Skip to main content

Maximum Diversity Problem with Squared Euclidean Distance

  • Conference paper
  • First Online:
Book cover Mathematical Optimization Theory and Operations Research (MOTOR 2019)

Abstract

In this paper we consider the following Maximum Diversity Subset problem. Given a set of points in Euclidean space, find a subset of size M maximizing the squared Euclidean distances between the chosen points. We propose an exact dynamic programming algorithm for the case of integer input data. If the dimension of the Euclidean space is bounded by a constant, the algorithm has a pseudo-polynomial time complexity. Using this algorithm, we develop an FPTAS for the special case where the dimension of the Euclidean space is bounded by a constant. We also propose a new proof of strong NP-hardness of the problem in the general case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, H., Imai, N., Katoh, N., Suri, S.: Finding \(k\) points with minimum diameter and related problems. J. Algorithms 12(1), 38–56 (1991)

    Article  MathSciNet  Google Scholar 

  2. Aringhieri, R.: Composing medical crews with equity and efficiency. Cent. Eur. J. Oper. Res. 17(3), 343–357 (2009). https://doi.org/10.1007/s10100-009-0093-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Cevallos, A., Eisenbrand, F., Morell, S.: Diversity maximization in doubling metrics. In: Proceedings of 29th International Symposium on Algorithms and Computation (ISAAC 2018). LIPIcs, vol. 123, pp. 33:1–33:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.ISAAC.2018.33

  4. Cevallos, A., Eisenbrand, F., Zenklusen, R.: Max-sum diversity via convex programming. In: 32nd Annual Symposium on Computational Geometry (SoCG). LIPIcs, vol. 51, pp. 26:1–26:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.SoCG.2016.26

  5. Edwards, A.W.F., Cavalli-Sforza, L.L.: A method for cluster analysis. Biometrics 21, 362–375 (1965)

    Article  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  7. Ibarra, O., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22, 463–468 (1975)

    Article  MathSciNet  Google Scholar 

  8. Kel’manov, A., Khandeev, V., Panasenko, A.: Randomized algorithms for some clustering problems. In: Eremeev, A., Khachay, M., Kochetov, Y., Pardalos, P. (eds.) OPTA 2018. CCIS, vol. 871, pp. 109–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93800-4_9

    Chapter  Google Scholar 

  9. Kel’manov, A.V., Pyatkin, A.V.: NP-completeness of some problems of choosing a vector subset. J. Appl. Ind. Math. 5(3), 352–357 (2011)

    Article  MathSciNet  Google Scholar 

  10. Kel’manov, A.V., Romanchenko, S.M.: Pseudopolynomial algorithms for certain computationally hard vector subset and cluster analysis problems. Autom. Remote Control 73(2), 349–354 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kel’manov, A.V., Romanchenko, S.M.: An approximation algorithm for solving a problem of search for a vector subset. J. Appl. Ind. Math. 6(1), 90–96 (2012)

    Article  MathSciNet  Google Scholar 

  12. Kel’manov, A.V., Romanchenko, S.M.: An FPTAS for a vector subset search problem. J. Appl. Ind. Math. 8(3), 329–336 (2014)

    Article  MathSciNet  Google Scholar 

  13. Kel’manov, A., Motkova, A., Shenmaier, V.: An approximation scheme for a weighted two-cluster partition problem. In: van der Aalst, W.M.P., et al. (eds.) AIST 2017. LNCS, vol. 10716, pp. 323–333. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73013-4_30

    Chapter  Google Scholar 

  14. Kuo, C.C., Glover, F., Dhir, K.S.: Analyzing and modeling the maximum diversity problem by zero-one programming. Decis. Sci. 24(6), 1171–1185 (1993)

    Article  Google Scholar 

  15. McConnell, S.: The new battle over immigration. Fortune 117(10), 89–102 (1988)

    Google Scholar 

  16. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, New York (1994)

    MATH  Google Scholar 

  17. Porter, W.M., Eawal, K.M., Rachie, K.O., Wien, H.C., Willians, R.C.: Cowpea germplasm catalog No. 1. International Institute of Tropical Agriculture, Ibadan, Nigeria (1975)

    Google Scholar 

  18. Shenmaier, V.V.: An approximation scheme for a problem of search for a vector subset. J. Appl. Ind. Math. 6(3), 381–386 (2012)

    Article  MathSciNet  Google Scholar 

  19. Shenmaier, V.V.: Solving some vector subset problems by Voronoi diagrams. J. Appl. Ind. Math. 10(4), 560–566 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The study presented in Sect. 4 was supported by the Russian Foundation for Basic Research project 19-01-00308. The study presented in Sect. 6 was supported by the Russian Academy of Science (the Program of basic research), projects 0314-2019-0015, 0314-2019-0019, and in Sect. 3 by the Russian Ministry of Science and Education under the 5-100 Excellence Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton V. Eremeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eremeev, A.V., Kel’manov, A.V., Kovalyov, M.Y., Pyatkin, A.V. (2019). Maximum Diversity Problem with Squared Euclidean Distance. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science(), vol 11548. Springer, Cham. https://doi.org/10.1007/978-3-030-22629-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22629-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22628-2

  • Online ISBN: 978-3-030-22629-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics