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Abstract. MicroRNAs (miRNAs) are small non-coding RNAs with a
key role in the post-transcriptional gene expression regularization, thanks
to their ability to link with the target mRNA through the complementary
base pairing mechanism. Given their role, it is important to identify their
targets and, to this purpose, different tools were proposed to solve this
problem. However, their results can be very different, so the community
is now moving toward the deployment of integration tools, which should
be able to perform better than the single ones.
As Machine and Deep Learning algorithms are now in their popular
years, we developed different classifiers from both areas to verify their
ability to recognize possible miRNA-mRNA interactions and evaluated
their performance, showing the potentialities and the limits that those
algorithms have in this field.
Here, we apply two deep learning classifiers and three different machine
learning models to two different miRNA-mRNA datasets, of predictions
from 3 different tools: TargetScan, miRanda, and RNAhybrid. Although
an experimental validation of the results is needed to better confirm
the predictions, deep learning techniques achieved the best performance
when the evaluation scores are taken into account.

Keywords: miRNA · Deep learning ·Machine learning ·miRNA-Target
Prediction.

1 Introduction

MicroRNAs are a particular family of RNAs characterized by a length of about 22
nucleotides originated from the non-coding RNAs [1]. Their ability to link with
the target leads to mRNA degradation and the translation process’s block [2],
preventing the production of proteins. These small molecules have an important
role also in the control of many biological processes, of which homeostasis is one
of the possible examples [3].
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Since their first discovery in 1993 [4, 5], miRNAs are at the center of the
scientific community’s interest. The computational analysis states that at last
30% of human genes are regulated by miRNA [6], and it has been shown that
their dysfunction can lead to the development and progression of different kind
of diseases, from cancer to cardiovascular dysfunction [7], and also neurological
disorders such as Alzheimer’s [8]. Indeed, some of the works done so far describe
the role of miR-21 in different kinds of diabetes mellitus [9] and refer to the
miRNAs of the has-let-7 family as associated with metabolic disease [10]. Re-
garding cancer, miRNAs can act as tumor inducers or suppressors, therefore they
are the core of the development of new drugs and therapeutic methods [11–13].

Given their importance, understanding the complex mechanisms behind the
interactions between miRNAs and their targets is one of the challenges of these
years. As a matter of fact, predicting which are the molecules that link together
is of vital importance to produce a specific solution to their misbehaviour. That
said, the use of biological approaches alone is not a sufficient strategy to resolve
the problem because, as they only partially match, each miRNA has multiple
mRNA targets and viceversa. Since there are more than 2000 miRNAs in the
human genome [14], it is impossible to experimentally test the enormous number
of possible combinations between miRNA and mRNA. It is time-consuming and
costly at the same time. There is, therefore, a need to identify in advance miRNA-
target interactions so to apply experimental approaches that can provide their
functional characterization and, thus, the understand of their effects.

The bioinformatics community proposed many computational prediction tools
which scope is to provide putative miRNA-target interactions to be evaluated
in laboratory. The problem lies in the fact that those tool predictions are often
inconsistent with each other. Indeed, the biological properties and parameters
used in the algorithms are often different and not complete, so the scientist has
difficulties in understanding which tool provides the best prediction and choos-
ing the appropriate miRNA to validate. Up to now, only a limited number of
targets have been experimentally validated as the tools suffer from a high level
of false positives [15].

The tools available so far include different computational approaches mainly
based on the modelling of physical interactions. However, new tools based on
Machine Learning (ML) and Deep Learning (DL) are starting to emerge. These
tools are able to automatically extract information from sequences: deepTar-
get [16] relies on autoencoders and Recurrent Neural Networks (RNN) to model
RNA sequences and learn miRNA-mRNA interactions; miRAW [17] uses DL to
analyse the mature miRNA transcript without making assumptions on which
physical characteristics are the best suitable to impute targets. Other DL algo-
rithms make use of selected features to predict the genes targeted by miRNAs;
for example in [18] the authors used three conservative features, eight accessible
features, and nine complementary ones to train a Convolutional Neural Network
(CNN) classifier.

Many works have been done to compare the performance of the available
tools, and for this we refer the reads to [15, 19–25]. Almost all of them com-
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pare the most famous tools: PITA, microRNA, miRSystem, miRmap, microT-
CDS, CoMir, mirWalk, TargetScan, PicTar, miRU, RNAhybrid, miRanda etc.
All these methods use specific features and parameters, but one of the main
difference among them is that some generate original scores by which the inter-
action is evaluated (e.g. TargetScan), while others are based on the development
of older tools, like microRNA, which is based on a development of the miRanda
algorithm.

Despite their variety, only few tools are effectively used in standard pro-
cedures. One reason is the confidence of their results, and another one is the
easiness that characterizes their use: the web-based service is the preferred plat-
form, followed by the downloaded, and last are the packages. This and the fact
that the targets identified by more than one tool are supposed to have a higher
probability to be validated in the lab [22] made us choose to test integrated tools
for the prediction of miRNA-mRNA interactions based only on selected features.

From the above-mentioned ones, we selected three tools: TargetScan, mi-
Randa, and RNAhybrid. These are among the most used ones and generate
scores which describe different interaction mechanisms that we believe are to be
considered simultaneously. This selection gave us the possibility to use the knowl-
edge available on the processes behind the miRNA-target interactions without
redundancy. That is not true for those tools using multiple scores to describe
the same feature or relying on a wide number of other tools since, if the scores
are produced viewing the same characteristic, this could lead to a bias.

We tested miRNA-mRNA positive and negative interactions on the selected
tools, their scores were collected, and a dataset was built. As reported in a
previous study, the approach combining the results of different prediction tools
achieves better performance than those obtained by the single ones [22, 35].

In the recent years, DL gained a huge success in many classification problems,
outperforming ML models [26], so we decided to verify if a case study as the one
we described could be resolved by DL architectures in a better way compared
to ML methods.

In this work, we employ two datasets of predictions from 3 different miRNA-
mRNA interaction tools, namely, TargetScan, miRanda, and RNAhybrid, to
train two DL classifiers and three different ML models: support vector machine
(SVM), logistic regression (LR), and random forest (RF). More precisely, we use
a dataset of positive and negative miRNA-target interactions of small dimension
(572 examples), and a larger one (13505 examples) obtained by generating new
negative examples. As expected, from the results we observed that DL models
need more time to train, but they achieve the best performance when the evalu-
ation scores are taken into account. Given these results, we can confirm a limit
of machine and deep learning: they both need a considerable amount of data to
train on.

In Section 2 we briefly describe the main biological properties of the miRNA-
mRNA interactions, the three selected tools used for the sequence-based predic-
tion, the scores they produce, and we introduce the ML and DL algorithms we
chose to test. In Section 3 we describe the data and the specifics of the DL
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and ML methods we trained. In Section 4 we compare their performance on the
dataset, and in Section 5 we draw the conclusion of our study.

2 Background

2.1 miRNA-mRNA Interactions and Prediction Tools

As mentioned before, miRNAs have a key role in various biological processes,
especially in gene expression regularization, by binding to mRNA molecules.
The miRNA-mRNA interactions are predicted by computational tools that com-
monly evaluate four main features:

Seed region. The seed region of a miRNA is defined as the first 2 to 8 nucleotides
starting from the 5′-end to the 3′-end which is the chemical orientation of a
single strand of nucleic acid [27]. This is the small sequence where miRNAs
link to their targets in a Watson-Crick (WC) match: adenosine (A) pairs with
uracil (U), and guanine (G) pairs with cytosine (C). It is considered a perfect
seed match if there are no gaps in the whole seed region (8 nucleotides) but
other seed matches are also possible, like the 6mer where the WC pairing
between the miRNA seed and mRNA is up to 6 nucleotides.

Site accessibility. The miRNA-mRNA interaction is possible only if the mRNA
can be unfolded after its binding to the miRNA. The mRNA secondary
structure can obstruct the hybridization, therefore the energy necessary to
provide the target accessibility can be considered to evaluate the possibility
that the mRNA is the real target of a miRNA.

Evolutionary conservation. A sequence conservation across species may provide
evidence that a miRNA-target interaction is functional because it is being
selected by positive natural selection. Conserved sequences are mainly the
seed regions [28].

Free energy. Since the Gibbs free energy is a measure of the stability of a
biological system, the complex miRNA-mRNA energy variation can be eval-
uated to predict which is the most likely interaction [29]: a low free energy
corresponds to a high probability that the interaction will occur.

From the miRNA-target prediction tools that use the aforementioned features,
three are particularly popular in the scientific community:

TargetScan. It was the first algorithm able to predict miRNA-target interactions
in vertebrates. It has been upgraded several times in the years and now it
estimates the cumulative weighted context score (CWCS) for each miRNA
submitted. CWCS is the sum of the contribution of six features of site context
to confirm the site efficacy [30], and it can vary from −1 to 1. The lowest
score is representative of a higher probability for the given mRNA to be
targeted.

miRanda. It was also one of the earlier prediction tools. The inputs are se-
quences, and it searches for potential target regions in a sequence dataset. It
outputs two different scores, one evaluating the alignment and the other the
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free energy: to describe a possible target, accordingly to the scores meaning,
the former has to be positive and high, while the latter must be negative.

RNAhybrid. Given two sequences (miRNA and target), RNAhybrid determines
the most energy favourable hybridization site. Thus, its main output is a
score evaluating the free energy for a given seed region. The tool provides
also a p-value score for the miRNA-mRNA interaction that is an abundance
measure of the target site.

2.2 Machine Learning and Deep Learning

Given a miRNA and a mRNA we wanted to test if the combination of scores
produced by different tools could give a more accurate indication of their likely
to be linked (positive outcome) or not (negative outcome). This can be seen as a
binary classification problem (true or false linkage) and, thus, ML and DL tech-
niques are nowadays the most suitable choice to deal with this kind of question.
They are automatic techniques for learning to make accurate predictions based
on past observations [31]. The data used to learn the model represent the so-
called training set, while the ones used to assess the generalization ability of the
model is the test set. The learning performance is evaluated observing a chosen
score, like the accuracy.

In the latest applications, DL approaches outperformed ML given their ability
to learn complex features. This is the reason why we implemented DL architec-
tures and compared their performance with suitable ML techniques like SVM,
RF, and LR [33].

These methods have a very different characterization:

Deep Network. DL architectures are essentially neural networks with multiple
layers which perform non-linear inputs elaboration [32]. A deep network is
characterized by a large number of hidden layers, which relates to the depth.
The number of layers is specific to the net because it indicates the complexity
of the relationships it is able to learn. Another important parameter is the
number of nodes in the layer. It is possible to choose between different kind
of layers (e.g., dense, convolutional, probabilistic, or memory), each able to
combine the input with a set of weights. A network with only dense layers
is a standard DNN, a RNN is instead characterized by memory cells, like
the LSTM. Non-linear functions like sigmoid and rectified linear unit are
then used to compute the output. Deep networks are suitable to analyse
high-dimensional data.

Support Vector Machines. SVMs are one of the most famous ML algorithms,
capable of performing linear and nonlinear classification. They aim to select
the coefficients for the optimal hyperplane able to separate the input vari-
ables into two classes (e.g., 0 and 1). SVMs perform better on complex but
small or medium datasets.

Random Forest. A RF is an ensemble of decision trees. Decision trees are created
to select suboptimal split points by introducing randomness. Each tree makes
a prediction on the proposed data, and all the predictions are averaged to



6 V. Giansanti et al.

give a more accurate result. The ensemble has a similar bias but a lower
variance than a single tree.

Logistic Regression. LR is the go-to method for binary classification in the ML
area, commonly used to estimate the probability that an instance belongs
to a particular class. The goal is to find the right coefficients that weight
each input variable. The prediction for the output is transformed using a
non-linear logistic function that transforms any value into the range 0 to 1.
LR is commonly used for datasets that do not contain correlated attributes.

3 Methods

3.1 Data

The classifiers were trained with data from a reference dataset of 48121946
miRNA-target predictions. This dataset was obtained starting from the se-
quences of the miRNA families and of the untranslated regions (UTRs, the ge-
nomic loci targeted by miRNA) from 23-way alignment, filtering the information
relative to the Homo sapiens species. More precisely, obtained a total of 30887
UTR (mRNA genes) and 1558 miRNA sequences, which were used as the starting
point of our analysis. Then, we run the 3 tools (namely, miRanda, TargetScan,
and RNAhybrid) and we combined their results in a matrix by looking at the po-
sitions on the UTR. Finally, to deal with the missing values of some tools, we as-
signed penalizing scores to them, which have been chosen after some experiments
we conducted to assess how these penalizing scores influence the final classifica-
tion results. As anticipated, the input matrix was composed of 48121946 rows
(30887 UTRs × 1558 miRNAs), in which the first five columns contain scores
provided by TargetScan (Tscan-score), miRanda (miRanda-score and miRanda-
energy) and RNAhybrid (RNAhybrid-mfe and RNAhybrid-pvalaue). The last
column contains the classification of the instances used to partition the dataset
into five classes: negative examples (a), positive and experimentally validated ex-
amples (b), only experimentally validated examples (c), only positive examples
(d) and unknown examples (e), as described in Table 1.

This latter classification is obtained by considering the predictions coming
from [36] in which the authors generated two sets of “positive” and “negative”
miRNA-target examples. The former set (positive examples) was obtained by
biologically verified experiments, while the latter examples (negative) were iden-
tified from a pooled dataset of predicted miRNA-target pairs. Moreover, we
downloaded the data from miRTarBase [37], a database of experimentally vali-
dated miRNA-target interactions, to additionally classify the positive examples
into positive and experimentally validated examples, only experimentally vali-
dated examples, and only positive examples. More specifically, we crossed miR-
TarBase interactions with the positive examples from [36], in order to make the
dataset more robust.

The unknown examples were not useful to train the classifiers, thus we put
aside these examples, while we merged together b, c, and d data to obtain a
unique positive class. The rearranged dataset was composed of 6841 positive
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Table 1. Dataset description.

Original New
Classification # Examples Classification # Examples

Negative (a) 286 Negative 286

Positive and Exp. Validated (b) 179

Positive 6841Only Exp. Validated (c) 286

Only positive (d) 6376

Unknown (e) 48114996 Unknown 48114996

Total 48121946 48121946

and 286 negative interactions. A great class imbalance like the one present in
this dataset is a huge problem for any ML or DL classification algorithm. In the
training phase, the classifiers receive much more information of one class than
of the other, and are not able to learn equally: the classifier tends to infer new
data as part of the majority class. A possible way to deal with this problem is
to make a balanced dataset by reducing the items of the majority class or by
increasing the minority class examples. We tried both methods and compared
the results obtained by the classifiers.

In the first case the dataset, that we called small dataset, was composed of
the 286 available negative examples and 286 positive examples, sampled from
the positive class: 179 from the original b classification, 54 from c, and 53 from
d. In the second case, we constructed a dataset (called large dataset) of 13505
examples: 6664 positive and 6841 negative interactions. The negative examples
were comprehensive of the 286 already available ones and 6555 new generated
examples. The generation of the artificial negative examples was made through
k-mer exchange between key and non-key regions of miRNA, as suggested in [34].
After their production, the miRNA were processed by HappyMirna [35], a tool
for the integration of miRNA-target predictions and comparison. Thanks to Hap-
pyMirna we were able to obtain possible target for the new-generated miRNAs
and the scores provided by TargetScan, miRanda, and RNAhybrid to construct
a matrix equal to the previous one.

All datasets had missing values (NaN) whenever the prediction tools were
not able to produce a result for the input. Since classifiers can not deal with
NaN , we replaced all of them with penalizing scores chosen according to the
range of the tool score, e.g. NaN for TargetScan were replaced with 1000.
RNAhybrid was able to assign a score to 43744510 miRNA-mRNA interactions,
while TargetScan only to 5341653 and miRanda to 4370618.

We observed that almost all the times a NaN was in the TargetScan record
a corresponding NaN was also in miRanda. Instead, RNAhybrid does not fail
to give a predictive value when the others meet a NaN .
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3.2 Classifiers

We developed five classifiers (SVM, RF, LR, DNN, and RNN) using the python
libraries Keras and Scikit-learn built on top of TensorFlow. All the classifiers
were fine-tuned by selecting the optimal hyperparameters with GridSearchCV.
When possible, we tried to maintain the same characteristics between models,
as the number of folds for the cross-validation used during the training.

On the small dataset we trained the SVM, RF, LR, and DNN. The SVM best
parameters were gamma = 1, C = 100, degree = 3, kernel = rbf, and random

state = 100. The parameters tuned for the RF classifier were the number of
estimators and the number of leaves for each estimator, obtaining 400 and 50,
respectively. For the LR we investigated the solver, C, and the number of it-
erations, obtaining the best performance with the lbfgs solver, C = 3, and 50
iterations. For the DNN, we built a network with 5 fully connected layers, the
first characterized by 80 nodes, from the second to the fourth with 40 nodes, and
the last with 2 (necessary for a binary classification). The network was trained
with 3000 epochs, a batch size of 100 and the ADAM optimizer. The score used
to evaluate the performance was in all cases the accuracy. The training was with
a 5-fold cross-validation.

On the large dataset, we used instead a 10-fold cross-validation. The best
parameters for the SVM were gamma = 2, C = 100, degree = 3, kernel = rbf,
and random state = 100. The RF had 100 estimators with a number of leaves
for each estimator of 60. For the LR, C was set to 0.5, the iterations to 200,
and the best solver was lbfgs. As for the deep architectures, we trained the same
DNN used on the small dataset and a RNN characterized by three layers: the
first and second were LSTM layers, with 150 and 100 units, respectively, the
third was a dense layer like in the DNN. During the cross-validation, each fold
was processed for 1000 epochs with a batch size of 1000.

4 Results

A way to compare the performance of different classifiers is to evaluate the
accuracy, the ROC curve, and compute the area under the curve. Figure 1 shows
the results obtained on the small dataset.

More precisely, the DNN and the RF had the best performance compared to
the other classifiers, achieving an area under the curve of 0.66. Other measures
were calculated and compared (see Table 2): the DNN had the best accuracy,
precision, and f1 score over all the classifiers, while the recall was comparable.
Based on this and the AUC we can state that the DNN was the model that best
learned to recognize the miRNA-mRNA interactions.

All the positive data not used for the training were stored in separated
datasets, called two and three dataset, so to remember the classification of ori-
gin. We used these datasets to check the percentage of the positive (and thus
correct) predictions made by the trained classifiers, which was a way to further
assess their performance. The same was done on the unknown data (the zero
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Fig. 1. Receiver Operating Characteristic (ROC) curve: performance obtained on the
small dataset by Random Forest, SVM, Logistic Regression, and DNN. The models
learned how to classify the items, but made a considerable percentage of mistakes.

Table 2. Evaluation scores for the implemented classifiers on the small dataset.

Classifier Accuracy Precision Recall f1

SVM 0.5717 0.5622 0.6847 0.6115

RF 0.5753 0.5862 0.6288 0.5910

LR 0.5280 0.5345 0.6451 0.5710

DNN 0.6417 0.6620 0.6250 0.6232

dataset) but in this case we could not say if the performance of the classifiers
was good or not. In fact, since we did not have prior knowledge, we could only
observe how different the predictions were. As we can see in Table 3, the SVM
and DNN models were the ones able to recognize the higher number of interac-
tions, especially on the three dataset. The RF model had the worst performance
on all the datasets: we could not be sure of the results of this model as it gave
only the 50% or less of correct evaluation on the unseen data that correspond to
the two and three dataset. On the zero dataset the SVM and DNN were again
the ones that proposed as possible the larger portion of interactions.

What we obtained training the models on the large dataset was instead very
different. All the models were able to correctly classify over the 95% of the items,
and none performed considerably better than the others (see Figure 2 and Ta-
ble 4). We believe that the scores improvement was thanks to the supplementary
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Table 3. Percentage of positive classification obtained from the trained classifiers.

Classifier Two dataset Three dataset Zero dataset

SVM 62.5593 80.3571 46.8071

RF 51.2970 42.8571 25.3370

LR 52.0563 58.9285 29.5477

DNN 59.9968 76.7857 50.3155

information the models were able to learn in the large dataset: miRNA-target
interaction is a complex problem which needs a considerable amount of data to
be addressed.

Fig. 2. Receiver Operating Characteristic (ROC) curve: performance obtained on the
large dataset by Random Forest, SVM, Logistic Regression, deep net with lstm layer
(LSTM), and deep net with only dense layers (DNN). All the models learned to cor-
rectly recognize the items with minor mistakes.

We trained the recurrent network to compare the results of the two deep
architectures. Finding good parameters for the RNN was easier compared to
the DNN, and also the number of necessary layers was smaller. Consequently,
the training time was considerably reduced. As we used the three data and
two data to build the large dataset, we could only observe how all the trained
models behaved on the zero dataset (see Table 5): almost all the miRNA-target
interactions were recognized as possibly true in all models.
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Table 4. Evaluation scores for the implemented classifiers on the large dataset.

Classifier Accuracy Precision Recall f1

SVM 0.9145 0.9582 0.8646 0.9087

RF 0.9745 0.9532 0.9975 0.9748

LR 0.9658 0.9428 0.9910 0.9662

DNN 0.9679 0.9390 1.0 0.9685

RNN 0.9671 0.9389 0.9982 0.9676

Table 5. Percentage of positive classifications obtained from the trained classifiers on
the zero dataset.

Dataset SVM RF LR DNN LSTM

Zero 96.0268 99.8839 99.7372 99.9781 99.9654

5 Conclusions

miRNA-target interactions are predicted by a variety of tools that frequently
give divergent results, thus are becoming diffuse solutions that integrate their
outputs to give a unique and (possibly) reliable decision on the couples valid-
ity. Machine learning and deep learning methods are the ones preferably used
to integrate different outcomes, with deep learning methods usually surpassing
machine learning ones in terms of performance.

In our work, we trained five models from machine and deep learning area
to test the possibility to identify a miRNA-mRNA interactions based on the
scores provided by TargetScan, miRanda, and RNAhybrid. We used two dif-
ferent datasets: the first was a dataset of positive and negative miRNA-target
interactions of small dimension (572 examples), the other was a larger dataset
(13505 examples) obtained generating new negative examples. The performance
of all the models was comparable in both cases: they performed poorly on the
small dataset and very well on the large one.

Given these results, we can confirm a limit of machine and deep learning:
they both need a considerable amount of data to train on. On the small dataset,
comparing more scores, we said that the DNN performed fairly better than the
other models, while on the large dataset we obtained from all the models very
good and comparable results.

In the latter case we have to say that, as all the performance were very
good (and as all the models gave the same results on the zero dataset), we do
not suggest to use deep network solutions. In fact they have a difficult nature
and they require a lot of time for the training and, moreover, on our problem
the efforts did not give results upon the mean. It is much easier and faster to
use standard machine learning implementations. On the small dataset the DNN
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results were better, but we can not recommend using this method over the others
as the data were not enough to efficiently train the models.

In conclusion, we recognized the possibility to implement integrated tools
based on machine and deep learning, the goodness of which can be finally eval-
uated only when the miRNA-target interactions they propose will be experi-
mentally validated. The dimension of the dataset used to train is one of the
main problems for a good integration. We showed that with a reduced dataset
it’s hard to find a model which can easily recognized miRNA-target interaction
(even if more DL architectures should be evaluated). If instead lots of examples
are available, the choice of model type is irrelevant from the accuracy point of
view.
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