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Abstract. Most current clustering based anomaly detection methods use scoring schema and
thresholds to classify anomalies. These methods are often tailored to target specific data sets
with “known” number of clusters. The paper provides a streaming clustering and anomaly
detection algorithm that does not require strict arbitrary thresholds on the anomaly scores
or knowledge of the number of clusters while performing probabilistic anomaly detection
and clustering simultaneously. This ensures that the cluster formation is not impacted by
the presence of anomalous data, thereby leading to more reliable definition of “normal vs
abnormal” behavior. The motivations behind developing the INCAD model [17] and the path
that leads to the streaming model is discussed.
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1 Introduction

Anomaly detection heavily depends on the definitions of expected and anomalous behaviors [14,
20, 22]. In most real systems, observed system behavior typically forms natural clusters whereas
anomalous behavior either forms a small cluster or is weakly associated with the natural clusters.
Under such assumptions, clustering based anomaly detection methods form a natural choice [7, 10,
18] but have several limitations.

Firstly, clustering based methods usually require baseline assumptions that are often conjectures
and generalizing them is not always trivial. This leads to inaccurate choices for model parameters
such as the number of clusters or the thresholds that are required to classify anomalies. Score based
models have thresholds that are often based on data/user preference. Such assumptions result in
models that are susceptible to modeler’s bias and possible over-fitting.

Secondly, setting the number of clusters has additional challenges when dealing with streaming
data, where new behavior could emerge and form new clusters. Non-stationarity is inherent as data
evolves over time. Moreover, the data distribution of a stream changes over time due to changes in
environment, trends or other unforeseen factors [13, 21]. This leads to a phenomenon called concept
drift, due to which an anomaly detection algorithm cannot assume any fixed distribution for data
streams. Thus, there arises a need for a definition of an anomaly that is dynamically adapted.

Thirdly, when anomaly detection is performed post clustering [2, 12], the presence of anoma-
lies gives a skewed (usually slight) definition of traditional/normal behavior. However, since the
existence of anomalies impacts the clustering as well as the definition of the ‘normal’3 behavior, it

3 Non-anomalous behavior is described as “normal” behavior. Should not be confused with Gaus-
sian/Normal distribution.
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seems counter-intuitive to classify anomalies based on such definitions4.To avoid this, simultaneous
clustering and anomaly detection needs to be performed.

Table 1. Comparison with other anomaly detection methods

Neural Networks LOF KNN Kmeans – Kernel Function Based Gaussian Model Based INCAD

Clustering Based 7 7 3 3 7 7 3

Multi-dimension 3 7 3 3 3 3 3

Unsupervised 7 3 3 3 3 3 3

Non-parametric 7 7 7 7 3 7 3

Adaptable to streaming settings 7 7 7 7 7 7 3

Adaptive thresholds 7 7 7 7 7 7 3

Probabilistic scoring 7 7 7 7 3 7 3

In addition to the above challenges, extending these assumptions to the streaming context leads
to a whole new set of challenges. Many supervised [8, 16] and unsupervised anomaly detection
techniques [4, 8, 15, 18] are offline learning methods that require the full data set in advance
for data mining which makes them unsuitable for real-time streaming data. Although supervised
anomaly detection techniques may be effective in yielding good results, they are typically unsuitable
for anomaly detection in streaming data [16]. We propose a method called Integrated Clustering
and Anomaly Detection (INCAD), that couples Bayesian non-parametric modeling and extreme
value theory to simultaneously perform clustering and anomaly detection. Table 1 summarizes the
properties of INCAD vs other strategies for anomaly detection. The primary contributions of the
paper are as follows:

1. Generalized anomaly definition with adaptive interpretation The model definition of
an anomaly has dynamic interpretation allowing anomalous behaviors to evolve into normal be-
haviors and vice versa. This definition not only evolves the number of clusters with an incoming
stream of data (using non-parametric mixture models) but also helps evolve the classification
of anomalies.

2. Combination of Bayesian non-parametric models and extreme value theory(EVT)
The novelty of the INCAD approach lies in blending extreme value theory and Bayesian non-
parametric models. Non-parametric mixture models [19], such as Dirichlet Process Mixture
Models (DPMM) [3, 25, 28], allow the number of components to vary and evolve during in-
ference. While there has been limited work that has explored DPMM for the task of anomaly
detection [26, 29], they have not been shown to operate in a streaming mode or ignore online
updates to the DPMM model. On the other hand, EVT gives the probability of a point be-
ing anomalous which has a more universal interpretation, in contrast to the scoring schema
with user-defined thresholds. Although EVT’s definition of anomalies is more adaptable for
streaming data sets [1, 11, 27], fitting an extreme value distribution (EVD) on a mixture of
distributions or even multivariate distributions is challenging. This novel combination brings
out the much-needed aspects in both the models.

3. Extension to streaming settings The model is non-exchangeable which is an well suited to
capture the effect of the order of data input and utilize this dependency to develop streaming
adaptation.

4 Clustering and defining “normal/traditional” behavior in presence of anomalies develop in skewed and
inconsistent results.
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4. Ability to handle complex data generative models The model can be generalized to
multivariate distributions and complex mixture models.

2 Motivation

2.1 Assumptions on Anomalous Behavior

One of the key drivers in developing any model are the model assumptions. For INCAD model, we
assume that the data has multiple “normal” as well as “anomalous” behaviors. These behaviors
are dynamic with a tendency to evolve from “anomalous” to “normal” and vice versa. Each such
behavior (normal/anomalous) forms a sub-population that can be represented using a cluster. These
clusters are assumed to be generated from a family of distributions whose cluster proportions and
cluster parameters are generated from a non-parametric distribution.

There are two distinct differences between normal and anomalous data that must be identified:
(a) “Anomalous” instances are different from tail instances of “normal” behavior and need to be
distinguished from them. They are assumed to be generated from distributions that are different
from “normal” data. (b) The distributions for anomalous data result in relatively fewer instances
in the observed set.

As mentioned earlier, clustering based anomaly detection methods could be good candidates
for monitoring such systems, but require the ability to allow the clustering to evolve with the
streaming data, i.e., new clusters form, old clusters grow or split. Furthermore, we need the model
to distinguish between anomalies and extremal values of the “normal”.

Thus, non-parametric models that can accommodate infinite clusters are integrated with extreme
value distributions that distinguish between anomalous and non-anomalous behaviors.

We now describe the two ingredients that go into our model namely, mixture models and ex-
tensions of EVT.

2.2 EVT and Generalized Pareto Distribution in Higher Dimensions

Estimation of parameters for extreme value distributions in higher dimensions is complex. To over-
come this challenge, Clifton et al. [9] proposed an extended version of the generalized Pareto dis-
tribution that is applicable for different multi-model and multivariate distributions. For a given
data X ∈ Rn distributed as fX : X → Y where Y ∈ R is the image of the pdf values of X, let
Y ∈ [0, ymax] be the range of Y where ymax = sup(fX). Let,

GY (y) =

∫
f−1
Y ([0,y])

fX(x)dx (1)

where f−1Y : Y → X is the pre-image of fX given by, f−1Y ([0, y]) = {x|fX(x) ∈ [0, y]}. Then GY is
in the domain of attraction of generalized Pareto distribution (GPD) GeY for y ∈ [0, u] as u → 0
given by,

GeY (y) =

{
1− (1− ξ(y−νβ )−1/ξ, ξ 6= 0

1− exp(−y−νβ ), ξ = 0
(2)

where, ν, βand ξ are the location, scale and shape parameters of the GPD respectively.
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2.3 Mixture Models

Mixture models assume that the data consists of sub-populations each generated from a different
distribution. It can be used to study the properties of clusters using mixture distributions. In the
classic version, when the number of clusters is known, finite mixture models are used with Dirichlet
priors. However, when the number of latent clusters is unknown, one can extend finite mixture
models to infinite mixture models like Dirichlet process mixture model (DPMM). In DPMM, the
mixture distributions being sampled from a Dirichlet process (DP). DP can be viewed as a dis-
tribution over a family of distributions, that constitutes a base distribution G0 which is a prior
over the cluster parameters θ and positive scaling parameter αDP . G is a Dirichlet process (de-
noted as G ∼ DP (G0, αDP )) if G is a random distribution with same support as the base dis-
tribution G0 and for any measurable finite partition of the support A1 ∪ A2 ∪ . . . ∪ Ak, we have
(G(A1), G(A2), . . . , G(Ak)) ∼ Dir(αDPG0(A1), . . . , αDPG0(Ak)).

In order to learn the number of clusters from the data, Bayesian non-parametric (BNP) models
are used. BNP models like DPMM assume an infinite number of clusters of which only a finite num-
ber are populated. It brings forth a finesse in choosing the number of clusters while assuming a prior
on the cluster assignments of the data. The prior is given by the Chinese restaurant process(CRP)
which is defined analogously to the seating of N customers who sequentially join tables in a Chinese
restaurant. Here, the probability of the nth customer joining an existing table is proportional to the
table size while the probability the customer forms a new table is always proportional to parameter
α, ∀n ∈ 1, 2, .., N . This results in a distribution over the set of all partitions of integers 1, 2, .., N .
More formally, the distribution can be represented using the following probability function:

P (zn = k|z1:n−1) =

{ nk

n+α−1 nk > 0 (existing cluster)
α

n+α−1 nk = 0 (new cluster)
(3)

where zi is the cluster assignment of the ith data point, nk is the size of the kth cluster , α > 0 is
the concentration parameter. Large α values corresponds to an increased tendency of data points
to form new clusters5.

3 Integrated Clustering and Anomaly Detection (INCAD)

The proposed INCAD model’s prior is essentially a modification of a Chinese Restaurant Process
(CRP). The seating of a customer at the Chinese restaurant is dependent on an evaluation by a
gatekeeper. The gatekeeper decides the ability of the customer to start a new table based on the
customer’s features relative to existing patrons. If the gatekeeper believes the customer stands out,
the customer is assigned a higher concentration parameter α that bumps up their chances of getting
a new table. The model was inspired by the work of Blei and Frazier [5] in their distance dependent
CRP models. The integrated INCAD model defines a flexible concentration parameter α for each
data point. The probabilities are given by:

P (zn|z1:n−1,x) =

{ nk

n+α2−1 , nk > 0 (existing cluster)
α2

n+α2−1 , nk = 0 (new cluster)

5 Our modified model targets this aspect of concentration parameter to generate the desired simultaneous
clustering and anomaly detection.
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Fig. 1. Graphical representation of the proposed INCAD model.

where z, n, nk are described earlier and α2 = f(α|xn,x, z) is a function of a base concentration
parameter α. The function is chosen such that it is monotonic in p(xn) where, p is the probability
of xi being in the tail of the mixture distribution. In this paper, f is given by,

f(α|xn,x, z) =

{
α , if not in tail
α∗ , if in tail

where, α∗ = 100
1−pn and

pn = p(xn) =

{
Probability of xn being anomalous, xn in tail

0, otherwise
(4)

Traditional CRP not only mimics the partition structure of DPMM but also allows flexibility
in partitioning differently for different data sets. However, CRP lacks the ability to distinguish
anomalies from non-anomalous points. To set differential treatment for anomalous data, the CRP
concentration parameter α is modified to be sensitive to anomalous instances and nudge them to
form individual clusters. The tail points are clustered using this updated concentration parameter
α2 which is designed to increase with increasing probability of a point being anomalous. This ensures
that the probability of tail points forming individual clusters increases as they are further away from
the rest of the data.
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4 Choice of the Extreme Value Distribution

The choice for GEV0 , the base distribution for the anomalous cluster parameters, is the key for
identifying anomalous instances. By choosing GEV0 as the extreme value counterpart of G0, the
model ensures that the anomalous clusters are statistically “far” from the normal clusters. However,
as discussed earlier, not all distributions have a well-defined EVD counterpart. We first describe
the inference strategy for the case where GEV0 exists. We then adapt this strategy for the scenario
where GEV is not available.

4.1 Inference when GEV
0 is available

Inference for traditional DPMMs is computationally expensive, even when conjugate priors are used.
MCMC based algorithms [24] and variational techniques [6] have been typically used for inference.
Here we adopt the Gibbs sampling based MCMC method for conjugate priors (Algorithm 1 [24]).
This algorithm can be thought of as an extension of a Gibbs sampling-based method for a fixed
mixture model, such that the cluster indicator zi can take values between 1 and K + 1, where K is
the current number of clusters.

Gibbs Sampling Though INCAD is based on DPMM, the model has an additional anomaly
classification variable a. that determines the estimation of the rest of the parameters. In the Gibbs
sampling algorithm for INCAD, the data points {xi}Ni=1 are observed and the number of clusters
K, cluster indicators {zi}Ni=1 and anomaly classifiers {ai}Ni=1 are latent. Using Markov property and
Bayes rule, we derive the posterior probabilities for zi ∀i ∈ 1, 2, . . . , N as:

P (zi = k|x., z−i, α, α∗,π,πa, λ, {θk} , {θak} , a., γ) = P (zi = k|x., z−i, α, α∗, {θk} , {θak} , ai)

∝
{
P (zi = k|z−i, α, θk)P (xi|zi = k, z−i, θk, α) ai = 0
P (zi = k|z−i, α∗, θak)P (xi|zi = k, z−i, θ

a
k , α

∗) ai = 1

=

{
nk

(n+α−1)F (xi|θk) ai = 0
nk

(n+α∗−1)F (xi|θak) ai = 1
(5)

where α∗ = 100
1−pi , pi is the probability of xi being anomalous and K is the number of non-empty

clusters. Thus, the posterior probability of forming a new cluster denoted by K + 1 is given by:

P (zi = K + 1|x., z−i, α, α∗,π,πa, λ, {θk} , {θak} , a., γ) = P (zi = K + 1|xi, z−i, α, α∗, λ, ai)

∝
{
P (zi = K + 1|z−i, α, λ)P (xi|zi = K + 1, z−i, α, λ, ai) ai = 0
P (zi = K + 1|z−i, α∗, λ)P (xi|zi = K + 1, z−i, α

∗, λ, ai) ai = 1

=

{ α
n+α−1

∫
F (xi|θ)G0(θ|λ)dθ ai = 0

α∗

n+α∗−1
∫
F (xi|θa)GEV0 (θa|λ)dθa ai = 1

(6)
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Similarly, the parameters for clusters k ∈ {1, 2, . . . ,K} are sampled from:

θk ∝ G0(θk|λ)L(xk|θk) if cluster is not anomalous (7)

θak ∝ GEV0 (θak |λ)L(xk|θak) if cluster is anomalous (8)

where xk = {xi|zi = k} is the set of all points in cluster k. Finally, to identify the anomaly
classification of the data, the posterior probability of ai is given by:

P (ai = 1|x., z., α, α∗,π,πa, λ, {θk} , {θak} , γ) = P (ai = 1|xi, z., α∗, λ, {θak} , γ)

∝
K+1∑
k=1

P (ai = 1|xi, zi = k, z−i, α
∗, λ, {θak} , γ) ∗ P (zi = k|xi, z−i, α∗, λ, {θak} , γ)

=

K∑
k=1

P (xi|θak)γ
nk

(n+ α∗ − 1)
+

(∫
F (xi|θa)GEV0 (θa|λ)dθa

)
γ

α∗

n+ α∗ − 1
(9)

Similarly,

P (ai = 0|xi, z., α, λ, {θk} , γ)

∝
K∑
k=1

P (xi|θk)(1− γ)
nk

(n+ α− 1)
+

(∫
F (xi|θ)G0(θ|λ)dθ

)
(1− γ)

α

n+ α− 1
(10)

4.2 Inference when GEV
0 is not available

The estimation of GEV0 is required on two occasions. Firstly, while sampling the parameters of
anomalous clusters when generating the data and estimating the posterior distribution. Secondly,
to compute the probability of the point being anomalous when estimating the updated concentration
parameter α2. When estimating GEV0 is not feasible, the following two modifications to the original
model are proposed:

1. Since an approximate GEV0 distribution need not belong to the family of conjugate priors of F ,
we need a different approach to sample the parameters for anomalous clusters. Thus, we assume
θa ∼ G0 for sampling the parameters {θak}∞k=1 for anomalous clusters.

2. To estimate the probability of a point being anomalous, use the approach described by Clifton
et al. [9].

The pseudo-Gibbs sampling algorithm, presented in Algorithm 2, has been designed to address the
cases when GEV0 is not available. For such cases, the modified f is given by,

f(α|xn,x, z) =

{
α , if not in tail

α ∗ (1− ev prop) + 100
1−pn ∗ ev prop , if in tail

where ev prop determines the effect of a anomalous behavior on the concentration parameter6.
ev prop is solely used to speed up the convergence in the Gibbs sampling. Since the estimation of
the GEV distribution is not always possible, an alternate/pseudo Gibbs sampling algorithm has
been presented in Algorithm 2.

6 It can be seen that when the data point xn has extreme or rare features differentiating it from all existing
clusters, the corresponding density fy(xn) decreases. This makes it a left tail point in the distribution
Gy. The farther away it is in the tail, the lower the probability of its δ-nbd being in the tail and hence a
higher f(α|xn,x, z).



8 S. Guggilam et al.

Algorithm 1: Gibbs Sampling Algorithm when GEV0 is available

Given z(t−1)
. , a(t−1)

. ,
{
θ
(t−1)
k

}
,
{
θ
a(t−1)
k

}
from previous iterations. Let K be the total number of

clusters found till last iteration. Sample z(t). , a(t). ,
{
θ
(t)
k

}
,
{
θ
a(t)
k

}
as follows

1. Set z. = z(t−1)
. and a. = a(t−1)

.

2. for each point i→ 1 to N do

(a) Remove xi from its cluster zi.
(b) If xi is the only point in its cluster, nzi = 0 after step (2)(a). Remove the cluster and

update K to K-1.
(c) Rearrange cluster indices to ensure none are empty.
(d) Sample zi from the Multinomial distribution given by Equations 5 and 6
(e) If zi = K + 1, then sample new cluster parameters from the following distribution (It must be

noted that the above posterior distribution was derived under the assumption of independence
and exchangeability of priors for mathematical ease.)

θ
∣∣∣xi, z.,{θ(t−1)

k

}
,
{
θ
a(t−1)
k

}
, a(t−1)

.

∝

{
αG0(θ|λ)F (xi|θ) +

∑
j 6=i F (xi|θzj )δ(θ − θ(t−1)

zj )δ(a
(t−1)
j ) , a

(t−1)
i = 0

α∗GEV
0 (θ|λ)F (xi|θ) +

∑
j 6=i F (xi|θzj )δ(θ − θ(t−1)

zj )δ(a
(t−1)
j − 1) , a

(t−1)
i = 1

Update K=K+1.
(f) For each cluster k ∈ {1, 2, . . . ,K}, sample cluster parameters θk and θak using

Equations 7 and 8.
(g) Sample the anomaly classification ai from the Binomial distribution given by

Equations 9 and 10.
(h) Set z(t). = z. and a(t). = a.

4.3 Exchangeability

A model is said to be exchangeable when for any permutation S of {1, 2, ..., n}, P (x1, x2, ...xn) =
P (xS(1), xS(2), ...xS(n)). Looking at the joint probability of the cluster assignments for the integrated
model, we know,

P (z1, z2, ..zn|x) = P (z1|x)P (z2|z1,x)..P (zn|z1:n−1,x)

Without loss of generality, let us assume there are K clusters. Let, for any k < K, the joint
probability of all the points in cluster k be given by

(
α ∗ pk,1

Ik,1 + α− 1
+
α∗ ∗ (1− pk,1)

Ik,1 + α∗ − 1

) Nk∏
nk=2

(
(nk − 1) ∗ pk,nk

Ik,nk
+ α− 1

+
(nk − 1) ∗ (1− pk,nk

)

Ik,nk
+ α∗ − 1

)
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Algorithm 2: Gibbs Sampling Algorithm when GEV0 is not available

Given z(t−1)
. , a(t−1)

. ,
{
θ
(t−1)
k

}
,
{
θ
a(t−1)
k

}
from previous iterations. Let K be the total number of

clusters found till last iteration. Sample z(t). , a(t). ,
{
θ
(t)
k

}
,
{
θ
a(t)
k

}
as follows

1. Set z. = z(t−1)
. and a. = a(t−1)

.

2. for each point i→ 1 to N do

(a) Steps 2a to 2d in Algorithm 1
(b) If zi = K + 1, then set the cluster distribution to be multivariate normal with the new

cluster mean as xi and cluster variance as Σ which is pre-defined.
Update K=K+1.

(c) For each cluster k ∈ {1, 2, . . . ,K}, sample cluster parameters θk and θak using
Equation 7.

(d) Sample the anomaly classification ai from the Binomial(pi) where pi is given by
Equation 4. If most of the cluster instances are classified as anomalous, classify all of
the cluster’s instances as anomalies.

(e) Set z(t). = z. and a(t). = a.

where Nk is the size of the cluster k , Ik,i is the index of the ith instance joining the kth cluster
and pk,i = pIk,i

. Thus, the joint probability for complete data is then given by

∏K
k=1

[
(Ik,1 − 1)pk,1(α− α∗) + α∗(Ik,1 + α− 1)

∏Nk

nk=2(nk − 1)(Ik,nk
+ α− 1 + pk,nk

(α∗ − α)
]

∏N
i=1 ((i+ α− 1)(i+ α∗ − 1))

which is dependent on the order of the data. This shows that the model is not exchangeable
unless α = α∗ or pk,nk

= 0 or pk,nk
= 1. These conditions effectively reduce the prior distribution

to a traditional CRP model. Hence, it can be concluded that the INCAD model cannot be modified
to be exchangeable.

Non-exchangeable models in streaming settings Though exchangeability is a reasonable as-
sumption in many situations, the evolution of behavior over time is not captured by traditional
exchangeable models. In particular for streaming settings, using non-exchangeable models captures
the effect of the order of the data. In such settings, instances that are a result of new evolving behav-
ior should be monitored (as anomalous) until the behavior becomes relatively prevalent. Similarly,
relapse of outdated behaviors (either normal or anomalous) should also be subjected to critical
evaluation due to extended lag observed between similar instances. Such order driven dependency
can be well captured in non-exchangeable models making them ideal for studying streaming data.

4.4 Adaptability to sequential data

One of the best outcomes of having a non-exchangeable prior is its ability to capture the drift or
evolution in the behavior(s) either locally or globally or a mixture of both. INCAD model serves as
a perfect platform to detect these changes and delivers an adaptable classification and clustering.
The model has a straightforward extension to sequential settings where the model evolves with
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every incoming instance. Rather than updating the model for entire data with each new update,
the streaming INCAD model re-evaluates only the tail instances. This enables the model to identify
the following evaluations in the data:

1. New trends that are classified as anomalous but can eventually grow to become normal.
2. Previously normal behaviors that have vanished over time but have relapsed and hence become

anomalous (eg. disease relapse post complete recovery)

The Gibbs sampling algorithm for the streaming INCAD model is given in Algorithm 3.

Fig. 2. Evolution of anomaly classification using streaming INCAD: The classification into anomalous and
normal instances are represented by l and l respectively. Note the evolution of the classification of top
right cluster from anomalous to normal with incoming data

Fig. 3. Evolution of clustering using streaming INCAD: Each cluster is denoted by a different color. Notice
the evolution of random points in top right corner into a well formed cluster in the presence of more data

5 Results

In this section, we evaluate the proposed model using benchmark streaming datasets from NU-
MENTA. The streaming INCAD model’s anomaly detection is compared with SPOT algorithm
developed by Siffer et al. [27]. The evolution of clustering and anomaly classification using the
streaming INCAD model is visualized using simulated dataset. In addition, the effect of batch vs
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Algorithm 3: Algorithm for Streaming Extension

Perform clustering on a small portion of the data (10-20%) using non-streaming model
Set evprop = exp−0.5

for each new data point xN do
1. Compute the mixture proportions m para and the mixture density for all the data.

Compute t1 = qth percentile pdf value to identify the tail points
2. For each xi s.t. f(xi) < t1 repeat steps 2a→2d of Algorithm 2

If cluster size ≤ 0.05 ∗N then, classify all the cluster points as anomalies.

stream proportion on quality of performance is presented. For Gibbs sampling initialization, the
data was assumed to follow a mixture of MVN distributions. 10 clusters were initially assumed with
the same initial parameters. The cluster means were set to the sample mean and the covariance
matrix as a multiple of the sample covariance matrix, using a scalar constant. The concentration
parameter α was always set to 1.

5.1 Simulated Data

For visualizing the model’s clustering and anomaly detection, a 2-dimensional data set of size 400
with 4 normal clusters and 23 anomalies sampled from a normal distribution centered at (0,0) and
a large variance was generated for model evaluation. Small clusters and data outliers are regarded
as true anomalies. Data from the first 3 normal clusters (300 data points) were first modeled using
non-streaming INCAD. The final cluster and the anomalies were then used as updates for the
streaming INCAD model. The evolution in the anomaly classification is presented in Figure 2.

Fig. 4. NUMENTA traffic data: (from left to right) Anomaly detection and clustering using streaming
INCAD and anomaly detection using SPOT [27]

5.2 Model Evaluation on NUMENTA Data

Two data sets from NUMENTA [23] namely the real traffic data and the AWS cloud watch data
were used as benchmarks for the streaming anomaly detection. The streaming INCAD model was
compared with the SPOT algorithm developed by Siffer et al. [27]. Unlike SPOT algorithm, the
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Fig. 5. Anomaly detection on NUMENTA AWS cloud watch data using streaming INCAD(left) and SPOT
[27] (right)

streaming INCAD is capable of modeling data with more than one feature. Thus, the data instance,
as well as the time of the instance, were used to develop the anomaly detection model. Since the
true anomaly labels are not available, the model’s performance with respect to SPOT algorithm
was evaluated based on the ability to identify erratic behaviors. The model results on the datasets
using streaming INCAD and SPOT have been presented in Figures 4 and 5.

Fig. 6. Proportion of data for batch model vs Quality: Computational time (left) and Proportion of data
for the batch model (in tens) vs Quality of Anomaly detection (right)

6 Sensitivity to Batch Proportion

Streaming INCAD model re-evaluates the tail data at each update, the dependency of the model’s
performance on the current state must be evaluated. Thus, various metrics were used to study the
model’s sensitivity to the initial batch proportion. Figure 6 shows the effect of batch proportion on
computational time and performance of anomaly detection. The simulated data defined in Section
5.1 was used for the sensitivity analysis. It can be seen that the computational time is optimal for
25% of data used in to run the non-streaming INCAD model. As anticipated, precision, accuracy,
specificity, and f-measure for the anomaly detection were observed to plateau after a significant
increase.

7 Conclusion and Future Work

A detailed description of the INCAD algorithm and the motivation behind it has been presented in
this paper. The model’s definition of an anomaly and its adaptable interpretation sets the model
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apart from the rest of the clustering based anomaly detection algorithms. While past anomaly
detection methods lack the ability to simultaneously perform clustering and anomaly detection or
to the INCAD model not only defines a new standard for such integrated methods but also breaks
into the domain of streaming anomaly detection. The model’s ability to identify anomalies and
cluster data using a completely data-driven strategy permits it to capture the evolution of multiple
behaviors and patterns within the data.

Additionally, the INCAD model can be smoothly transformed into a streaming setting. The
model is seen to be robust to the initial proportion of the data subset that was evaluated using
the non-streaming INCAD model. Moreover, this sets up the model to be extended to distribution
families beyond multivariate normal. Though one of the key shortcomings of the model is its com-
putational complexity in Gibbs sampling in the DPMM clusters, the use of faster methods such as
variational inference might prove to be useful.
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