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Abstract. Galerkin projection provides a formal means to project a dif-
ferential equation onto a set of preselected basis functions. This may be
done for the purpose of formulating a numerical method, as in the case
of spectral methods, or formulation of a reduced-order model (ROM) for
a complex system. Here, a new method is proposed in which the basis
functions used in the projection process are determined from an asymp-
totic (perturbation) analysis. These asymptotic basis functions (ABF)
are obtained from the governing equation itself; therefore, they contain
physical information about the system and its dependence on parame-
ters contained within the mathematical formulation. This is referred to
as reduced-physics modeling (RPM) as the basis functions are obtained
from a physical model-driven, rather than data-driven, technique. This
new approach is tailor-made for modeling multiscale problems as the var-
ious scales, whether overlapping or distinct in time or space, are formally
accounted for in the ABF. Regular- and singular-perturbation problems
are used to illustrate that projection of the governing equations onto the
ABF allows for determination of accurate approximate solutions for val-
ues of the “small” parameter that are much larger than possible with the
asymptotic expansion alone and naturally accommodate multiscale prob-
lems in which large gradients occur in adjacent regions of the domain.

Keywords: Galerkin projection · Asymptotic methods ·
Reduced-order modeling

1 Introduction

Projection-based methods are frequently used as the basis for numerical meth-
ods, such as spectral methods, and formulation of reduced-order models (ROM),
such as proper-orthogonal decomposition (POD). A ROM can then be used as a
simplified mathematical model with a reduced number of degrees-of-freedom for
systems involving complex physics in optimization, control, and system identifi-
cation settings, for example. Projection methods approximate a solution in terms
of a linear combination of preselected basis functions. In spectral methods, the
basis functions are chosen for their ease of integration and other desirable math-
ematical properties. In ROM, the basis functions are computed from numerical
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or experimental data using an optimization procedure, such as POD, which is a
“data-driven” method.

The rise in popularity of spectral numerical methods and ROM techniques
has highlighted the need for determining basis functions that are appropriate for
the particular problem under consideration. A “model-driven” approach is pro-
posed here in which the basis functions are obtained directly and formally from
the governing equations rather than data obtained from the system. Tailor-made
for such a purpose, particularly in multiscale problems, is asymptotic (or pertur-
bation) methods, which constitute a set of techniques for obtaining an asymp-
totic series in terms of a physical parameter within the system that becomes very
small or large. They provide a powerful set of tools that allow one to learn a
great deal about a system directly from the governing equation(s) alone without
the need to solve it, simulate it, or conduct an experiment. Such techniques lead
to important physical insights that would be difficult to glean numerically or
experimentally alone – a need that only becomes more acute as we seek to solve
increasingly complex problems in multiscale physics, multi-disciplinary design
optimization, and control. The primary interest here is in applications to dif-
ferential equations in which multiple spatial and/or temporal scales are present
within the system.

2 Projection Methods

Projection methods, and the closely associated method of weighted residuals,
have their origins in variational methods (Cassel 2013). Consider a general non-
homogeneous differential equation of the form

Lu(x) = f(x), (1)

where the differential operator L may be linear or nonlinear. In the inverse prob-
lem, the differential Euler equation (1) is converted into its proper variational
form. To do so, the inner product of the differential equation (1) with the varia-
tion of the dependent variable is taken, i.e. the differential equation is projected
onto δu according to ∫ x1

x0

(Lu − f) δu dx = 0, (2)

which is known as the reduced variational form. Carrying out the necessary
integration by parts leads to the proper variational form if one exists.

In the Galerkin method, an approximation to the solution u(x) is devised in
the form of a linear combination of a set of basis functions of the form

ū(x) = φ0(x) +
N∑

n=1

cnφn(x) = φ0(x)+ c1φ1(x)+ · · ·+ cnφn(x)+ . . .+ cNφN (x).

(3)
The linearly-independent basis functions φn(x), n = 0, . . . , N that comprise this
trial function account for the spatial dependence in the solution and are specified
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functions that satisfy the boundary conditions. Any non-homogeneous boundary
conditions are satisfied by φ0(x), such that the remaining basis functions are
homogeneous at the boundaries of the domain.

Because the trial function ū(x) is only an approximate solution, it does not
satisfy the differential equation (1) exactly. As a proxy for the unknown error of
this approximate solution, the residual is defined from the differential equation
by

r(x) = Lū(x) − f(x). (4)

In general, the differential operator could be linear or nonlinear, steady or
unsteady, and ordinary or partial; however, a one-dimensional framework will
be used here in order to introduce the method. The reduced variational form (2)
can be written in terms of the residual and trial function as∫ x1

x0

r(x)δū dx = 0. (5)

Although the reduced-variational form (2) is only useful as an exact representa-
tion of the so-called weak form of the differential equation, the analogous form (5)
in terms of the trial function is simply setting the inner product of the residual
with the variation of the trial function to zero, i.e. it is enforcing an orthogonal
projection.

Let us more closely examine what Eq. (5) is indicating. Because the basis
functions φn(x), n = 0, . . . , N are specified and do not vary, and it is only the
coefficients cn, n = 1, . . . , N that vary, taking the variation of the trial function
(3) and substituting into Eq. (5) yields

∫ x1

x0

r(x) [φ1(x)δc1 + · · · + φn(x)δcn + . . . + φN (x)δcN ] dx = 0.

Because the coefficients are arbitrary, for this sum to vanish, the expression
multiplying each variation must vanish. That is,

∫ x1

x0

r(x)φi(x) dx = 0, i = 1, . . . , N. (6)

The index is changed to i so that there is no confusion with the index n that
identifies the basis functions in the residual r(x). Note that each of the orthogonal
projections (6) includes all coefficients cn and basis functions φn(x), n = 1, . . . , N
in the residual but only one of the basis functions φi(x). This is referred to
as an orthogonal projection, not because the basis functions must be mutually
orthogonal, but because orthogonality of the residual and basis functions is being
enforced inherently in the method. Evaluating these N definite integrals removes
the dependence on the spatial coordinate x and leads to an N × N system
of algebraic equations for the coefficients cn, n = 1, . . . , N . If the problem is
unsteady, then this process will lead to an N ×N system of ordinary differential
equations for the time-dependent coefficients cn(t), n = 1, . . . , N . This system
of algebraic or ordinary differential equations is the ROM.
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The solution to the ROM produces the coefficients that for the given basis
functions lead to the trial function that is closest to the exact stationary function
u(x). This is typically called the Galerkin method when applied as a numerical
method, whereas it is referred to as Galerkin projection when applied in ROM.
It is helpful, however, to realize that all such methods trace their roots back to
the inverse variational problem. The Galerkin method is particularly straight-
forward when the basis functions are mutually orthogonal, in which case all of
the products of basis functions φn(x)φi(x) in Eq. (6) vanish except when n = i.

Within the Galerkin method, we may select the basis functions in two ways
depending on our objective:

1. Preselect the basis functions for their ease of integration and orthogonality
properties. This gives rise to spectral numerical methods, in which Fourier
series or Chebyshev polynomials are typically used as the basis functions.

2. Calculate the basis functions from numerical or experimental data obtained
from the system for a particular set of parameters. This is done by solv-
ing an optimization problem and gives rise to proper orthogonal decomposi-
tion (POD) and its extensions and is the basis of the ROM for the system’s
behavior.

For more on spectral methods, see Fletcher (1984) and Canuto et al. (1988), and
for more on ROM, see Rowley and Dawson (2017).

3 Asymptotic (Perturbation) Methods

Clearly, the effectiveness of projection-based spectral numerical methods and
ROM hinge on the choice of basis functions used in the trial function. This
is where asymptotic methods may prove to be transformational. Once again,
the ideal basis functions would contain as much information about the physics
of the system as possible, thereby minimizing the number of modes required
to obtain an accurate spectral method or ROM. While POD forms the basis
functions from numerical or experimental data obtained from the solution itself
for a given set of parameters, the asymptotic basis functions (ABF) to be put
forward here contain the parametric dependence within them and thus apply
over a wide parameter range. More to the point, POD is a data-driven method
that does not take advantage of any knowledge of the system’s mathematical
model, whereas such a model is the basis for obtaining the ABF that are the
centerpiece of the method introduced here.

Asymptotic (perturbation) methods are a collection of techniques, includ-
ing matched asymptotic expansions, multiple scales, WKB theory, and strained
coordinates for treating systems containing a small or large parameter. The
analysis results in the so-called distinguished limit, gauge functions, and asymp-
totic series. The distinguished limit exposes the dominant balances of terms
in the governing equation(s) in the limiting case and indicates the size of the
various regions in a domain. The gauge functions in the small parameter allow
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us to quantify the level of approximation of each term in the asymptotic expan-
sion. Finally, the terms in the asymptotic series provide increasingly higher-order
approximations of the system.

An asymptotic expansion is a parametric expansion in the small parameter,
say ε, of the form1

u(x; ε) =
∞∑

n=1

gn(ε)un(x; ε) = g1(ε)u1(x; ε) + g2(ε)u2(x; ε) + · · · , (7)

where gn(ε) are the gauge functions and show the asymptotic orders of the
successive terms. The accuracy of the expansion improves as ε is reduced and/or
as additional terms are included in the asymptotic expansion. An asymptotic
expansion is local in ε, i.e. it applies for ε � 1, but it is global in x, i.e. it applies
for all x in the domain. Often only a small number of terms are necessary in an
asymptotic series for a good approximation of the overall solution. The un(x; ε)
functions provide useful information about the dominant behavior of the system
when the parameter ε is small, and only a small number of terms are typically
required to decipher this information.

An asymptotic sequence of gauge functions g1(ε), g2(ε), . . . , gn(ε), . . . is an
asymptotic sequence as ε → 0 if

gn+1(ε) � gn(ε) as ε → 0+, (8)

or equivalently

lim
ε→0+

gn+1(ε)
gn(ε)

= 0, n = 1, 2, 3, . . . . (9)

The most common situation is when the gauge functions are simply integer
powers of ε

g1(ε) = ε0 = 1, g2(ε) = ε, g3(ε) = ε2, . . . ,

which clearly satisfy the above properties of an asymptotic sequence. Therefore,
an asymptotic sequence exhibits an asymptotic convergence rate in terms of the
small parameter.

In general, the small parameter ε could be in the equation(s), boundary
or initial conditions, and/or the domain geometry (e.g. thin-airfoil theory and
thin-shell theory). In regular-perturbation problems, the small parameter does
not multiply the highest-order derivative term(s) in the differential equation,
and a single expansion is uniformly valid over the entire domain. In singular-
perturbation problems, however, the small parameter multiplies the highest-
order derivative term so that the order of the equation is reduced for ε = 0.
In this case, different expansions must be obtained in separate regions of the

1 Note that traditionally in asymptotic methods, the terms are numbered in the
asymptotic expansions starting with zero. That is, the leading-order term is
g0(ε)u0(x; ε). Here, however, we start the expansion from unity in order to be con-
sistent with our RPM nomenclature. In this way, u0(x) can be used to accommodate
non-homogeneous boundary conditions as in spectral methods.
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domain, each with its own dominant physics. The method of matched asymp-
totic expansions ensures that neighboring expansions formally match with one
another. It is in this way that asymptotic analysis reveals the dominant physics
within each region of the domain where there is fundamentally different, i.e. mul-
tiscale, behavior arising from the governing equation(s). That is, the effect of the
small parameter is not “small” qualitatively. In particular, singular-perturbation
problems are such that the solution with ε = 0 is of a fundamentally different
form and does not smoothly approach the leading-order solution as ε → 0+.

A common criticism of asymptotic methods is that the resulting asymp-
totic expansions often only agree closely with the exact or numerical solution
of the governing equation(s) for small values of the parameter ε. However, the
contention here is that their use in projection methods holds great promise in
extending the relevance of the asymptotic series to a wider parameter range for
a given system or even to other similar systems. For more details on asymptotic
methods, see Hinch (1991) and Weinan (2011).

4 Asymptotic Basis Functions

Presenting these brief overviews of projection and asymptotic methods side-by-
side leads one to ask the seemingly obvious question, “Why not use the terms in
an asymptotic expansion as the basis functions for a ROM?” Would not these
modes take into account the important physical parameter(s) in the system
such that the same modes could be used over a wide range of such parameters?
Recall that POD modes only apply for the specific value of the parameter(s) for
which the data was obtained. New values of the parameters means new data,
which means new POD modes. Also recall that spectral numerical methods have
difficulties dealing with solutions having large gradients within the domain. What
if the chosen basis functions in the trial function actually became more accurate,
rather than less so, when large gradients appear in a solution and even fewer
basis functions are required?

Because ABF are obtained from the physical model, we refer to them as
reduced-physics models (RPM); not only does it allow for reduction in the order of
the model for the system, as with ROM, it contains valuable physical information
about the system. In some sense, it is the natural progression of basis functions
used in projection methods:

1. Spectral numerical methods - choose Fourier, Legendre, or Chebyshev func-
tions for computational efficiency and ease of integration in the projection
process.

2. ROM, e.g. POD - use data-driven modes obtained directly from experimental
or numerical data for the given problem.

3. RPM, e.g. ABF - use model-driven modes obtained directly from the govern-
ing equation(s) for the given problem (or a similar one).

The ABF could be used in a spectral method or ROM context. That is, they
could be used in any setting involving the use of preselected basis functions for
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modeling a system having a small parameter. Although we lose the advantages of
orthogonal basis functions in RPM, this is more than made up for by the extreme
reduction in the number of required basis functions enabled by use of the ABF.
In large part, this is facilitated by the fact that the dependence on the small
parameter is accounted for in the gauge functions, which form an asymptotic
sequence, and the asymptotic basis functions themselves, which is not the case
in traditional ROM techniques.

The ABF must be uniformly valid across the entire domain in order to provide
global basis functions in the projection process. This is naturally the case for
regular-perturbation problems or when the method of multiple scales is used.
For singular-perturbation problems using matched asymptotic expansions, on
the other hand, the composite solution must be formed from the asymptotic
series in each distinct region of the domain having their own distinguished limits
in terms of the small parameter.

5 Regular-Perturbation Illustration

A regular-perturbation problem is considered first for two reasons. First, it will
be shown that the RPM coefficients approach unity as ε → 0. This confirms that
the Galerkin projection process is consistent with asymptotic series expansions
and preserves the asymptotic solution, which is simply the RPM with cn = 1
for n = 1, . . . , N . Secondly, it will be shown that the ABF can be used with
Galerkin projection in the RPM to obtain accurate solutions for values of ε that
are much larger than is possible for the asymptotic solution alone.

Consider the ordinary differential equation

d2u

dx2
+ 2ε

du

dx
+ u = 1, u(0) = 0, u

(π

2

)
= 0, (10)

where 0 ≤ ε � 1, i.e. ε is a small, but positive, parameter. Thus, we have a
differential equation of the form

Lu(x; ε) = f(x),

where
Lu(x; ε) = u′′(x) + 2εu′(x) + u(x), f(x) = 1.

The ABF are obtained through a regular-perturbation analysis followed by com-
puting the RPM coefficients by projecting the governing equation (10) onto the
ABF.

5.1 Asymptotic Basis Functions

Because the small parameter does not multiply the highest-order derivative in
the governing equation (10), a regular-perturbation expansion is expected to be
suitable of the form

u(x; ε) = u1(x) + εu2(x) + ε2u3(x) + . . . , (11)
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where the gauge functions are integer powers of ε. Substituting the asymptotic
expansion (11) into the differential equation (10) and equating like powers of
ε results in a series of differential equations and boundary conditions for each
order in the asymptotic series. Solving each of these equations in succession leads
to the first three orders:

u1(x) = 1 − sin x − cos x,

u2(x) = x sinx − π

2
sin x + x cos x,

u3(x) =
1
8

[(
2π(2x + 1) − 4(x + 1)x + π2

)
sin x − 4(x − 1)x cos x

]
.

(12)

Given these expressions, the first three terms in the regular-perturbation expan-
sion (11) are

u(x; ε) = u1(x) + εu2(x) + ε2u3(x) + O(ε3).

As in other ROM settings, the solution u(x; ε) of the differential equation
is approximated in terms of a linear combination of a finite number of ABF
according to:

u(x; ε) =
N∑

n=1

cnφn(x; ε) = c1φ1(x; ε) + · · · + cnφn(x; ε) + . . . + cNφN (x; ε). (13)

The ABF are the product of each order of the asymptotic solution and their
corresponding gauge functions, i.e. φn(x; ε) = gn(ε)un(x; ε), and the cn, n =
1, . . . , N are the RPM coefficients to be determined from the projection process.
Observe that the asymptotic expansion (7) is the sum of the asymptotic basis
functions, which corresponds to the RPM solution (13) with all cn = 1. There-
fore, the RPM coefficients provide a quantitative measure of the accuracy of the
asymptotic solution without knowledge of the exact or numerical solution. In
this regular-perturbation case, the ABF are given by

φ1(x; ε) = u1(x), φ2(x; ε) = εu2(x), . . . , φn(x; ε) = εn−1un(x), . . . . (14)

Note that rather than the basis functions being characterized by modes with
increasing frequencies of oscillation or higher-order polynomials as n increases, as
in traditional spectral methods, the asymptotic basis functions form an asymp-
totic sequence according to Eqs. (8) and (9). Moreover, adding additional terms,
i.e. increasing N , does not influence the lower-order ABF already obtained; only
the coefficients in the RPM need to be recomputed.

5.2 Reduced-Physics Model

Substituting the RPM expansion (13) for the solution u(x; ε), the spatial definite
integrals in the projection Eq. (6) eliminate the explicit dependence on the spatial
coordinate x and produce a system of N algebraic equations for the coefficients
cn, n = 1, . . . , N for a given value of ε. Observe that the continuous, infinite-
dimensional ordinary differential equation Lu = f has been converted into a
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Table 1. RPM coefficients for the regular-perturbation problem (10) using Galerkin
projection with N = 4 asymptotic basis functions; L2-norm of error for asymptotic
expansion (AE) and reduced-physics model (RPM) as compared to the exact solution.

ε c1 c2 c3 c4 ‖eAE‖2 ‖eRPM‖2

0.01 1.000000 1.000000 0.999964 0.999963 3.14167 × 10−10 3.0188 × 10−12

0.1 0.999999 0.999999 0.996393 0.996393 3.13265 × 10−6 3.00695 × 10−8

1.0 0.992809 0.992809 0.728974 0.728974 2.45447 × 10−2 2.12738 × 10−4

2.0 0.939427 0.939427 0.383799 0.383799 0.249235 1.65804 × 10−3

3.0 0.841983 0.841983 0.197772 0.197772 0.843277 4.04899 × 10−3

4.0 0.728941 0.728941 0.107342 0.107342 1.94203 6.74403 × 10−3

5.0 0.619753 0.619753 0.0616782 0.0616782 3.69399 9.38273 × 10−3

10.0 0.273812 0.273812 0.00736198 0.00736198 27.8312 1.66313 × 10−2

Fig. 1. Exact (solid), asymptotic (dashed), and RPM (dotted) solutions for regular-
perturbation problem with N = 4.

system of N algebraic equations for the RPM coefficients in the trial function.
This is the RPM.

The results of the Galerkin projection for the regular-perturbation problem
(10) with N = 4 ABF are given in Table 1 and Fig. 1. Recall that the values of the
RPM coefficients provide a quantitative measure of how accurate the asymptotic
expansion is. The RPM coefficients resulting from the projection for various
values of ε show that the RPM coefficients indeed approach unity as ε → 0
as expected. This confirms that the projection process is consistent with the
asymptotic series. Observe from the table that the coefficients begin to deviate
from being close to unity for ε > 0.1, above which the RPM and asymptotic
solutions deviate substantially. The deviation between the asymptotic and RPM
solutions is illustrated in Fig. 1(a) for ε = 1. While the asymptotic solution
displays a notable error compared to the exact solution, the RPM solution is
indistinguishable from the exact solution.

As shown in Fig. 1(b) for ε = 2, the asymptotic solution does not even
agree qualitatively with the exact solution (as expected), whereas the RPM solu-
tion is still graphically indistinguishable from the exact solution. Also given in
Table 1 is the L2-norm of the error between the asymptotic and RPM solutions
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as compared to the exact solution of the ordinary differential equation (10).
Observe that the L2-norm of the error for the RPM solution is two orders of
magnitude smaller than that for the underlying asymptotic solution for ε < 3.
While the error for the asymptotic solution increases dramatically thereafter,
that for the RPM increases very slowly up to ε = 10. Consequently, as the value
of ε increases, the asymptotic series is not at all representative of the actual
solution. However, the RPM solution remains quite accurate with the L2-norm
only increasing marginally up to ε = 10. This is well beyond the range of validity
of the asymptotic solution alone, which is obtained in the limit ε → 0. With no
additional information, therefore, the accuracy of the asymptotic solution can
be improved dramatically for increasing values of ε using Galerkin projection
with ABF!

6 Singular-Perturbation Illustration

The objective of the singular-perturbation problem considered in this section
is to illustrate how the ABF can be used with Galerkin projection to obtain
increasingly accurate solutions as ε → 0 with a small number of basis functions
as compared to other projection-based methods, such as spectral methods. In
particular, the ABF capture the multiscale behavior of the singular-perturbation
problem for cases where traditional projection methods actually require a rapidly
increasing number of terms to accurately resolve. In fact, because the ABF are
the exact solution in the limit as ε → 0, fewer ABF are actually required. In
addition, just as for the regular-perturbation problem, Galerkin projection using
ABF allows for accurate solutions with larger values of the small parameter than
possible with the asymptotic solution alone.

Consider the ordinary differential equation

ε
d2u

dx2
+ 2

du

dx
+ u = 1, u(0) = 0, u(1) = 0, (15)

where 0 ≤ ε � 1. Observe that this is very similar to the regular-perturbation
problem (10) except that the small parameter now multiplies the highest-order
derivative in the governing equation (15); therefore, a singular-perturbation
expansion is expected to be appropriate. In fact, there is an O(ε) (distinguished
limit) thin boundary layer near the boundary at x = 0. The method of matched
asymptotic expansions then leads to separate outer and inner asymptotic expan-
sions for x = O(1) and x = O(ε), respectively. Matching in the overlap region
between the two regions leads to a uniformly-valid composite solution that applies
across the entire domain. In this case, an asymptotic expansion is obtained of
the form

u(x; ε) = u1(x) + εu2(x) + . . . . (16)

Here, only the first two terms are considered, i.e. N = 2 in the ABF, in the
Galerkin projection to obtain the RPM. Once again, the ABF include both the
asymptotic solutions and their corresponding gauge functions.
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Table 2. RPM coefficients for the singular-perturbation problem (15) using Galerkin
projection with N = 2 asymptotic basis functions; L2-norm of error for asymptotic
expansion (AE) and reduced-physics model (RPM) as compared to the exact solution;
and the number of Chebyshev polynomials NCheb required to obtain the same level of
accuracy as the RPM with N = 2.

ε c1 c2 ‖eAE‖2 ‖eRPM‖2 NCheb

0.02 0.999985 1.01089 2.21793 × 10−5 5.17765 × 10−6 39

0.05 0.999911 1.02711 1.28291 × 10−4 3.06292 × 10−5 26

0.1 0.999663 1.05360 4.43086 × 10−4 1.09102 × 10−4 17

0.2 0.998849 1.10231 1.25002 × 10−3 3.49802 × 10−4 11

0.3 0.998031 1.13953 2.97762 × 10−3 1.85862 × 10−3 7

0.4 0.997889 1.15391 8.71716 × 10−3 7.99755 × 10−3 5

0.5 0.999162 1.03925 2.01347 × 10−2 2.02258 × 10−2 5

Fig. 2. Exact (solid), asymptotic (dashed), and RPM (dotted) solutions for singular-
perturbation problem with N = 2. Observe the thin boundary layer near x = 0.

The results for Galerkin projection with the N = 2 ABF for the singular-
perturbation problem are shown in Table 2 and Fig. 2. Once again, the values
of the RPM coefficients approach unity as ε → 0. Although not as dramatic
as for the regular-perturbation problem, the RPM solution with ABF is found
to be more accurate than the asymptotic solution alone for values of the small
parameter that are larger than would be possible otherwise. Unlike in the regular-
perturbation case, the small parameter ε must remain sufficiently small to main-
tain the integrity of the asymptotic structure. That is, ε must remain sufficiently
small such that the boundary-layer thickness remains smaller than the overall
domain size. The right column of the table shows the number of Chebyshev
polynomials required in a traditional spectral method to obtain the same level
of accuracy as the RPM solution with only two ABF. Observe the dramatic
increase in the number of Chebyshev polynomials required as the boundary
layer gets thinner and the associated gradients get larger as ε → 0.
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7 Conclusions and Discussion

A novel approach to projection methods has been developed in which the terms
in an asymptotic (perturbation) expansion are used as basis functions within a
Galerkin projection framework. Using regular- and singular-perturbation prob-
lems based on ordinary differential equations, it is illustrated how (1) the pro-
jection method is consistent with the asymptotic expansion in the sense that as
the small parameter goes to zero, the RPM coefficients approach unity, (2) the
projection process allows a small number of ABF to form the basis for very accu-
rate solutions for values of the “small” parameter that are well beyond those for
the asymptotic series itself, and (3) Galerkin projection with only two ABF for
the singular-perturbation problem result in increasingly accurate solutions for
decreasing values of the small parameter, while the number of Chebyshev poly-
nomials required to obtain an equally accurate solution increases dramatically
as ε → 0.

The present paper illustrates the potential of this novel approach to dramat-
ically reduce the computational requirements for solving multiscale problems
having large local gradients in their solutions. In its simplest form, the RPM
approach introduced here simply provides another, but more physical, source of
basis functions for spectral and ROM-based techniques. The significance of this
new method as it relates to asymptotic methods, spectral numerical methods,
and reduced-order modeling are discussed in the remainder of the discussion.

7.1 From an Asymptotic Methods Perspective

The primary strength of asymptotic methods is their ability to illuminate the
dominant physics in various regions of multiscale problems for small (or large)
values of a physical parameter. Their primary weakness is that the range of
validity of the resulting asymptotic expansion is generally very limited and not
known unless a separate analytical or numerical solution is available. RPM with
ABF addresses both of these issues. By projecting the governing equation(s)
onto the ABF, the resulting RPM coefficients provide a quantitative measure of
the range of validity of the asymptotic solution that is self-consistent and does
not require any external means of verification – the closer the coefficients are to
unity, the better the asymptotic expansion.

While determining the range of validity of an asymptotic expansion is primar-
ily of academic interest, applying Galerkin projection with ABF to dramatically
increase the range of validity of an asymptotic expansion to O(1) values of the
“small” parameter has a great deal of practical usefulness. Crucially, no addi-
tional information is required to do so. In addition to extending the validity of an
asymptotic expansion, the physical insight inherent in the asymptotic method
allows one to see how ε = O(1) cases relate to the limiting behavior to determine
to what extent the dominant balances obtained as ε → 0 persist to larger ε. All
of this comes from the original differential equation(s) governing the physics of
the system without requiring any numerical solutions or experiments.
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Essentially, the ABF provide another source of basis functions for numerical
methods, such as spectral methods, ROM, such as proper-orthogonal decomposi-
tion, system identification, such as SINDy, and other modeling tasks as discussed
below. Rather than simply being chosen for their mathematical properties, such
as in spectral methods, or being obtained from numerical or experimental data,
such as in POD, however, the ABF are obtained from the governing equations
themselves. Therefore, they provide a model-driven, rather than data-driven,
approach to obtaining basis functions for further calculation or analysis. Con-
sequently, an inherently physically-based multiscale method is derived with the
characteristic scales being accommodated in the ABF.

7.2 From a Spectral Numerical Methods Perspective

Recall that spectral numerical methods are based on Galerkin projection (or
another weighted residuals method) and utilize basis functions preselected for
their ease of integration and other mathematical properties, such as orthogonal-
ity, for example. Typically, Fourier modes, Legendre polynomials, or Chebyshev
polynomials are used. Spectral methods lead to very accurate global solutions
with very fast “spectral” convergence rates. The latter is the case, however, only
when the solution is sufficiently smooth. Solutions containing large gradients
require a large number of spectral modes to accurately resolve the solution.

Singular-perturbation asymptotic expansions display the opposite behavior.
They provide increasingly accurate solutions for increasingly singular problems
as ε → 0. Spectral methods with ABF, which contain the dependence on the
small parameter through the gauge functions, allow one to take advantage of this
behavior. Incorporating the model-driven ABF into spectral numerical methods
hold the potential to dramatically reduce the number of basis functions required
for an accurate solution, particularly for singular problems. Therefore, incorpo-
rating ABF directly into spectral methods could significantly extend their use-
fulness to problems with sharp gradients and singularities, thereby addressing
their primary weakness.

It is also possible that hybrid spectral methods could be developed that com-
bine ABF and traditional basis functions within the Galerkin projection frame-
work. The ABF could account for any singular behavior, while the traditional
basis functions resolve the remaining smooth details of the solution. Similarly,
a hybrid method could be developed in which ABF are used in the coordinate
direction(s) containing singular behavior, and traditional spectral modes are
used in the other direction(s), where the solution is smooth.

7.3 From a Reduced-Order Modeling Perspective

Instead of seeking a numerical solution of a differential equation, as with spectral
numerical methods, the objective of ROM is to obtain a simplified mathematical
model of a system that contains its essential features but involves a finite, and
small, number of degrees-of-freedom. The modes are calculated using an opti-
mization procedure, such as POD and its variants, applied to experimental or



478 K. W. Cassel

numerical data from the full system. The resulting ROM can then be used in
optimization, closed-loop control, system identification, multi-disciplinary design
optimization, and multiscale modeling, for example.

Interestingly, the projection methods used to obtain the ROM utilize the
governing equation(s) of the system, while the POD approach to determining
the basis functions does not. That is, POD is a data-driven method. While this
is advantageous for data sets obtained from systems for which a mathematical
model is not available, in a Galerkin projection context, where a mathemati-
cal model is known, this model does not come into play in formation of the
POD basis functions themselves. Consequently, the primary advantage of POD
analysis in generating basis functions directly from data is also its primary short-
coming in ROM.

In addition, because the optimal basis functions are determined from the
actual data set, they provide the best representation of the original data with
the fewest POD modes for the values of the parameter(s) used to obtain the data.
However, this means that they are problem – and parameter – dependent, requir-
ing one to obtain a new set of basis functions each time the data set changes,
whether from consideration of a different dynamical model or a different set of
data from the same model. RPM with ABF addresses this weakness of ROM with
POD by obtaining the basis functions directly from the mathematical model of
the system. Recall that the ABF incorporate both the gauge functions as well
as the asymptotic solutions for each order. Consequently, both the dependence
on the small parameter ε and the spatial coordinate x are accounted for by the
ABF, which is not the case in POD analysis. Thus, this model-driven approach
provides a complement and enhancement to the data-driven methods that are
gaining traction in many fields today.

Finally, the majority of ROM techniques are based on linear theory, which
renders them straightforward to apply but not always ideal for nonlinear system.
RPM, on the other hand, accounts for the inherent nonlinearity of the system
when present. Although some of the mathematical advantages of using linear
system theory is lost, a dramatic reduction in the number of basis functions is
anticipated when using ABF.
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