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Abstract. Computing grids are key enablers of computational science.
Researchers from many fields (High Energy Physics, Bioinformatics, Cli-
matology, etc.) employ grids for execution of distributed computational
jobs. These computing workloads are typically data-intensive. The cur-
rent state of the art approach for data access in grids is data placement:
a job is scheduled to run at a specific data center, and its execution com-
mences only once the complete input data has been transferred there.
An alternative approach is remote data access: a job may stream the
input data directly from arbitrary storage elements. Remote data ac-
cess brings two innovative benefits: (1) the jobs can be executed asyn-
chronously with respect to the data transfer; (2) when combined with
data placement on the policy level, it can aid in the optimization of the
network load, since these two data access methodologies partially exhibit
nonoverlapping bottlenecks. However, in order to employ this technique
systematically, the properties of its network throughput need to be stud-
ied carefully. This paper presents experimentally identified parameters of
remote data access throughput, statistically tested formalization of these
parameters and a derived throughput forecasting model. The model is
applicable to large computing workloads, robust with respect to arbitrary
dynamic changes in the grid infrastructure and exhibits a long-term pre-
diction horizon. Its purpose is to assist various stakeholders of the grid
in decision-making related to data access patterns. This work is based on
measurements taken on the Worldwide LHC Computing Grid at CERN.

Keywords: Grid computing · Remote data access · Network modeling
· Applied time series forecasting · Applied machine learning.

1 Motivation

Computing grids [5] are collections of geographically sparse data centers. Em-
ploying a wide range of heterogenous hardware, these participating facilities
work together to reach a common goal in a coordinated manner. Grids store
vast amounts of scientific data, and numerous users run computational jobs to
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analyze these data in a highly distributed and parallel fashion. For example,
within the World-Wide LHC Computing Grid (WLCG) more than 150 comput-
ing sites are employed by the ATLAS experiment at CERN. WLCG stores more
than 450 petabytes of ATLAS data, which is used for distributed analysis by
more than 5000 users.

In order to achieve a modular architecture, the grid resources are typically
divided into three major classes: storage elements, worker nodes and network.
The function of storage elements is to replicate and persist the data for the
long term using various technologies (hard disks, solid state drives or tapes). On
the other hand, the worker nodes perform CPU intensive tasks. WAN and LAN
networks facilitate the data transfer between storage elements and worker nodes.
Such strict division of labour has led to the fact that the current best practice
for data access in the grid is data placement [3]. Data placement is performed
by dedicated distributed data management systems. Consider a job scheduled to
run at the data center DC1, while the required input replica is located at the data
center DC2. The job may commence its execution only after the completion of the
following workflow: (1) the input replica is transferred from the relevant storage
element at DC2 to a storage element at DC1; (2) the input replica is staged-in
from the relevant storage element at DC1 to the worker node. This simplistic
approach has two major disadvantages: (1) the jobs are staying idle while waiting
for the input data; (2) due to the limited infrastructure resources the distributed
data management system handling the data placement may queue the transfers
up to several days. An alternative approach is remote data access, which allows
to directly stream the input replica from a local or remote storage element.

To demonstrate the potential of remote data access to optimize the resource
utilization when combined on policy level with traditional data placement, con-
sider two following scenarios.

In the first example, a computational workload is submitted to a worker node
at the data center DC1. The jobs require the input replica R, which is persisted
in the remote storage element at the data center DC2. Currently, the storage
element in the local data center DC1 has a high load because of transfers to
various other data centers. Assume that the bottleneck is only present at this
local storage element. This is recognized by the distributed data management
system, and it queues the transfer of the input replica R. Employing remote data
access, the bottleneck can be immediately bypassed.

In another example, the input replica is located at the local storage element.
However, the worker node does not have enough disk space available for stage-
in. The distributed data management system queues the file transfer, until the
required disk space becomes available. In contrast, using remote data access to
the local storage element, the input data can be streamed in fractions without
persisting the complete input file.

Given the magnitude of real-life computing grids, it is obvious that many
more potential scenarios will benefit from remote data access in the context of
resource utilization. This has motivated us to study the properties of its net-
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work throughput. Furthermore, a forecasting model of the network throughput
is needed for coordination of scientific workloads.

2 Related Work

A substantial body of related work in the literature focuses on prediction of
network throughput [18,11,7,17,1,13,2]. However, many authors present only
short-term forecasts. In addition, numerous proposed models operate on low-
level metrics, which cannot be obtained globally in a computing grid. Finally,
the results from the older contributions are outdated with respect to the con-
temporary network requirements in computing grids. Below we present some
notable contributions in more detail.

The authors in [4] describe a method for derivation of short-term through-
put predictions based on regression, whose coefficients are continuously updated
based on a running time window. The effect of concurrent traffic is not explicitly
investigated in this work. The experiments are performed with data probes of up
to 16 megabytes. In contrast, our model delivers long-term predictions, taking
into account the concurrent traffic of parallel threads and processes. Our work
is based on experiments with file transfers totaling up to tens of gigabytes.

Kim et al. [9] have presented an analytical model for prediction of TCP
throughput with varying amounts of parallel streams. The performance of the
model is not demonstrated for extended forecasting horizons. The model operates
on low-level parameters, such as maximum segment size, round-trip time and
packet loss ratio. In a grid computing setting such low-level metrics are typically
not available globally, since they are not monitored by the data management
systems. On the other hand, our model requires only realistically obtainable
metrics on file accesses.

Mirza et al. [12] have applied support vector regression for TCP throughput
prediction, considering following features as inputs: estimated available band-
width, queueing delay and packet loss. During the experimental evaluation of
the model in the wide area setting, the authors make certain simplifying assump-
tions (selection of nodes with no or minimal concurrent third-party workloads
and concrete operating system), which are impractical for computing grids. Only
transfers of 2MB files are considered.

A novel approach for prediction of throughput in data centers is proposed in
[14]. First, various components of a data center (topology, configuration, etc.) are
modeled in a highly abstract fashion. Then, the initial meta-model is transformed
into a Queueing Petri Net. In order to derive predictions, the net is executed by
a simulator. The approach is evaluated in a minimal isolated LAN environment.

Recent work in [10] demonstrates feature engineering for throughput predic-
tion based on a wide spectrum of Globus logs. File transfers, which are expected
to encounter high third-party concurrent loads during the execution are filtered
out from the analyzed dataset. Moreover, the authors assume that nodes within
a given site may be treated as equivalent. Our detailed investigation reveals that
this is not the case.
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3 Parameters of Remote Data Access Throughput

The first phase of this study is the experimental identification of the crucial pa-
rameters, which impact remote data access throughput. In our experiment the
throughput is indirectly represented by transfer time for a given filesize. Note
that these quantities can be easily converted to one another. The hardware of the
communicating hosts is a black box. The properties of the hosts are represented
exclusively by the observed network throughput. A single computational job is
equivalent to a process. Within a process, a new file access is executed by an
individual thread. The null hypothesis for the experiment states that for a com-
putational job streaming a given remote file, the total transfer time T cannot be
linearly regressed onto the following independent variables: (1) S, the size of the
original file; (2) ConTh, the cumulative concurrent traffic originating from other
threads in the same process during the streaming of the original file; (3) ConPr,
the cumulative concurrent traffic originating from other processes in the given
computing workload during the streaming of the original file. The alternative
hypothesis states that such a regression represents the true relationship between
the mentioned independent and dependent variables.

The independent variable ConPr stands for traffic, which is created as part
of the investigated computing workloads. Other traffic originating from latent
workloads is present on the investigated links. In practice it is not possible to
obtain complete metrics about a grid. Nevertheless, our minimal approach (fol-
lowing the Occam’s razor principle) of monitoring a single additive workload
allows us to construct an accurate forecasting model for regression coefficients.
The dynamic aspects of the grid are implicitly learned by the model.

To sample the data, 12 computational jobs are launched on a single worker
node at the CERN data center (Switzerland) in the period of 28.04.2018 00:00
- 30.04.2018 14:30. In 15-minute steps the processes initiate remote accesses to
the storage element GRIF-LPNHE SCRATCHDISK at the GRIF-LPNHE data
center (France). At each step, various numbers of concurrent processes (up to
12) launch various amounts of concurrent threads (up to 4). The threads stream
files of different sizes (300MB - 3GB). This allows us to sample a wide range
of data for the independent variables. Each launched file access is treated as an
observation in the final dataset. After such sampling and transformations we
derive 1122 observations, each having values for the variables T, S, ConTh and
ConPr. The protocols used for remote data access are WebDAV/HTTP. Note
that such an intrusive sampling design was necessary, because currently these
metrics are not logged in WLCG. Once proper remote data access monitoring is
implemented grid-wide, the observations can be mined from logs unintrusively.
Since WLCG employs commodity hardware, the presented findings are univer-
sally generalizable.

A multiple linear regression is fit to the sampled data using ordinary least
squares, resulting into the following equation:

T = 0.023568 ∗ S + 0.043705 ∗ ConTh + 0.001538 ∗ ConPr (1)
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The fit has an F-statistic of 4.514e+04 on 3 degrees of freedom, 1119 resid-
ual degrees of freedom and a p-value of <2.2e-16. Thus, the null hypothesis is
rejected.

Note that the coefficient of ConTh is about 28.4 times greater than the
coefficient of ConPr. This means that concurrent traffic among threads within
one process is penalized to a much higher extent in terms of throughput than
concurrent traffic among different processes.

To check for interaction among the variables ConTh and ConPr, two reduced
multiple linear regression models are fit on accordingly adjusted datasets using
ordinary least squares. The resulting models are demonstrated below:

T = 0.02565 ∗ S + 0.04293 ∗ ConTh (2)

which is statistically significant, having an F-statistic of 3.119e+04 on 2 degrees
of freedom and 340 residual degrees of freedom and a p-value of <2.2e-16, and

T = 0.023195 ∗ S + 0.001575 ∗ ConPr (3)

which is also statistically significant with an F-statistic of 2.035e+04 on 2 degrees
of freedom and 832 residual degrees of freedom and a p-value of <2.2e-16. These
fits are depicted in Fig. 1 and 2.

T = 0.02565*S + 0.04293*ConTh
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Fig. 1. Regression fit T ∼ 0+S+ConTh

T = 0.023195*S + 0.001575*ConPr
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Fig. 2. Regression fit T ∼ 0+S+ConPr

The coefficient of ConTh in the reduced model exhibits a log change of only
-0.018 in relation to the full model. The coefficient of ConPr has a log change of
0.024. This is a hint that in the true relationship, there is no interaction between
the variables ConTh and ConPr.
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4 Forecasting Model

The idea behind our novel throughput forecasting model is the following. We
have demonstrated that transfer time T can be regressed onto the variables S,
ConTh and ConPr. To facilitate modeling of transfer time T at various points
in time, multivariate time series of regression coefficients are formed. Computing
grids are highly complex and dynamic systems. Thus, it is practically impossible
to capture all the independent variables, which impact the response T. The
uncaptured variables remain latent. The 3 presented independent variables S,
ConTh and ConPr explain a significant portion of the variability in the response,
but not all of it. The effect of the latent variables manifests itself in the variability
of the coefficient values throughout time, as can be seen further in their time
series plots. Using time series analysis and forecasting techniques, the effect of
the latent variables is implicitly captured by learning the patterns in the time
series data. The derived model allows to accurately calculate the transfer time
(and thus throughput) given arbitrary amounts for S, ConTh and ConPr at any
past, present or forecasted time step. Such calculations can be iteratively applied
to every file access in a complex distributed workload.

Consider the time series plot in Fig. 3, which shows transfer times for 2
threads, transferring 2 gigabytes and 300 megabytes respectively, within 1 com-
puting job in the time window 10.03.2018 22:00 - 12.04.2018 21:30. The ob-
servations are sampled once every 30 minutes. The computing job runs in the
worker node pool ANALY AUSTRALIA and streams the data from a local stor-
age element AUSTRALIA-ATLAS SCRATCHDISK. Once per day the job gets
resubmitted to a new worker node in the pool, which is selected by the workload
management system. This is done to emulate the real-life workflow during job
submission. Throughout the rest of the paper a sampling day is equivalent to 48
sampling points. It is evident from the daily shifts along the y-axis that various
worker nodes exhibit either very different, or very similar throughputs. We as-
sume that these large shifts are caused by major differences in the hardware of
various nodes. Given a single worker node - storage element pair, the captured
independent variables explain the vast majority of the variability in transfer time
T. Thus, the regression model needs to be constructed for each worker node -
storage element pair separately. In what follows, we normalize the sampled data
with respect to the daily shifts in T to emulate a time series for a single worker
node - storage element pair.

Let a, b and c denote the coefficients of the regression

T ∼ 0 + a ∗ S + b ∗ ConTh + c ∗ ConPr (4)

The time series plot in Fig. 3 demonstrate that given a single worker node -
storage element pair, the coefficient values slightly vary over time due to latent
factors. The sampled time series can be transformed into a multivariate time
series of coefficients a and b. The reduced regression is written as

T ∼ 0 + a ∗ S + b ∗ ConTh (5)
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Let T1 and T2 be the sampled transfer times for the 2GB and 300MB files
respectively. Since the transfer of the 300MB file always terminates first in our
data, the coefficients a and b can be estimated for each time step using the
following system of equations:{

T1 = 2000 ∗ a + 300 ∗ b
T2 = 300 ∗ a + (2000 ∗ (T2/T1)) ∗ b

(6)

after substitution we get:

a = −((17 ∗ T1 ∗ T2)/(100 ∗ (9 ∗ T1 − 400 ∗ T2))) (7)

b = (T1 − 2000 ∗ a)/300 (8)

Note that we did not sample data, which would allow us to reconstruct the
time series for the coefficient c. This is due to the demonstrated fact that a
vast amount of concurrent traffic among processes is required, in order to reach
a noticeable effect. Such sampling would be highly intrusive during a complete
month. The complete multivariate coefficient time series can be unintrusively
mined from logs, once proper remote data access monitoring is implemented.

Fig. 4 demonstrates the transformation of the sampled time series of transfer
times into time series of normalized regression coefficients. The variate for the
coefficient c is simulated based on the previous demonstration that in case of
remote data access from CERN to GRIF-LPNHE data centers, its value on
average was 28.4 times smaller, than that of the coefficient b.
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Fig. 4. Australia: normalized coefficients

We have performed an analogous sampling and analysis for the storage element
- worker node pool pair BNL-OSG2 SCRATCHDISK - ANALY BNL LONG
(USA). The transfer time and coefficient time series are shown in Fig. 5 and
6. In infrequent instances in Fig. 6 the values of the coefficients are negative,
because the time series is normalized with respect to the first sampling day.
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Fig. 6. BNL: normalized coefficients

4.1 Input Features

The forecasting model individually predicts the 3 variates of the multivariate
coefficient time series. When forecasting a single variate, following features are
considered as inputs to the forecasting model: (1) lagged values of the variate
itself; (2) lagged values of 2 other variates; (3) slightly lagged values of the time
series representing the overall traffic at the data center of interest.

Consider Fig. 7, which depicts the cross-correlation functions between the
normalized coefficients a and b sampled at data centers Australia-ATLAS and
BNL-ATLAS.
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Fig. 7. CCF between normalized coefficients a and b

It is evident from the CCF plots that the values are highly symmetric around
the origin. Thus, we do not use other variates as input features to predict a given
variate, since they do not posses any additional information for forecasting.

Without a posteriori knowledge, a plausible hypothesis is that the time series
of overall network load at the data center of interest leads the amplitude of the
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coefficient time series with a positive cross-correlation at small negative lags (i.e.
if the amount of the overall traffic increases, the time to transfer an additional
unit will increase shortly after). We have mined 4 different traffic time series
from the logs recorded by the WLCG’s distributed data management system
Rucio [6] for the investigated period at the data center Australia-ATLAS: (1)
intra-data center traffic in bytes; (2) inter-data center traffic in bytes; (3) sum
of intra- and inter-data center traffic in bytes; (4) amount of intra-data center
file accesses. It can be seen from the cross-correlation plots in Fig. 8 that none
of the 4 mentioned traffic time series is significantly leading the normalized co-
efficient a at small lags with positive cross-correlation. Due to the symmetric
CCF between the coefficients a and b, this result is also present in the analysis
of CCF between the mentioned traffic categories and the normalized coefficient
b. The same analysis delivers insignificant results at the BNL-ATLAS data cen-
ter. Thus, the overall traffic time series is not used as an input feature for the
prediction of the coefficients.
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Fig. 8. Australia: CCF between traffic time series and normalized coefficient a

Finally, only the lagged values of the variate of interest will be used as inputs to
predict the future values.

We have not sampled authentic data for derivation of coefficient c due to the
high associated cost. We assume that in the demonstrated scenarios the CCF
between c and other variates exhibits an analogous behavior.

4.2 Benchmark of Forecasting Models

The time series of the normalized coefficient a at the Australia-ATLAS (Fig. 4)
and BNL-ATLAS (Fig. 6) data centers are used for demonstrational purposes
in this paper. Due to the shown symmetric CCF between coefficients a and b it
is known that the coefficient b exhibits an analogous behavior. We assume, that
so does the coefficient c.

The aforementioned time series are split into 16 datasets respectively, each
spanning a period of 2 sampling days. 80% of each dataset are used for the con-
struction of the model, the remaining 20% are used for its validation. Thus, we
are forecasting the series for the next 9.5 hours. Following methods are bench-
marked in the context of coefficient time series forecasting: (1) Auto-Regressive
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Integrated Moving Average (ARIMA) [15]; (2) Long Short-Term Memory Arti-
ficial Neural Networks (LSTM ANN) [8].

ARMA is a statistical state of the art approach for derivation of a mathe-
matical model describing the time series of interest in terms of its past values
(AR part) and forecast errors (MA part). ARMA models work with stationary
time series. ARIMA, the integrated version of ARMA, allows to work with time
series, which become stationary after a certain degree of differencing. The model
parameters are identified based on the analysis of the (partial) auto-correlation
function and stationarity tests. Such models are computationally cheap to con-
struct. They remain one of the dominant forecasting methods due to their sim-
plicity and effectiveness.

Consider Fig. 9, which depicts the auto-correlation functions of the normal-
ized coefficients a and b at both the data centers.
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Fig. 9. ACF of normalized coefficients a and b

It is evident from the figure that all the time series have a seasonal component
with a period of 48 points, which is equivalent to a day. To fit ARIMA models we
use the auto.arima() function from R, which will estimate the model parameters
based on a number of statistical tests (KPSS, OCSB and others). When passing
a time series object to the function, we indicate the discovered seasonality.

Long Short-Term Memory neural networks are a kind of recurrent neural
networks. Employing a gating architecture and a recurrent state, LSTM nets
are optimized to partially overcome the vanishing gradient problem and learn
from arbitrarily extended lags. They have been used for time series forecasting
by researchers in different domains, e.g. for traffic speed prediction, detection of
faults in industrial data, etc. It has been also demonstrated at the recent time
series forecasting competition CIF 2016 [16] that LSTM has delivered outstand-
ing results, outperforming common statistical and soft computing methods. In
contrast to ARIMA, LSTM models can learn more families of functions.

We use the PyTorch library to construct LSTM models. At each timestep
the input is 1- and the output is 19-dimensional. Prior to the training the data is
projected onto the [-1; 1] interval with the goal to achieve stronger gradients. The
models are trained using the mean squared error (MSE) loss, since no further
normalization is required. We use the Adam algorithm for the optimization of
the model parameters. The first 3 datasets from each of the data centers (6 in
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total) are used to perform a grid search and determine the optimal values for
hyperparameters based on the validation set approach. The number of considered
hidden layers varied from 1 to 3, the number of training epochs from 1 to 2000
and the learning rate from 1e-4 to 1e-2. A dropout layer with probability 0.5
is introduced between the hidden layers for regularization. Based on the results
of the grid search, the final model has one hidden layer, and is trained for 1827
epochs (which corresponds to early stopping regularization) with a learning rate
of 1e-2. Fig. 10 shows the validation loss for different combinations of epochs
and hidden layers, given the optimal learning rate.
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Fig. 10. Grid search validation loss
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Fig. 11. LSTM outperforming ARIMA

The remaining 13 datasets from each of the data centers (26 in total) are used
to compare the performance of ARIMA and LSTM. Given the input time series,
the auto.arima() function returns a deterministically computed ARIMA model.
In contrast, LSTM instances will differ from run to run due to the stochastic as-
pects of their training. To facilitate an extensive comparison of the performance
of both methods, we train 50 LSTM instances on each dataset. The scale of the
LSTM forecasts is reversed from [-1; 1] to the original one. Normalized root mean
squared error (NRMSE) is used to compare loss among all datasets and forecast-
ing methods. For each of the datasets the corresponding LSTM training runs are
considered, and the log changes between ARIMA and LSTM NRMSE (holding
ARIMA NRMSE as reference) are computed, resulting into a distribution. Our
findings show that given a dataset, one approach will systematically outperform
the other. Consider Fig. 11 and 14, which show concrete examples of LSTM
outperforming ARIMA(3,0,2) with non-zero mean and ARIMA(0,1,1)(0,0,1)[48]
with drift outperforming LSTM.

We have performed the augmented Dickey-Fuller test implying stationarity
under the alternative hypothesis on each dataset (on its fraction used for model
construction). We have then tested for an association between the ADF test
statistic and the type of the forecasting method, which dominates in terms of
performance given the dataset. Unfortunately, this analysis did not deliver sig-
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Fig. 13. Performance of ARIMA

nificant results. Thus, the method, which is more beneficial on average needs to
be selected. Fig. 12 shows boxplots of all measured log NRMSE changes for the
two separate data centers. The median log NRMSE changes are 0.27 and 0.14
for Australia-ATLAS and BNL-ATLAS data centers respectively. According to
these results, ARIMA models exhibit better performance. We attribute this to
the fact that low-capacity models are able to robustly fit high-variance data and
adopt ARIMA for our throughput forecasting model. The boxplots of ARIMA
NRMSE across all datasets are shown in Fig. 13.
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Fig. 14. ARIMA outperforming LSTM
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Fig. 15. Long-term forecasts

The forecasting model delivers short- and long-term predictions. Fig. 15 demon-
strates multivariate 2 days forecasts. The mean forecasts are depicted in red and
their 95% confidence intervals in purple. Note that the confidence intervals miss
only few outliers. Fig. 14 demonstrates that by increasing the time resolution,
the forecasts become more accurate in the short-term.
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5 Conclusions and Future Work

In this paper we have demonstrated that the network throughput of remote data
access in computing grids can be framed as a multiple linear regression. The re-
gression needs to be fit for each worker node - storage element pair. The estimates
of the regression coefficients can be mined from logs in form of time series. This
requires realistically obtainable logs on file accesses from only 2 concurrent pro-
cesses, one of them having 2 concurrent threads. Given a proper implementation
of remote data access monitoring, these time series can be mined unintrusively.
We have identified useful input features for the forecasting model. The ARIMA
model learns to explain the residual variance in the response induced by the la-
tent factors, e.g. changes in the grid infrastructure. A benchmark of LSTM ANN
has partially shown good results, but did not significantly outperform ARIMA.
The model can be constructed with a predefined resolution and deliver short-
and long-term forecasts with the state of the art accuracy.

These findings allow to robustly model the remote data access throughput
for any virtual links in the grid. The model was constructed and validated using
performance metrics from randomly selected data centers in the World-Wide
LHC Computing Grid.

Currently we are focusing on the following aspects for the future work:

– Formalization and forecasting of network throughput of other data access
techniques in the grid (data placement and stage-in).

– Construction of a grid simulator with a heavy emphasis on various data
access techniques.

– Evolutionary optimization of data access patterns within bags of jobs with
the objective to minimize the joint data transfer time. This constitutes a
constrained optimization problem. The solution fitness evaluation employs
the aforementioned simulator.
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