
A project-based course on software
development for (engineering) research

Kyle Niemeyer

Oregon State University

13 June 2019

kyle.niemeyer@oregonstate.edu

@kyleniemeyer

git.io/nrg

!

!"
#

NRG

http://creativecommons.org/licenses/by/4.0/
mailto:kyle.niemeyer@oregonstate.edu
https://twitter.com/kyleniemeyer
https://git.io/nrg

Motivation
The stats:

• 2009: 91% scientists consider research software important/very
important1

• UK academics in 2014: 90% use software in research; 70% of them
would find research impractical without it2

• US postdocs in 2017: 95% / 63% same3

But: practically no graduate students / researchers receive formal training in
this area.

(Contrast with typical experimental methods courses)

1 JE Hannay, HP Langtangen, et al. SECSE 2009. Vancouver, BC, 1–8. https://doi.org/10.1109/SECSE.2009.5069155
2 S Hettrick et al. UK Research Software Survey 2014. (2015) https://doi.org/10.7488/ds/253

3 U Nangia & DS Katz, WSSSPE 5.1 (2017) https://doi.org/10.5281/zenodo.814102

!2

https://doi.org/10.1109/SECSE.2009.5069155
https://doi.org/10.7488/ds/253
https://doi.org/10.5281/zenodo.814102

Computational Science?

!3

Computational Science?

software / computational skills : computational science

!3

Computational Science?

software / computational skills : computational science

::

!3

Computational Science?

software / computational skills : computational science

::

experimental skills : experimental science

!3

https://edition.cnn.com/travel/article/spectacular-fountains/index.html

needs
https://edition.cnn.com/travel/article/spectacular-fountains/index.html

http://artisanplumbing.ca

needs
https://edition.cnn.com/travel/article/spectacular-fountains/index.html

Who am I?
• Assistant Professor of Mechanical

Engineering, Oregon State
University

• Research focuses on simulations
and modeling of reacting fluid
flows and chemical kinetics

• Associate Editor-in-Chief, Journal
of Open Source Software

!5

https://github.com/kyleniemeyer

Existing Resources
• Software Carpentry workshops

have become a popular way to
teach fundamental skills: Unix/
command line, version control
with Git, and Python
programming

• Similarly, Data Carpentry
workshops for data science

• For domain scientists: MolSSI
Software Summer School

!7

More (Static) Resources
PERSPECTIVE

Good enough practices in scientific computing
Greg Wilson1☯*, Jennifer Bryan2☯, Karen Cranston3☯, Justin Kitzes4☯, Lex Nederbragt5☯,
Tracy K. Teal6☯

1 Software Carpentry Foundation, Austin, Texas, United States of America, 2 RStudio and Department of
Statistics, University of British Columbia, Vancouver, British Columbia, Canada, 3 Department of Biology,
Duke University, Durham, North Carolina, United States of America, 4 Energy and Resources Group,
University of California, Berkeley, Berkeley, California, United States of America, 5 Centre for Ecological and
Evolutionary Synthesis, University of Oslo, Oslo, Norway, 6 Data Carpentry, Davis, California, United States
of America

☯ These authors contributed equally to this work.
* gvwilson@software-carpentry.org

Author summary

Computers are now essential in all branches of science, but most researchers are never
taught the equivalent of basic lab skills for research computing. As a result, data can get
lost, analyses can take much longer than necessary, and researchers are limited in how
effectively they can work with software and data. Computing workflows need to follow
the same practices as lab projects and notebooks, with organized data, documented steps,
and the project structured for reproducibility, but researchers new to computing often
don’t know where to start. This paper presents a set of good computing practices that
every researcher can adopt, regardless of their current level of computational skill. These
practices, which encompass data management, programming, collaborating with col-
leagues, organizing projects, tracking work, and writing manuscripts, are drawn from a
wide variety of published sources from our daily lives and from our work with volunteer
organizations that have delivered workshops to over 11,000 people since 2010.

Overview

We present a set of computing tools and techniques that every researcher can and should con-
sider adopting. These recommendations synthesize inspiration from our own work, from the
experiences of the thousands of people who have taken part in Software Carpentry and Data
Carpentry workshops over the past 6 years, and from a variety of other guides. Our recom-
mendations are aimed specifically at people who are new to research computing.

Introduction

Three years ago, a group of researchers involved in Software Carpentry and Data Carpentry
wrote a paper called "Best Practices for Scientific Computing" [1]. That paper provided recom-
mendations for people who were already doing significant amounts of computation in their
research. However, as computing has become an essential part of science for all researchers,
there is a larger group of people new to scientific computing, and the question then becomes,
"where to start?"

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005510 June 22, 2017 1 / 20

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Wilson G, Bryan J, Cranston K, Kitzes J,
Nederbragt L, Teal TK (2017) Good enough
practices in scientific computing. PLoS Comput
Biol 13(6): e1005510. https://doi.org/10.1371/
journal.pcbi.1005510

Editor: Francis Ouellette, Ontario Institute for
Cancer Research, CANADA

Published: June 22, 2017

Copyright: © 2017 Wilson et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Funding: The authors received no specific funding
for this work.

Competing interests: The authors have declared
that no competing interests exist.

OPINION ARTICLE
Four simple recommendations to encourage best practices in

 research software [version 1; peer review: 3 approved]
Rafael C. Jiménez , Mateusz Kuzak , Monther Alhamdoosh , Michelle Barker ,

 Bérénice Batut , Mikael Borg , Salvador Capella-Gutierrez , Neil Chue Hong ,
 Martin Cook , Manuel Corpas , Madison Flannery , Leyla Garcia ,

 Josep Ll. Gelpí , Simon Gladman , Carole Goble ,
 Montserrat González Ferreiro , Alejandra Gonzalez-Beltran , Philippa C. Griffin ,

 Björn Grüning , Jonas Hagberg , Petr Holub , Rob Hooft , Jon Ison ,
 Daniel S. Katz , Brane Leskošek , Federico López Gómez ,

 Luis J. Oliveira , David Mellor , Rowland Mosbergen , Nicola Mulder ,
 Yasset Perez-Riverol , Robert Pergl , Horst Pichler , Bernard Pope ,

 Ferran Sanz , Maria V. Schneider , Victoria Stodden , Radosław Suchecki ,
 Radka Svobodová Vařeková , Harry-Anton Talvik , Ilian Todorov ,

 Andrew Treloar , Sonika Tyagi , Maarten van Gompel , Daniel Vaughan ,
 Allegra Via , Xiaochuan Wang , Nathan S. Watson-Haigh , Steve Crouch41

ELIXIR Hub, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
Netherlands eScience Center, Science Park 140, Amsterdam, 1098 XG, The Netherlands
CSL Limited, Bio21 Institute, 30 Flemington Road, Parkville, Victoria, 3010, Australia
National eResearch Collaboration Tools and Resources, Victoria, 3010, Australia
ELIXIR-DE and de.NBI, Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
ELIXIR-SE, National Bioinformatics Infrastructure Sweden (NBIS), Scilifelab, Department of Biochemistry and Biophysics (DBB), Stockholm
University, Stockholm, Sweden
ELIXIR-ES, Spanish National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández
Almagro 3, Madrid, 28029, Spain
Software Sustainability Institute, JCMB, University of Edinburgh, Edinburgh, EH9 3FD, UK
Repositive Ltd, Future Business Centre, Cambridge, UK
EMBL Australia Bioinformatics Resource, Lab-14, The University of Melbourne, 700 Swanston St, Parkville, Victoria, 3053, Australia
EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
Barcelona Supercomputing Center, Barcelona, 08034, Spain
Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, 08028, Spain
ELIXIR-UK, Software Sustainability Institute, School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL,

UK
Oxford e-Research Centre, University of Oxford, Oxford, UK
BBMRI-ERIC, Neue Stiftingtalstraße 2/B/6, Graz, 8010, Austria
Dutch TechCenter for Life Sciences and ELIXIR-NL, Utrecht, The Netherlands
ELIXIR-DK, Technical University of Denmark, Denmark, Denmark
National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
School of Information Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA

Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, IL, USA

1 2 3 4
5 6 7 8

1 9 10 11
12,13 10 14

11 15 10
5 6 16 17 18
19-22 23 1

24 25 26 27
11 28 29 10

30 10 20 31
32,33 34 35

36 10,37 38 11
39 40 31 41

1
2
3
4
5
6

7

8
9
10
11
12
13
14

15
16
17
18
19
20

21

Page 1 of 14

F1000Research 2017, 6:876 Last updated: 17 MAY 2019

https://doi.org/10.12688/f1000research.11407.1

https://doi.org/10.1371/ journal.pcbi.1005510

http://physics.codes

!8

More (Static) Resources
PERSPECTIVE

Good enough practices in scientific computing
Greg Wilson1☯*, Jennifer Bryan2☯, Karen Cranston3☯, Justin Kitzes4☯, Lex Nederbragt5☯,
Tracy K. Teal6☯

1 Software Carpentry Foundation, Austin, Texas, United States of America, 2 RStudio and Department of
Statistics, University of British Columbia, Vancouver, British Columbia, Canada, 3 Department of Biology,
Duke University, Durham, North Carolina, United States of America, 4 Energy and Resources Group,
University of California, Berkeley, Berkeley, California, United States of America, 5 Centre for Ecological and
Evolutionary Synthesis, University of Oslo, Oslo, Norway, 6 Data Carpentry, Davis, California, United States
of America

☯ These authors contributed equally to this work.
* gvwilson@software-carpentry.org

Author summary

Computers are now essential in all branches of science, but most researchers are never
taught the equivalent of basic lab skills for research computing. As a result, data can get
lost, analyses can take much longer than necessary, and researchers are limited in how
effectively they can work with software and data. Computing workflows need to follow
the same practices as lab projects and notebooks, with organized data, documented steps,
and the project structured for reproducibility, but researchers new to computing often
don’t know where to start. This paper presents a set of good computing practices that
every researcher can adopt, regardless of their current level of computational skill. These
practices, which encompass data management, programming, collaborating with col-
leagues, organizing projects, tracking work, and writing manuscripts, are drawn from a
wide variety of published sources from our daily lives and from our work with volunteer
organizations that have delivered workshops to over 11,000 people since 2010.

Overview

We present a set of computing tools and techniques that every researcher can and should con-
sider adopting. These recommendations synthesize inspiration from our own work, from the
experiences of the thousands of people who have taken part in Software Carpentry and Data
Carpentry workshops over the past 6 years, and from a variety of other guides. Our recom-
mendations are aimed specifically at people who are new to research computing.

Introduction

Three years ago, a group of researchers involved in Software Carpentry and Data Carpentry
wrote a paper called "Best Practices for Scientific Computing" [1]. That paper provided recom-
mendations for people who were already doing significant amounts of computation in their
research. However, as computing has become an essential part of science for all researchers,
there is a larger group of people new to scientific computing, and the question then becomes,
"where to start?"

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005510 June 22, 2017 1 / 20

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Wilson G, Bryan J, Cranston K, Kitzes J,
Nederbragt L, Teal TK (2017) Good enough
practices in scientific computing. PLoS Comput
Biol 13(6): e1005510. https://doi.org/10.1371/
journal.pcbi.1005510

Editor: Francis Ouellette, Ontario Institute for
Cancer Research, CANADA

Published: June 22, 2017

Copyright: © 2017 Wilson et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Funding: The authors received no specific funding
for this work.

Competing interests: The authors have declared
that no competing interests exist.

OPINION ARTICLE
Four simple recommendations to encourage best practices in

 research software [version 1; peer review: 3 approved]
Rafael C. Jiménez , Mateusz Kuzak , Monther Alhamdoosh , Michelle Barker ,

 Bérénice Batut , Mikael Borg , Salvador Capella-Gutierrez , Neil Chue Hong ,
 Martin Cook , Manuel Corpas , Madison Flannery , Leyla Garcia ,

 Josep Ll. Gelpí , Simon Gladman , Carole Goble ,
 Montserrat González Ferreiro , Alejandra Gonzalez-Beltran , Philippa C. Griffin ,

 Björn Grüning , Jonas Hagberg , Petr Holub , Rob Hooft , Jon Ison ,
 Daniel S. Katz , Brane Leskošek , Federico López Gómez ,

 Luis J. Oliveira , David Mellor , Rowland Mosbergen , Nicola Mulder ,
 Yasset Perez-Riverol , Robert Pergl , Horst Pichler , Bernard Pope ,

 Ferran Sanz , Maria V. Schneider , Victoria Stodden , Radosław Suchecki ,
 Radka Svobodová Vařeková , Harry-Anton Talvik , Ilian Todorov ,

 Andrew Treloar , Sonika Tyagi , Maarten van Gompel , Daniel Vaughan ,
 Allegra Via , Xiaochuan Wang , Nathan S. Watson-Haigh , Steve Crouch41

ELIXIR Hub, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
Netherlands eScience Center, Science Park 140, Amsterdam, 1098 XG, The Netherlands
CSL Limited, Bio21 Institute, 30 Flemington Road, Parkville, Victoria, 3010, Australia
National eResearch Collaboration Tools and Resources, Victoria, 3010, Australia
ELIXIR-DE and de.NBI, Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
ELIXIR-SE, National Bioinformatics Infrastructure Sweden (NBIS), Scilifelab, Department of Biochemistry and Biophysics (DBB), Stockholm
University, Stockholm, Sweden
ELIXIR-ES, Spanish National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández
Almagro 3, Madrid, 28029, Spain
Software Sustainability Institute, JCMB, University of Edinburgh, Edinburgh, EH9 3FD, UK
Repositive Ltd, Future Business Centre, Cambridge, UK
EMBL Australia Bioinformatics Resource, Lab-14, The University of Melbourne, 700 Swanston St, Parkville, Victoria, 3053, Australia
EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
Barcelona Supercomputing Center, Barcelona, 08034, Spain
Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, 08028, Spain
ELIXIR-UK, Software Sustainability Institute, School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL,

UK
Oxford e-Research Centre, University of Oxford, Oxford, UK
BBMRI-ERIC, Neue Stiftingtalstraße 2/B/6, Graz, 8010, Austria
Dutch TechCenter for Life Sciences and ELIXIR-NL, Utrecht, The Netherlands
ELIXIR-DK, Technical University of Denmark, Denmark, Denmark
National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
School of Information Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA

Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, IL, USA

1 2 3 4
5 6 7 8

1 9 10 11
12,13 10 14

11 15 10
5 6 16 17 18
19-22 23 1

24 25 26 27
11 28 29 10

30 10 20 31
32,33 34 35

36 10,37 38 11
39 40 31 41

1
2
3
4
5
6

7

8
9
10
11
12
13
14

15
16
17
18
19
20

21

Page 1 of 14

F1000Research 2017, 6:876 Last updated: 17 MAY 2019

https://doi.org/10.12688/f1000research.11407.1

https://doi.org/10.1371/ journal.pcbi.1005510

http://physics.codes

!8

Big influence on my class!

My Solution:
A 10-week (primarily) graduate course to fill

this gap, using existing resources as
inspiration/building blocks.

!9

Course Philosophy

!10

Course Philosophy
• Main goal: teach students best practices and practical skills to

develop useful, tested, and (potentially) sustainable research software.

!10

Course Philosophy
• Main goal: teach students best practices and practical skills to

develop useful, tested, and (potentially) sustainable research software.

• Rather than give standalone assignments, all assigned work relates to
a quarter-long project, which is intended to support their thesis
research.

!10

Course Philosophy
• Main goal: teach students best practices and practical skills to

develop useful, tested, and (potentially) sustainable research software.

• Rather than give standalone assignments, all assigned work relates to
a quarter-long project, which is intended to support their thesis
research.

• Also try to instill open science as the default—relatively early in
students’ careers.

!10

Course Philosophy
• Main goal: teach students best practices and practical skills to

develop useful, tested, and (potentially) sustainable research software.

• Rather than give standalone assignments, all assigned work relates to
a quarter-long project, which is intended to support their thesis
research.

• Also try to instill open science as the default—relatively early in
students’ careers.

• Classes mix a typical presentation-based lecture approach with
interactive/hands-on work and discussion.

!10

Topics Taught
• Version control with Git

• Remote and collaborative version
control with GitHub

• Licensing and copyright

• Testing software, test coverage,
and continuous integration

• Structuring Python packages

• Writing documentation

• Objects and classes in Python

• Working with files

• Building command-line interfaces

• Packaging and distributing your
Python software

• Introduction to parallel
programming

• Open science, software citation,
and reproducibility best practices

• Documentation with Sphinx

!11

Example:  
module on testing

https://softwaredevengresearch.github.io/lecture-packaging-testing/

Project

• At beginning of class,
students propose a project
for the term connected to
their thesis research.

• This is submitted as a PR
to the course_projects
repo

!29

Project Stages

!30

Project Stages
Project proposal

!30

Project Stages
Project proposal

Create project repo & fork to account

!30

Project Stages
Project proposal

Create project repo & fork to account
Create first module with tests, submit as PR for review

!30

Project Stages
Project proposal

Create project repo & fork to account
Create first module with tests, submit as PR for review

Configure continuous integration

!30

Project Stages
Project proposal

Create project repo & fork to account
Create first module with tests, submit as PR for review

Configure continuous integration
Create command-line interface

!30

Project Stages
Project proposal

Create project repo & fork to account
Create first module with tests, submit as PR for review

Configure continuous integration
Create command-line interface

Package software for distribution

!30

Project Stages
Project proposal

Create project repo & fork to account
Create first module with tests, submit as PR for review

Configure continuous integration
Create command-line interface

Package software for distribution
Configure Zenodo integration

!30

Project Stages
Project proposal

Create project repo & fork to account
Create first module with tests, submit as PR for review

Configure continuous integration
Create command-line interface

Package software for distribution
Configure Zenodo integration

Write report and cite software

!30

Results from 2018–2019

• Offered in Spring 2018 and Spring 2019 as “ME 599:
Software Development for Engineering Research”.

• (However, nothing specifically Mechanical Engineering
—or even Engineering—about it.)

• Enrollment: 17 students in 2018, 9 students in 2019.

!31

Project Topics
• designing detonation tubes

• extracting features with
machine learning from
nuclear physics
simulations

• interfacing with an 8-
channel digital pulse
processor board

• simulating and analyzing a
formula SAE vehicle
engine

• optimizing and analyzing
wind-farm layouts

• analyzing spin stabilization
of solid rocket motors

• nodal quasi-diffusion
solver for nuclear fission

• agent-learning for
autonomous path finding

• generating input for
Monte-Carlo radiation
transport

• calculating solar-energy
terms based on location

• analyzing radioxenon
spectra

• calculating deep-learning
layers for multi-agent
reinforcement learners

• analyzing solvent
extraction kinetics

• simulating rapid
compression machine
experiments

• calibrating blackbody
infrared cameras

• simulating transient heat
transfer in a microchannel

• biomass cookstove
optimization tool

• projectile testing prediction

• transit system anomaly
detection

• Automatic functional
design representation

• Heat exchanger analysis

• Influx modeling for
multiphase flows

• Control package for liquid
rocket engine test stand!32

Student composition

7%
4%

32%

21%

36%

1st-year MS/PhD student
2nd-year MS/PhD student
≥3rd-year PhD student
Undergraduate
MEng

!33

Whether students took Python class

41%
59%

yes
no

!34

Comfort with command line

4%

37%

59%

I've used it, though I'm not exactly comfortable with it.
I'm comfortable working on the command line, but not an expert
What is the command line?
I'm a command-line ninja 🤘

!35

Student Feedback

!36

Student Feedback

• In both cases, students rate the course as a whole
highly

!36

Student Feedback

• In both cases, students rate the course as a whole
highly

• Comments suggest that all graduate students working
with software/programming need this material

!36

Student Feedback

• In both cases, students rate the course as a whole
highly

• Comments suggest that all graduate students working
with software/programming need this material

• Some feelings of being too advanced for their
experience level

!36

Post-Course Work

!37

Post-Course Work

• In both classes so far, roughly half the students
indicated that they plan to use and/or develop their
packages further for their research

!37

Post-Course Work

• In both classes so far, roughly half the students
indicated that they plan to use and/or develop their
packages further for their research

• One ultimate goal: encourage submission to JOSS—
one under review, and another to be submitted!

!37

JOSS: Journal of Open Source Software

�38

JOSS: Journal of Open Source Software
• http://joss.theoj.org/

�38

http://joss.theoj.org/

JOSS: Journal of Open Source Software
• http://joss.theoj.org/

• Developer-friendly journal for research software
packages

�38

http://joss.theoj.org/

JOSS: Journal of Open Source Software
• http://joss.theoj.org/

• Developer-friendly journal for research software
packages

• Affiliate of Open Source Initiative

�38

http://joss.theoj.org/

JOSS: Journal of Open Source Software
• http://joss.theoj.org/

• Developer-friendly journal for research software
packages

• Affiliate of Open Source Initiative

•Open access, no fees

�38

http://joss.theoj.org/

JOSS: Journal of Open Source Software
• http://joss.theoj.org/

• Developer-friendly journal for research software
packages

• Affiliate of Open Source Initiative

•Open access, no fees

• As of this morning, 597 submissions published

�38

http://joss.theoj.org/

JOSS: Journal of Open Source Software
• http://joss.theoj.org/

• Developer-friendly journal for research software
packages

• Affiliate of Open Source Initiative

•Open access, no fees

• As of this morning, 597 submissions published

“If you've already licensed your code
and have good documentation then
we expect that it should take less

than an hour to prepare and submit
your paper to JOSS.”

�38

http://joss.theoj.org/

JOSS Editorial Board

!39

JOSS Workflow
Make software available in repository

with OSI-approved license

!

:
https://opensource.org/licenses

Author short Markdown
paper: paper.md

"

Submit to JOSS by filling
out short form

#

Editor assigns ≥2 reviewers,
who review submission

$

Reviewer(s) raise comments and
issues following guidelines

%

:
https://joss.readthedocs.io/en/
latest/reviewer_guidelines.html

Authors fix issues

&

Paper published &
receives JOSS DOI

⚡

JOSS 10.21105/joss.#####

JOSS Under review

JOSS Submitted

Editor accepts paper,
authors archive software ✔

�40

JOSS paper submission
�41

JOSS paper reviews
�42

JOSS paper review
�43

More about JOSS

Submitted 6 October 2017
Accepted 24 January 2018
Published 12 February 2018

Corresponding authors

Arfon M. Smith, arfon@stsci.edu
Kyle E. Niemeyer,
Kyle.Niemeyer@oregonstate.edu,
arfon.smith@gmail.com

Academic editor

Edward Fox

Additional Information and

Declarations can be found on

page 19

DOI 10.7717/peerj-cs.147

Copyright

2018 Smith et al.

Distributed under

Creative Commons CC-BY 4.0

OPEN ACCESS

Journal of Open Source Software (JOSS):
design and first-year review
Arfon M. Smith1, Kyle E. Niemeyer2, Daniel S. Katz3, Lorena A. Barba4,
George Githinji5, Melissa Gymrek6, Kathryn D. Huff7, Christopher R. Madan8,
Abigail Cabunoc Mayes9, Kevin M. Moerman10,11, Pjotr Prins12,13, Karthik Ram14,
Ariel Rokem15, Tracy K. Teal16, Roman Valls Guimera17 and
Jacob T. Vanderplas15

1Data Science Mission Office, Space Telescope Science Institute, Baltimore, MD, United States of America
2 School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR,
United States of America

3National Center for Supercomputing Applications & Department of Computer Science & Department of
Electrical and Computer Engineering & School of Information Sciences, University of Illinois at
Urbana-Champaign, Urbana, IL, United States of America

4Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, D.C.,
United States of America

5KEMRI—Wellcome Trust Research Programme, Kilifi, Kenya
6Departments of Medicine & Computer Science and Engineering, University of California, San Diego, La Jolla,
CA, United States of America

7Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL, United States of America

8 School of Psychology, University of Nottingham, Nottingham, United Kingdom
9Mozilla Foundation, Toronto, Ontario, Canada
10MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
11Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland
12University of Tennessee Health Science Center, Memphis, TN, United States of America
13University Medical Centre Utrecht, Utrecht, The Netherlands
14Berkeley Institute for Data Science, University of California, Berkeley, CA, United States of America
15 eScience Institute, University of Washington, Seattle, WA, United States of America
16Data Carpentry, Davis, CA, United States of America
17University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, Australia

ABSTRACT
This article describes the motivation, design, and progress of the Journal of Open
Source Software (JOSS). JOSS is a free and open-access journal that publishes articles
describing research software. It has the dual goals of improving the quality of the
software submitted and providing a mechanism for research software developers to
receive credit. While designed to work within the current merit system of science, JOSS
addresses the dearth of rewards for key contributions to science made in the form of
software. JOSS publishes articles that encapsulate scholarship contained in the software
itself, and its rigorous peer review targets the software components: functionality,
documentation, tests, continuous integration, and the license. A JOSS article contains
an abstract describing the purpose and functionality of the software, references, and a
link to the software archive. The article is the entry point of a JOSS submission, which
encompasses the full set of software artifacts. Submission and review proceed in the
open, on GitHub. Editors, reviewers, and authors work collaboratively and openly.
Unlike other journals, JOSS does not reject articles requiring major revision; while not

How to cite this article Smith et al. (2018), Journal of Open Source Software (JOSS): design and first-year review. PeerJ Comput. Sci.
4:e147; DOI 10.7717/peerj-cs.147

Smith et al. (2018), Journal of
Open Source Software (JOSS):

design and first-year review.
PeerJ Comput. Sci. 4:e147;
DOI 10.7717/peerj-cs.147

JOSS blog: http://blog.joss.theoj.org
!44

http://blog.joss.theoj.org

Sister Journal: JOSE 
Journal of Open Source Education

• Part of the Open Journals, sibling journal to JOSS
(literally forked from it!). Also NumFOCUS affiliate.

• JOSE publishes two types of articles that
describe:

✴open educational software tools

✴open-source learning modules

•Motivation: credit efforts to develop software for
assisting teaching/learning and open-source
educational content

• Submissions are peer-reviewed, with the intent of
improving the quality of the software or content
submitted

!45

JOSE Editorial Board

Lorena Barba
George Washington Univ.

Katy Huff
UIUC

Jason Moore
UC Davis

Charles Severance
Univ. Michigan

Tracy Teal
Univ. Michigan

Robert Talbert
Grand Valley State U.

Carol Willing
Cal Poly San Luis Obispo

Juan Flopped
University of Cape Town

Kyle Niemeyer
Oregon State

!46

Summary and Future Work

!47

Summary and Future Work
• Course offered twice with ME 599 temporary class identifier; plan

to offer again in Spring 2021—will need permanent “location”.

!47

Summary and Future Work
• Course offered twice with ME 599 temporary class identifier; plan

to offer again in Spring 2021—will need permanent “location”.

• Most students come in with little/no Unix command line
experience, and only some with Python programming—plan to
offer regular Software Carpentry workshops for first-year grad
students in engineering.

!47

Summary and Future Work
• Course offered twice with ME 599 temporary class identifier; plan

to offer again in Spring 2021—will need permanent “location”.

• Most students come in with little/no Unix command line
experience, and only some with Python programming—plan to
offer regular Software Carpentry workshops for first-year grad
students in engineering.

• Developing standalone modules for topics, to be shared openly

!47

Summary and Future Work
• Course offered twice with ME 599 temporary class identifier; plan

to offer again in Spring 2021—will need permanent “location”.

• Most students come in with little/no Unix command line
experience, and only some with Python programming—plan to
offer regular Software Carpentry workshops for first-year grad
students in engineering.

• Developing standalone modules for topics, to be shared openly

• Submit to JOSS and/or JOSE!

!47

Thank you!
 

Feedback and questions are welcome.

niemeyer-research-group.github.io
softwaredevengresearch.github.io/syllabus-s2019

Funding: Better Scientific Software Fellowship, part of the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science

and the National Nuclear Security Administration.!48

https://niemeyer-research-group.github.io
https://softwaredevengresearch.github.io/syllabus-s2019/

