanism involving payments between ves-
sels, guaranteeing Nash equilibria while minimizing the fuel consumption.
This mechanism is studied for both the offline setting, where all infor-
mation is known beforehand, and online setting, where we only know the
entry time and deadline of a vessel when it enters the waterway.

Keywords: Lock scheduling · Congestions · Social welfare ·
Mechanism design · Online scheduling

1 Introduction

The high fuel prices, a congested road network and the increasing demand for
transport due to globalization put a high pressure on the existing transportation
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network, especially road transport. The growing sense of resource scarcity and
climate change motivates companies to rethink their logistical operations and, if
possible shift towards a more sustainable transport mode. In comparison to other
transportation modes, the use of barges is more sustainable (less greenhouse gas
emission) and relatively cheap (due to economies of scale). Moreover, as a single
barge can replace over 100 trucks, increased use of the water network is likely
to reduce congestion and the number of accidents on the road network. The
Netherlands, located around the mouth of multiple important European rivers,
has a dense network of over 4600 km of navigable inland waterways [2], on which
36% of all freight transport (in tonne-kilometre) takes place [3].

Besides longer travel times, mainly due to the relatively low density of the net-
work, the high uncertainty in arrival time is one the major drawbacks of freight
transport over inland waterways. This uncertainty is caused by the presence of
many river obstacles, such as low bridges, narrow river segments, harbors and
locks, which gives rise to unexpected congestion and waiting time. This requires
the skipper, the person in charge of the boat, to increase the speed afterwards
to guarantee an on-time arrival at the destination. However, the operational
cost for the skipper is largely determined by the fuel consumption, which is
related directly to the required power and, therefore, the speed of the vessel.
The required speeding up results therefore in a direct increase of operational
costs for the skipper.

In this paper, we investigate how coordination and scheduling of all movement
around these river obstacles can help to reduce congestion and waiting times,
and therefore increase the efficiency of inland waterway transport. Moreover,
by optimizing a recommended speed for each barge between two consecutive
obstacles, one can control the arrival times of the vessels at each obstacle, guar-
anteeing the minimal throughput time and at the same time the minimal total
fuel consumption. For a single lock, the strategy of reducing the speed of the
vessel to avoid waiting time has resulted in significant economic benefits [14].

2 Literature Review

Lock Scheduling. Existing research on the optimization of river obstacles is
mainly focused on lock scheduling. In a single lock scheduling problem, the oper-
ating times of a single lock are optimized for a set of vessels with given arriving
time at the lock. By batching the vessels together and determining the optimal
service time for each batch, the goal is to reduce overall waiting time at the lock.

Passchyn et al. [8] provide a polynomial time algorithm to optimally solve
the single lock scheduling problem, given the arrival times of the boats and the
capacity of the lock. Passchyn, Briskorn and Spieksma present in [6] a complexity
analysis of this problem and provide a polynomial time algorithm that applies to
special cases for the single lock scheduling problem with multiple parallel cham-
bers. The problem of physically placing vessels inside the chamber of the lock has
been addressed by Verstichel et al. [16,17]. The joint optimization of multiple
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sequential locks on the river is considered by Passchyn et al. [7] and Prandtstetter
et al. [10]. Here, Prandtstetter et al. propose a Variable Neighborhood Search for
solving the problem. Passchyn et al. propose an MILP to find an exact solution,
which is also used in the current work. In all the contributions above the vessel
speeds and arrival times in the river segment are deterministic and given. In an
optimal lock schedule the aim is always to minimize the aggregated fuel cost or
emissions, and selfish behavior of skippers is not addressed.

There are also multiple case studies conducted for the lock scheduling prob-
lem, focused on specific lock sequences on important waterways in the world.
Petersen et al. [9] consider the Welland Canal in North America for which they
provide a heuristic that employs optimal dynamic programming submodels for
scheduling individual locks in order to determine operating schedules for the lock
sequence. Smith et al. [13] present a simulation model to evaluate the quality
of different heuristics on lock operations on the Upper Mississippi River in the
US. This research has been extended by Smit et al. [12]. Here, the authors pro-
pose a MIP model to solve the lock scheduling problem with sequence-dependent
setup- and processing times. On the same river segment, Nauss [5] incorporated
the malfunctioning of locks in order to efficiently resolve a queue of vessels that
might arise due to the malfunctioning. Also, a model for the lock scheduling
problem with multiple parallel chambers for this river layout has been inves-
tigated by Ting and Schonfeld [15]. Finally, the Kiel Canal is considered by
Günter, Lübbecke and Möring [4]. They incorporate collision of ships in their
model and provide a heuristic to determine a routing and scheduling to fleet of
ships in a collision-free manner.

In contrast to the previous literature, only Passchyn et al. [7] take into
account that skippers can choose the speed of their boat, and hence influence the
time in which they arrive at the lock. They minimize overall CO2 emissions by
optimizing the speed at which vessels have to approach the locks using a MILP
formulation. Although this approach is closely related to the problem addressed
in this paper, the authors of [7] focus on minimizing the aggregated emissions
without considering the fact that each skipper is mainly interested in minimizing
his personal fuel cost and emissions. As a consequence, skippers might deviate
from the proposed solution and increase their individual utility. In this paper, we
view this problem from a game-theoretic point of view, and propose a schedule
in which no skipper can profitably deviate from the proposed solution.

Fuel Reduction. Academic literature on fuel savings has been extensive in the
context of ocean vessels. We refer to [11] for a more detailed survey. Though,
inland waterways are significantly different compared to the ocean, as there
are no ’river’ obstacles in the ocean. Research on fuel consumption in inland
waterways is sparse. Ting et al. [14] found that the strategy of reducing vessels
speed to avoid idle time has resulted in significant economic benefits for a single
lock. This may been seen as a key observation for the motivation of the current
work. The fact that fuel consumption grows non-linearly in the vehicle’s speed
is corroborated by Bialystockia and Konovessis [1].
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Our Contributions. Previous research on the lock scheduling is based on the
assumption that lock operators have the full power to determine the operating
schedule for the lock. In practice, this schedule is typically determined using
the first come first serve (FIFO) principle based on the order at which vessels
arrive at the lock. Skippers that know this have the incentive to speed up when
approaching a lock in order to pass their predecessors and get served first. This
action leads to longer waiting times before the locks, and increases the opera-
tional cost for these skippers due to the higher fuel consumption that is caused
by maintaining a higher speed.

In this paper, we aim to minimize the aggregated fuel consumption by the
vessels in the river, while keeping in mind that each skipper is a rational indi-
vidual with the sole goal of minimizing his personal fuel cost or emissions. In the
solutions we present, we determine an optimal speed for each individual boat
and for each river segment. The positive relation between vessel speed and fuel
consumption leads to the observation that maintaining the slowest speed—yet
meeting the arrival deadline at the destination harbour—minimizes the total
fuel consumption of a single vessel. Unfortunately, even a single lock on the river
becomes a source of congestion and the speeds of the vessels have to be adjusted
accordingly.

The paper is structured as follows. In Sect. 3, we model the problem as a
non-cooperative game and discuss a variety of priority rules that can be used
by the lock operators in case multiple vessels approach the lock (possibly in
the opposite directions). Moreover, we discuss the existence of Nash equilibria—
situations in which no skipper can unilaterally deviate from the proposed solution
and decrease its individual cost. In Sect. 4, we introduce a cooperative game
perspective on the traffic optimization problem at hand. We assume that binding
contracts between different skippers are possible and propose a mechanism based
on monetary payments. This situation will give rise to new Nash equilibria. We
design an algorithm that computes these Nash equilibria while minimizing total
fuel consumption on the river. Finally, in Sect. 5, we extend this algorithm to
comply with an online setting.

3 Non-cooperative Game for Traffic Optimization
at River Obstacles

3.1 Mathematical Notation of the System

Without loss of generality, we assume a waterway with a single lock L. Let
this lock be defined by its capacity C, i.e., the number of boats that can be
leveled up or down simultaneously, and its current state P , indicating whether
the level of the water is high (equal to the upstream level) or low (equal to the
downstream level). Let T be the time to change the lock state from high to low
or vice versa. If a batch of vessels is processed, an additional Ti times units are
required for each vessel i in the batch. That time represents the loading and
unloading of vessels and varies across different types and sizes of vessels [13].
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The total processing time of a batch of vessels is the sum of lockage time T and
the individual processing times Ti for every vessel i in the batch. Moreover, let
Lu and Ld be the distances between the upstream and downstream end points of
the waterway respectively and the lock. From the moment that a vessel is within
that distance from the lock, we consider it to be in the system. The complete
system is, therefore, determined by the tuple L = {C,P, T, Lu, Ld}.

Now, let U and D be sets of vessels, that sail upstream or downstream respec-
tively and let S = U ∪ D be the set of all vessels. Let n = |S| be the size of the
entire fleet. For each vessel i ∈ U , we are given an arrival time at the upstream
end point of the river, denoted by ai, and a deadline di, the latest time when
the vessel has to reach the downstream end point of the waterway. Similarly, aj

and dj are defined for each vessel j ∈ D, sailing in the opposite direction. Fur-
thermore, we assume that vessels in set S are ordered according to their arrival
times and that between any two sequential vessel arrivals at least ε time elapses.
Finally, let vi,p denote the speed of vessel i along river segment p ∈ {u, d},
where u and d represent the upstream and downstream segments respectively.
We assume the minimum and the maximum speed for any vessel is bounded by
vmin and vmax.

3.2 Model Definition

In the game, each vessel i ∈ U∪D decides on vi,d and vi,u ∈ [vmin, vmax], such that
vi = (vi,d, vi,u). Furthermore, let v−i denote the strategy profile of every player
in the game except for i and let v = (vi, v−i). Note that only constant speeds
have been specified for both, upstream and downstream, waterway segments.
Due to the convexity of the cost function, defined below, skippers will have
no incentive to alter their speed midway of the segments. The assumption of
constant speeds is relaxed, when an online setting of the game is considered, in
Sect. 5. To illustrate the game, consider the following example.

Example 1. Assume three vessels (see also Fig. 1): 1 and 2 sailing upstream and
3 sailing downstream. The waterway is 20 km long, and the lock is placed in the
middle of the waterway. As a result, Lu = Ld = 10. The lock has an infinite
capacity and T = T1 = T2 = T3 = 0.5. The entry/arrival times of the vessels are
as follows: a1 = 0, a2 = ε and a3 = 2ε. Moreover, we know that (v1,u, v1,d) =
(5, 5), (v2,u, v2,d) = (10, 5) and (v3,u, v3,d) = (5, 10). Given the current speeds,
vessel 1 arrives at the lock at time 2, vessel 2 at time 1+ε and vessel 3 is expected
to arrive at the lock at time 1 + 2ε.

The total fuel consumption is given by the function E(v), where v represents
the speed of the vessel. The function is measured in tons per kilometer. We
assume that fuel consumption is equal to zero if the vessel is not moving, i.e.,
its speed is equal to zero, and vessels are only standing still inside the lock.
Following the conventions from the related literature, we assume convexity of
E(v), v > 0 (see [7]).
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Fig. 1. The setup of locks and vessel for Example 1

To further simplify notations, and without loss of generalization, we consider
the fuel consumption function to be the same for every vessel and equal to

Ei(vi) = LuE(vi,u) + LdE(vi,d). (1)

The fuel consumption of the entire fleet can therefore be written as

Etot(v) =
∑

i∈S

Ei(vi). (2)

Each skipper i aims to minimize its total fuel consumption Ei(vi), given its
deadline (denoted as di) on the arrival time at the destination. This is considered
a hard constraint. Arriving at the destination after the predefined deadline is
considered infeasible, represented by an infinite penalty cost. In case the deadline
is unrestrictive for the vessel, it will sail at the minimum speed vmin. Therefore,
we define the cost function for skipper i ∈ S by

Ci(v) =

{
Ei(vi) if ai + Lu/vi,u + Ld/vi,d + qi(v) ≤ di;
∞ otherwise ,

(3)

where qi(v) is the total processing time of vessel i at the lock, i.e., waiting time
before entering the lock plus the lock re-level time T and the individual loading
times. This waiting time depends on the congestion induced by the strategy
profile, i.e., individual speeds of all vessels in the system.

We now define the social cost C(v) of a strategy profile v as the aggregated
cost of all players, defined as

C(v) =
∑

i∈S

Ci(v). (4)

The strategy profile v that minimizes the social cost is called the social optimum,
and has a social cost of

Copt = min
v

C(v). (5)
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3.3 Nash Equilibrium and Queuing Discipline at the Lock

In a non-cooperative game (without binding contracts between the skippers), we
assume that skippers act selfishly and aim to minimize their individual costs.
One of the most important tools that game theorists have at their disposal is the
Nash equilibrium: a strategy profile v∗ where no vessel can unilaterally deviate
from its current strategy v∗

i and decrease its current cost. More formally, v∗ is
a Nash equilibrium if and only if

Ci(v∗
i , v

∗
−i) ≤ Ci(vi, v∗

−i),∀vi ∈ Vi. (6)

The importance of the Nash equilibrium comes from the natural observation
that agents/players/skippers are rather interested in selfishly minimizing their
individual costs than reducing the social cost, i.e., the total cost of the entire fleet.
The Nash equilibrium is calculated by minimizing the regret of the individual
players, where regret is defined as the cost they could have saved by altering the
strategy.

The existence of the Nash Equilibrium is dependent on the waiting time of
vessels in front of the locks. In turn, this waiting time is subject to the queuing
discipline of the lock. This queuing discipline dictates the order in which ves-
sels are served by the lock operator. As the waiting time impacts the optimal
(required) speed after the lock, the queuing discipline directly affects the cost of
each skipper. Therefore, different lock mechanisms yield different characteristics
of the game. We consider the following three simple lock mechanisms:

Mechanism 1: Lock FIFO. For any i, j ∈ U ∪ D, vessel i is served by the lock
before vessel j if i arrives at the lock before j. If vessels i and j arrive at the
lock at the same time, i will be served first if ai < aj .

Mechanism 2: System FIFO. For any i, j ∈ U ∪ D, vessel i is served by the lock
before vessel j if ai < aj .

Mechanism 3: System FIFO with filling idle time. Consider vessel i ∈ U ∪ D.
Assume that skippers choose strategies sequentially and all (vj)j=1,...,i−1 are
given. For any i, j ∈ U ∪ D such that j < i, vessel i is served before j if it does
not affect the time of departure of vessel j determined by the strategy profile
(vj)j=1,...,i−1.

The following example illustrates how these three mechanisms work and how
they affect the payoff of a strategy profile.

Example 2. Consider again the setup of Example 1. Let us remind that the
entry/arrival times of the vessels were a1 = 0, a2 = ε and a3 = 2ε. Furthermore,
given the current speeds of the vessels, the arrival times at the locks are 2, 1 + ε
and 1 + 2ε, for vessels 1, 2 and 3, respectively.

First, if the lock operates under Mechanism 1, only the arrival times at the
lock are relevant. Note that vessel 2 arrives at the lock first, vessel 3 second and
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vessel 1 is the last one. As vessels are processed in order of arrival time, the
waiting times under the strategy profile are 2 + ε, 1, 2 − ε for vessel 1, 2 and 3
respectively.

Second, under mechanism 2, only the arrival times into the system are rele-
vant. Note that vessel 1 arrives first in the system, vessel 2 second and vessel 3
last. The waiting times are 1, 2 − ε, 3 − 2ε for vessel 1, 2 and 3 respectively.

Lastly, when Mechanism 3 is applied, the arrival times into the system and
at the locks are relevant. Note that if vessel 2 or 3 is served before vessel 1,
the exit from the lock of vessel 1 would be delayed. Since vessel 1 arrives first
into the system, it has priority and therefore it is processed first. Once vessel 1
is processed, the lock is open to the downstream side and vessels 2 and 3 are
waiting on the upstream and downstream segments, respectively. Vessel 2 arrives
first into the system, therefore it has priority. However, when vessel 1 has been
processed, the lock is on the side of vessel 3. Thus, serving vessel 3 does not
affect the waiting time of vessel 2. Therefore, under this mechanism, vessel 3 is
processed second and vessel 2 is processed last. The waiting times are now equal
to 1, 4 − ε, 3 − 2ε for vessel 1, 2 and 3 respectively.

Since the choice of a lock mechanism influences the behavior of vessels, it
also influences the existence of equilibria. Under the assumption of Mechanism
1, where the priority of vessels is determined by the arrival of vessels at the lock,
equilibria might not exist, which is shown in the following example.

Example 3 (Mechanism 1). Assume there are two vessels: vessel 1 sailing
upstream and vessel 2 sailing downstream. The complete river segment is again
20 km long, and the lock is placed in the middle of the waterway, hence,
Lu = Ld = 10. The lock has capacity of 1 (though, any positive capacity will
do) and its duration T and loading times T1 and T2 are set to 0.5. We assume
that the fuel consumption function E(v) is convex, non-negative and increas-
ing in speeds vi,p ∈ [5, 10], p ∈ {u, d}. We assume that the lock starts on the
upstream side, but can switch to the downstream side in time whenever vessel 2
is the first one to arrive at the lock. We assume the arrival times in the system
are given by a1 = 0 and a2 = ε and the deadlines are d1 = 4 and d2 = 4 + ε.
Note that whenever a vessel has decided on its speed up to the lock, there is a
unique speed after the lock that minimizes the fuel consumption such that the
deadline, if possible, will not be exceeded. Therefore, the strategy of the vessels
can be expressed in their speed before the lock (denoted by v1 for vessel 1, and
v2 for vessel 2). We divide all possible speed scenarios into six cases, presented in
Table 1. We see that in every strategy profile, there is a skipper that can decrease
its fuel consumption by changing its speed. Hence, there does not exist a Nash
equilibrium. Note that for this example, vopt = 6.6̄, i.e., the optimal speed for
each vessel if it would be the only vessel on this waterway segment.

Under lock operating mechanisms 2 and 3, however, the Nash equilibrium
does exist as the order in which the vessels enter the lock is determined solely
by the order in which they arrive into the system. Hence, it cannot occur that
vessels race each other to the lock, which is the main idea behind our previous
example. Under these two mechanisms, vessels cannot affect the costs of vessels
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Table 1. Speed scenarios for example 3.

Scenario v1 v2 Improving move

1 10 [5, vopt] Player 1 should decrease v1 to vopt

2 10 (vopt, 10] Player 2 should decrease v2 to 5

3 (5, 10) v2 ≤ v1 Player 2 should increase v2 to 10

4 (5, 10) v2 ≥ v1 Player 1 should increase v1 to 10

5 5 (vopt, 10] Player 2 should decrease v2 to vopt

6 5 [5, vopt] Player 1 should increase v1 to vopt

that entered the river section earlier. This implies that vessels can sequentially
choose a best response, taking into account the arrival times of the previous
vessels. We prove this statement more formally in the next theorem.

Theorem 1. Consider the single lock scheduling problem, where the lock oper-
ates under Mechanism 2 or 3. Then, each game possesses at least one Nash
equilibrium.

Proof. We provide a generic construction of a strategy profile and show that
this strategy profile constitutes a Nash equilibrium. Observe that under both
Mechanism 2 and 3, for any speed vi, the waiting time of vessel i, qi(v), only
depends on the vessels arriving earlier in the system than vessel i. Consequently,
knowing the strategies v1, . . . , vi−1 is sufficient to determine optimal strategy vi.

By construction of the strategy profile, it is apparent that each vessel i
chooses its best possible strategy with respect to the early arriving vessels. Also,
strategies of vessels that arrive later cannot influence the costs experienced by
vessel i. Hence, vessel i can not decrease its private cost and therefore the result-
ing strategy profile is a Nash equilibrium.

Note, that the difference between the two mechanisms occurs in the individual
optimization of strategies: under Mechanism 3 the waiting times caused by profile
v might be different from the waiting times under Mechanism 2 using the same
vector v. However, the implications and the arguments stay the same: the cost
for vessel i is only affected by the strategies of the first i − 1 vessels. ��

A central authority could guarantee the existence of a Nash equilibrium by
forcing the lock operators to use Mechanism 2 or Mechanism 3. However, the
fact that a Nash equilibrium exists does not tell us anything about its cost
efficiency. Selfish decision making may lead to a Nash equilibrium with a high
social cost, which then leads to a waste of resources and high pollution on rivers.
In Mechanism 2 and 3, individual costs highly depend on the strategies taken by
the previous vessels. Therefore, selfish decision making may lead to the scenario
in which later vessels are unable to cross the river segment before their deadline,
resulting in a Nash equilibrium with an infinitely high social cost. Such scenario
indicates that the price of anarchy of this game (the ratio between the highest
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social cost of any Nash equilibrium and the minimal social cost) is unbounded.
This becomes apparent in the following example.

Example 4. We consider the same instance as in Example 3. However, this time
we assume that the lock operates under Mechanism 2. We construct a Nash
equilibrium with the procedure described in the proof of Theorem 1. This implies
that v∗

1 = (20/3, 20/3). Note that there is no strategy in the strategy space of
vessel 2, such that it passes the river segment before its deadline. Thus the social
cost of this instance is infinitely high.

There is a strategy profile such that both vessels cross the river before their
deadlines. More precisely, v = (5, 10) leads to a finite costs for both vessels.
Because of this, the price of anarchy of the game at hand is unbounded. Note that
the same results hold, when the lock is assumed to operate under Mechanism 3.

The goal of this section was to show that, though the concept of a Nash
equilibrium seems appealing, in the non-cooperative setting it might not exist or
it might be extremely inefficient compared to a socially optimal strategy profile.
In the next section, we review the problem from a cooperative game point of view
as we introduce the possibility to make binding contracts between the vessels.

4 Cooperative Game for Traffic Optimization
at River Obstacles

We now assume that the vessels can make binding contracts and allow payments
between skippers. As a result, the agents/skippers can incentivize their counter-
agents to adapt their speeds by reimbursing their extra costs. We aim to find
a solution concept that is cost optimal while making sure that no player can
profit from a unilateral deviation from the social optimum. More precisely, we
introduce a payment system that fulfills two criteria:

1. By participating in the payment system, the cost of a player can never be
higher than when he/she did not participate.

2. The payment system should give a vessel an incentive to behave as in the
social optimum.

In this section, we consider full information about the lock, river segments
and vessels that will enter the system to be known in advance. An online variant
of this problem is presented in Sect. 5, in which only the information about
the river segment and the lock are publicly known while information about the
vessels becomes only available when a vessel physically enters the waterway.
First, we propose an algorithm that returns for each vessel a speed vi, and
the payment scheme Pi,j indicating payment of skipper i to skipper j for the
requested velocity adjustment. Second, we prove that the solution proposed by
the algorithm satisfies the two criteria mentioned above.
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4.1 Iterative Payment Scheme Algorithm

The algorithm sequentially determines optimal speeds and payments in the order
of vessels arrival by considering all vessels 1 through i, denoted by the set S̄i. In
the first iteration, only vessel 1 is considered and its optimal speed is determined.
Let ζ1 be the operating cost associated with this strategy such that ζ1 = C1(v1).
During future iterations, it will be ensured that the cost for this skipper will not
go above the cost of this benchmark situation. To do this, other skippers should
fully reimburse any cost increase that results from changing the strategy for the
skipper.

Now, let P ∗
j,j′ be the payment scheme for all j′ < j < i at iteration i.

Moreover, all guaranteed costs ζj are considered to be known for all j < i. To
determine the speeds vj for all j ∈ S̄i and payments Pi,j for all j < i, we solve
the following optimization problem: determine new velocities of the vessels from
S̄i such that the sum of the costs and payments for vessel i is minimized, while
the total cost of each vessel j < i is at most ζj . Then, we compute the value of
the guaranteed cost ζi of player i. More formally, we define following relations.

Copt,k(S̄i) := Ck

(
(v∗

j )j∈S̄i

)
k ∈ S̄i, (7)

P ∗
i,k := Copt,k(S̄i) − ζk −

∑

j∈S̄i−1:j>k

P ∗
jk k ∈ S̄i−1, (8)

ζi := Copt,i(S̄i), (9)

where v∗ and P ∗ are the solutions to the following optimization problem. For
a given vessel i > 1, having computed all optimal values P ∗ for all i′ < i, the
mathematical program reads

min
(vj)j∈S̄i

;Pi,j

⎛

⎝ Ci

(
(vj)j∈S̄i

)
+

∑

k∈S̄i−1

Pi,k

⎞

⎠ (10)

Ck

(
(vj)j∈S̄i

) − Pi,k −
∑

j∈S̄i−1
j>k

P ∗
j,k ≤ ζk, k ∈ S̄i−1. (11)

Algorithm 1 represents the payment system which outputs both optimal
speeds and payments for all skippers. Note that the optimization problem has
been replaced by a computation of the social optimal speeds. This is a valid
substitution due to Theorem 2 below.
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Input: (L := (C, T, P, Lu, Ld), U,D, (ai, di, vmin, vmax)i∈U∪D)
Output: Optimal set of speeds and payments.
S̄1 = {1} ;
ζ1 = Copt(Si) ;
for i from 2 to n do

S̄i = S̄i−1 ∪ {i} ;
Compute Copt(S̄i) and let (v∗

j )j∈S̄i
be the optimal parameters;

Copt,k(S̄i) := Ck

(
(v∗

j )j∈S̄i

) ∀k ∈ S̄i;
P ∗
i,k := Copt,k(S̄i) − ζk − ∑

j∈S̄i−1:j>k P ∗
jk ∀ k ∈ S̄i−1;

ζi := Copt,k(S̄i);
end
return ((v∗

j )j∈S , (P ∗
ij)i,j∈S)

Algorithm 1. Payment mechanism

The subroutine computing of Copt(S̄i) can be implemented in various ways.
In the Appendix, we provide a MIP-formulation to solve the lock scheduling
problem to optimality. This formulation is based on the model in [7] and has
been adjusted to comply with our problem statement. Moreover, we show that
the problem is NP-complete in the strong sense, this way motivating design
of MIP-formulations and approximation algorithms for the problem. Regarding
existence of good approximation algorithms, we leave this question open but
stress that any α-approximation algorithm directly leads to an α-approximate
Nash equilibrium.

Given a solution to the optimization problem above, in Theorem2, we show
that the optimal speeds in that problem are equivalent to the speeds in the social
optimum computed on vessels in the set S̄i.

Theorem 2. (v∗
j )j∈S̄i

= argmin(vj)j∈S̄i

∑
k∈S̄i

Ck(vj)j∈S̄i
.

Proof. For each k ∈ S̄i−1,

Pi,k = Ck

(
(vj)j∈S̄i

) − ζk −
∑

j∈S̄i−1
j>k

P ∗
j,k (12)

and therefore the optimization problem can be written as

(v∗
j )j∈S̄i

= argmin
(vj)j∈S̄i

Ci

(
(vj)j∈S̄i

)
+

∑

k∈S̄i−1

Pi,k (13)

= argmin
(vj)j∈S̄i

Ci

(
(vj)j∈S̄i

)
+

∑

k∈S̄i−1

(
Ck

(
(vj)j∈S̄i

) − ζk −
∑

j∈S̄i−1
j>k

P ∗
j,k

)

(14)
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= argmin
(vj)j∈S̄i

∑

k∈S̄i

Ck

(
(vj)j∈S̄i

) −
∑

k∈S̄i−1

(
ζk +

∑

j∈S̄i−1
j>k

P ∗
j,k

)
(15)

= argmin
(vj)j∈S̄i

∑

k∈S̄i

Ck

(
(vj)j∈S̄i

)
, (16)

��
Lastly, in Theorem 3, we show that in the i-th iteration of the algorithm the

best response for skipper i is to obey the payment mechanism. This means that
the guaranteed cost of vessel i plus the payments this skipper has to pay to all
other skipper is lower than the cost of any strategy not involving the payments.

Theorem 3. In Algorithm 1 for each S̄i, it holds that

ζi +
∑

k∈S̄i−1

Pi,k ≤ Ci(vi, (v∗
j )j∈S̄i−1

) for all vi ∈ Vi. (17)

Proof. Note that after every iteration i, it holds for every k ∈ S̄i−1

P ∗
i,k = Copt,k(S̄i) − ζk −

∑

j∈S̄i−1
j>k

P ∗
jk (18)

Copt,k(S̄i) = ζk +
∑

j∈S̄i
j>k

P ∗
jk (19)

This leads to the following equality.

ζi +
∑

k∈S̄i−1

P ∗
ik = Copt,i(S̄i) +

∑

k∈S̄i−1

(
Copt,k(S̄i) − ζk −

∑

j∈S̄i−1
j>k

P ∗
jk

)
(20)

=
∑

k∈S̄i

Copt,k(S̄i) −
∑

k∈S̄i−1

(
ζk +

∑

j∈S̄i−1
j>k

P ∗
jk

)
(21)

=
∑

k∈S̄i

Copt,k(S̄i) −
∑

k∈S̄i−1

Copt,k(S̄i−1) (22)

= Copt(S̄i) − Copt(S̄i−1) (23)

Furthermore, we know that

Copt(S̄i) ≤ Ci(vi, (v∗
j )j∈S̄i−1

) + Copt(S̄i−1) for all vi ∈ Vi (24)

Copt(S̄i) − Copt(S̄i−1) ≤ Ci(vi, (v∗
j )j∈S̄i−1

) for all vi ∈ Vi (25)

ζi +
∑

k∈S̄i−1

P ∗
ik ≤ Ci(vi, (v∗

j )j∈S̄i−1
) for all vi ∈ Vi (26)

��
From Theorems 2 and 3, it follows that the stated criteria for an efficient

payment mechanism are fulfilled by Algorithm 1.
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5 Online Setting

The assumption of perfect information on arrival times is likely to be violated
in real-life. That is, there is no information prior to the arrival of the vessels at
the boundaries of the system. Each time a vessel enters, the optimal speed and
payments are recomputed taking into account the location of the vessels already
present on the waterway. Note that the definition of a social optimum and a
best response of a player are dependent on the information setting of the game.
Therefore, we have to dynamically redefine/adjust these quantities in an online
setting.

Let the distance between vessel i and the exit of the waterway at time t be
denoted by ht

i. The best response of vessel i, given the strategies of the other
vessels, is defined as the strategy that minimizes the cost of vessel i conditional
on the position of the other vessels at time t. The cost of vessel i under strategy
profile v conditional on the position of all vessels in set S̄ at time t is denoted as
Ci

(
(vj)j∈S̄ |(ht

j)j∈S̄

)
. The social optimum is defined as a strategy profile, which

provides the lowest possible cost given the positions of vessels in S̄ at time t.
Similar to the offline setting, the algorithm sequentially determines optimal

speeds and payments at the arrival of each vessel. In each iteration, a set S̄i is
constructed containing all vessels currently in the system. Assume that vessel
i arrives and vessels in S̄ = {k, k + 1, . . . , i} have not left the waterway yet.
Assume that the payments P ∗

j,j′ for all k ≤ j′ < j < i and the guaranteed
costs ζj for all k ≤ j < i are given. Since each vessel is at a different position,
payments and costs are normalized to units per kilometers. Therefore, we solve
the following optimization problem: determine new velocities of the vessels from
S̄i such that the sum of the costs and payments for vessel i is minimized, while
the normalized total cost of each vessel k ≤ j < i is at most the normalized
guaranteed cost. Given the following relations

Cai

opt,k(S̄i) = Ck

(
(v∗

j )j∈S̄i
|(hai

j )j∈S̄i

) ∀ k ∈ S̄i, (27)

P ∗
i,k := Cai

opt,k(S̄i) − hai

k

( ∑

j∈S̄i\{i}
j>k

(
P ∗
j,k

h
aj

k

)
+

ζk
ld + lu

)
∀ k ∈ S̄i \ {i} , (28)

ζi := Cai
opt,i(S̄i) (29)

we define the online optimization problem as

(v∗
j )j∈S̄i

∈ argmin
(vj)j∈S̄i

:Pi,j

⎛

⎝Ci

(
(vj)j∈S̄i

|(hai
j )j∈S̄i

)
+

∑

k∈S̄i\{i}
Pi,k

⎞

⎠ (30)

s.t

Ck

(
(vj)j∈S̄i

|(hai
j )j∈S̄i

)

hai

k

− Pi,k

hai

k

−
∑

j∈S̄i\{i}
j>k

P ∗
j,k

h
aj

k

≤ ζk
ld + lu

k ∈ S̄i \ {i} .

(31)
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Again, it can be shown that the two conditions for an efficient payment
mechanism are fulfilled in the online setting. The proof is similar to the one
discussed in the offline case. The resulting algorithm is given in Algorithm 2.

Input: (L := (C, T, P, Lu, Ld), U, D, (ai, di, vmin, vmax)i∈U∪D)
Output: Optimal set of speeds and payments.
vessel i arrives in the system at time ai:
For each vessel currently present in the waterway, update the distance to the
destination;

Let S̄i be the set of vessels in the waterway at time ai;
if S̄i �= ∅ then

Compute Cai
opt(S̄i) and let (v∗

j )j∈S̄i
be the optimal parameters;

Cai
opt,k(S̄i) = Ck

(
(v∗

j )j∈S̄i
|(hai

j )j∈S̄i

) ∀ k ∈ S̄i;

P ∗
i,k := Cai

opt,k(S̄i) − hai
k

( ∑

j∈S̄i\{i}
j>k

(
P ∗
j,k

h
aj

k

)
+

ζk
ld + lu

)
∀ k ∈ S̄i \ {i} ;

ζi := Cai
opt,i(S̄i);

else

ζi = min
vi

Ci(vi);

end

Algorithm 2. Payment mechanism Online Setting

Note that whenever a vessel enters the lock, its total fuel cost and payments
to the other vessels are known, and will not change anymore. Hence, the lock
operator can also operate as a bank: whenever a vessel crosses the lock, it pays
(or receives) the payments. This implies that the lock operator needs a cash
reserve, as it is likely that the first vessels entering the lock receive money from
the vessels that did not arrive at the lock yet. Clearly, this cash reserve needs
to be at most the cost of an optimal profile minus the minimum fuel cost of all
earlier vessels. In the journal version of the paper we give a simple and insightful
example where the cash reserve is actually completely needed.
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