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Abstract. Motif discovery and analysis in time series data-sets have
a wide-range of applications from genomics to finance. In consequence,
development and critical evaluation of these algorithms is required with
the focus not just detection but rather evaluation and interpretation of
overall significance. Our focus here is the specific algorithm, VALMOD ,
but algorithms in wide use for motif discovery are summarised and briefly
compared, as well as typical evaluation methods with strengths. Addi-
tionally, Taxonomy diagrams for motif discovery and evaluation tech-
niques are constructed to illustrate the relationship between different
approaches as well as inter-dependencies. Finally evaluation measures
based upon results obtained from VALMOD analysis of a GBP-USD
foreign exchange (F/X) rate data-set are presented, in illustration.
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1 Introduction

Sequential data are found in many applications ranging from Healthcare [1]
to Seismology [2], Machine Learning [3] and Finance [4]. Recurrent patterns
(motifs) are common and can occur both within and between individual time
series [5]. Motif identification can help pre-processing in other high level data
mining tasks e.g. time series clustering and classification, rule discovery and sum-
marisation [6]. Similarly, evaluating motif content can aid better understanding
of the underlying processes generating data in a given domain.

A brief summary of state-of-the art in motif discovery and evaluation follows,
with strengths and limitations indicated. Analysis of motif contributions is non-
trivial, and combined analyses are usually required, depending on data features.
In prior work [7], we compared two popular methods (MrMotif and VALMOD),
the latter particularly suited to variable motif length analysis. Interest here is on an
early evaluation of motif results from VALMOD for a GBP-USD F/X rate data-set.

2 Motif Discovery Techniques: Summary

Although a suite of motif discovery techniques are available (illustrated, Fig. 1), two
principal approaches form the basis for many applications in the literature. These

c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11540, pp. 771–778, 2019.
https://doi.org/10.1007/978-3-030-22750-0_77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22750-0_77&domain=pdf
https://doi.org/10.1007/978-3-030-22750-0_77
and their



772 E. Cartwright et al.

are, (i) The CK algorithm [8] which uses Random Projection (RP) to create a colli-
sion matrix and (ii) Symbolic Aggregate Approximation (SAX ) which utilises Piece-
wise Aggregate Approximation (PAA) with breakpoints and symbolisation to discretize
sequential data into a symbolic string [9].

A Taxonomy diagram of type and inter-relationships is provided, Fig. 1. Following
the recent survey paper by [10], this is designed to aid analysis and interpretation. The
majority of techniques apply to the time domain, and rely on approximation of the
time-series to provide motif candidates within a suitable timeframe. In comparison,
relatively few frequency-based approaches to motif discovery appear in the literature,
with one notable exception, the SIMD [11] algorithm, which uses a Wavelet-based
approach.

Given issues such as an initial word (or motif) target length requirement for a Brute
Force (BF ) approach and the computational expense involved, series approximation
using SAX was considered initially. This offers significant advantages as it allows util-
isation of string analysis techniques for motif detection, borrowed from the study of
DNA sequences. Notable algorithms in this domain are MrMotif [12], an algorithm
which examines SAX at increasing resolutions and SEQUITUR [13] which implements
a grammar-based approach on these symbolic strings.

Initial limitations for the exact approach were overcome by use of Brute Force
(BF ) in combination with early abandonment, allowing motif identification in a lin-
ear timeframe (SBF ). In consequence, the MK algorithm [5] has underpinned many
extensions including top-k [14] and Variable Length Motif Discovery (VLMD), [15].
A twofold improvement in performance compared to SBF was offered by Quick-Motif
[16] with preference shifting towards a deterministic approach to motif discovery. More
recently still, performance improvements and increased scalability have been achieved
through a series of algorithms based on approximation for the Matrix Profile technique:
(examples include STAMP [24], STOMP [25] & VALMOD [26]).

A summary table of techniques and algorithms from the literature is given, Table 1.
A similar split between exact and approximate methods, as noted already for motif
discovery, (Fig. 1), is evident here also, with most algorithms reliant on some form of
data discretisation, (notably iSAX ).

Fig. 1. Motif Discovery Technique Taxonomy: principal techniques and their inter-
dependencies are shown here.
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3 Motif Evaluation Techniques Summary

In assessing importance of a given motif (or motif set) some measures are calculated
exclusively based on the pattern’s information-content, while others are based on how
these relate to the underlying data within which they appear. Three main approaches
to motif evaluation were proposed in [27]. These are: Class-Based(CBM ), Theoretical
Information(TIM ) and Mixed Measures(MM ).

CBM measures do not rely upon motif structure, but on the number of occurrences
in a given category. Hence, they are applicable to any deterministic motif, whereas
TIM measures have a probabilistic basis and MM a combination of both. We show a
Taxonomy for motif evaluation based on examples in the literature, (Fig. 2).

To date CBM and TIM measures predominate, typically rated on the basis of
Discrimination Power and explained variability (F-Ratio). Achieving a meaningful
evaluation, of motif occurrence and importance, generally requires statistical inference
from more than one complementary technique as well as flexible treatment of mis-(or
partial) matches and identification.

Fig. 2. Motif Evaluation Technique Taxonomy: principal techniques and their group-
dependencies.

The following sub-sections outline main motif evaluation approaches with an initial
application given in Sect. 4.

Class-Based Measures (CBM )
The ideal (or signature) motif [28] matches all sequences within a target family and does
not overlap with any sequences outside it. As the ideal occurs rarely however the motif
quality is illustrated by other measures: e.g. for CBM, these are usually Sensitivity,
Specificity and Positive Predicted Value(PPV ), based on comparison possibilities for
a given sequence and target family, Table 2.

Sensitivity (S) is the proportion of the target family within a data-set correctly
(i.e. exactly) matched by a motif. Specificity (Sp or Recall) indicates non-matches
while Positive Predicted Value (PPV or Precision) is the percentage of data correctly
matched by a motif and also belonging to the target family: formulae see [27].
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Table 2. Class-based measures (CBM ) motif comparison possibilities.

Target family Not target family

Matches motif True positive (Tp) False positive (Fp)

Does not match motif False negative (Fn) True negative (Tn)

A signature motif requires both Sensitivity and Positive Predicted Value = 100%.
Other notable measures include the F-Ratio for overall quality of match and Discrim-
ination Power which provides an indication of the rarity of a given pattern.

Theoretical Information Measures (TIM )
These measures analyse the degree and nature of information encoded in a motif. The
principle of Minimum Description Length (MDL) is used to rank motifs, assuming the
best is the minimum length possible (thus reducing the overall series length when re-
encoded). MDL can also be used in the detection of motifs with ‘wobble’ (or inexact
match).

Common statistical techniques such as the Z-Score, (based on Gaussian assump-
tions), can be used to identify functionally important regions within a data set and
as an initial pruning mechanism before other significance measures are calculated. In
determining incidence of unexpected motifs, the Log-Odds calculates the probability of
occurrence in relation to a given distribution, e.g. Binomial, Uniform or other. Com-
monly, either Bernoulli or Markov models are used for motif symbol counts, depending
on whether those symbols occurring within a sequence are independent or conditional.

Another useful TIM is the Pratt measure, used to rank motifs when ‘flexible gaps’
are permitted in symbol content. A two-step approach applies, whereby information is
first encoded by the motif, then a penalty factor is introduced when gaps occur.

Hybrid (or Mixed) Measures (MM )
For MM, Class-Based and Theoretical Information measures are combined to gain a
better appreciation of a motif’s functional significance within a given data-set. Numer-
ous occurrences within a data-set of a given motif do not necessarily imply importance,
while a functionally significant motif may occur infrequently but still contain valuable
information. MM techniques include Mutual Information, the J-Measure and the Sur-
prise (or S-)measure [27].

4 Motif Evaluation Examples

We briefly illustrate points from Sects. 2 and 3 with reference to Financial data from
[29]. A GBP vs USD daily F/X series provides input for Mr Motif, SBF, Mueen Keogh
and VALMOD algorithms with motif data set location for the same motif length criteria
the objective (Table 3). Similar motif locations are returned (even for small sample size)
so that algorithm features best suited to the application can guide tool choice.
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Table 3. MrMotif, Quick Motif, Smart Brute Force, Mueen Keogh & VALMOD Com-
pared

Motif length 100 150 200

FX series Algorithm Execution

time (s)

Dataset location Execution

time (s)

Dataset

location

Execution

time (s)

Dataset

location

GBP V USD MrMotif 0.123

41, 1921, 2161,

2461, 2601, 4181

2461, 2601, 4181

0.125 1081, 1591,

2251

0.122 161, 201,

601

Quick Motif 0.111 1751, 2584 0.093 3039, 1701 0.05 1045, 244

Smart Brute

Force

0.247 1751, 2584 0.243 3039, 1701 0.269 244, 1045

Mueen

Keogh

0.171 1751, 2584 0.163 1701, 3039 0.154 244, 1045

VALMOD

(single

length)

0.484 2585, 1752 0.468 3040, 1702 0.437 1046, 245

The VALMOD algorithm was chosen for further tests due to its ability to parse
a user-provided range of lengths. VALMOD source code was amended to return a
complete set of candidate motifs for given length, serving as input for a bespoke appli-
cation written in C#. The original series can be displayed, VALMOD criteria chosen
and motif evaluation measures applied to the discovered motif set, as shown, (Fig. 3).

Fig. 3. Sample VALMOD motif results analysis of GBP vs USD FX dataset (Motif
Length 100, Z-Score technique)
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The user can choose a target family, based on an area of interest in the series,
allowing Tp, Fp, Tn & Fn values with corresponding formulae to be calculated. Similarly
motif locations can be shown within the data set and ordered by Z-Score, (Fig. 3).

5 Conclusions and Future Work

The growing importance of identifying repeated sub-sections or motifs in sequential
data is outlined. Taxonomy diagrams illustrating motif discovery and evaluation tech-
niques are provided while state of the art discovery algorithms are listed and charac-
terised. The VALMOD algorithm is found to provide a sound basis for evaluation of
motif occurrence in a financial data-set and examples are provided, indicative of its
potential as an investigative tool in this context.

Clearly desirable for the future however, is an implementation of SAX, permitting
refinement of the MDL principle applied to motif ranking and analysis, (with ‘wobble’
or less precise matching), as well as to discovery of common motifs over multiple series.
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