Skip to main content

An Unsupervised Spiking Deep Neural Network for Object Recognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11555))

Abstract

In this paper, we propose an unsupervised HMAX-based Spiking Deep Neural Network (HMAX-SDNN) for object recognition. HMAX is a biologically plausible model based on the hierarchical activity of object recognition in visual cortex. In HMAX-SDNN, input layer with HMAX structure is followed by a stacked convolution-pooling structure, in which convolutional layers are hierarchically trained with STDP. After that, a linear SVM is used for classification. Then, we demonstrate that the firing threshold has positive correlation with receptive fields size in convolutional layers, and optimize HMAX-SDNN with this conclusion. With the optimized structure, we validate HMAX-SDNN on Caltech dataset, and HMAX-SDNN outperforms other SNNs by reaching 99.2% recognition accuracy. Furthermore, the experiments show that HMAX-SDNN is robust to different kinds of objects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Google Scholar 

  3. Cao, Y., Chen, Y., Khosla, D.: Spiking deep convolutional neural networks for energy-efficient object recognition. Int. J. Comput. Vis. 113(1), 54–66 (2015)

    Google Scholar 

  4. Diehl, P.U., Zarrella, G., Cassidy, A., Pedroni, B.U., Neftci, E.: Conversion of artfiicial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In: IEEE International Conference on Rebooting Computing (2016)

    Google Scholar 

  5. Lee, J.H., Delbruck, T., Pfeiffer, M.: Training deep spiking neural networks using backpropagation. Front. Neurosci. 10, 508 (2016)

    Google Scholar 

  6. Bliss, T.V., Collingridge, G.L.: A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993)

    Google Scholar 

  7. Shiyong, H., et al.: Associative Hebbian synaptic plasticity in primate visual cortex. J. Neurosci. Off. J. Soc. Neurosc. 34(22), 7575–7579 (2014)

    Google Scholar 

  8. Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)

    Google Scholar 

  9. Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T.: STDP-based spiking deep convolutional neural networks for object recognition. Neural Netw. 99, 56–67 (2018)

    Google Scholar 

  10. Xu, X., Jin, X., Yan, R., Fang, Q., Lu, W.: Visual pattern recognition using enhanced visual features and PSD-based learning rule. IEEE Trans. Cogn. Dev. Syst. 10(2), 205–212 (2018)

    Google Scholar 

  11. Yu, Q., Tang, H., Tan, K.C., Li, H.: Rapid feedforward computation by temporal encoding and learning with spiking neurons. IEEE Trans. Neural Netw. Learn. Syst. 24(10), 1539–1552 (2013)

    Google Scholar 

  12. Xu, Q., Qi, Y., Yu, H., Shen, J., Tang, H., Pan, G.: CSNN: an augmented spiking based framework with perceptron-inception. In: IJCAI, pp. 1646–1652 (2018)

    Google Scholar 

  13. Xi, W., Yixuan, W., Huajin, T., Rui, Y.: A structure-time parallel implementation of spike-based deep learning. Neural Netw. 113, 72–78 (2019)

    Google Scholar 

  14. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)

    Google Scholar 

  15. Gerstner, W.: Spiking neuron models: single neurons, populations, plasticity. Kybernetes 4(7/8), 277–280 (2002)

    Google Scholar 

  16. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull. Math. Biol. 52(1–2), 25–71 (1989)

    Google Scholar 

  17. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–72 (2003)

    Google Scholar 

  18. Lee, C., Srinivasan, G., Panda, P., Roy, K.: Deep spiking convolutional neural network trained with unsupervised spike timing dependent plasticity. IEEE Trans. Cogn. Dev. Syst. (2018). https://doi.org/10.1109/TCDS.2018.2833071

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China under Grant 2017YFB1300201 and the National Natural Science Foundation of China under Grant 61673283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajin Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Z., Wu, X., Yuan, M., Tang, H. (2019). An Unsupervised Spiking Deep Neural Network for Object Recognition. In: Lu, H., Tang, H., Wang, Z. (eds) Advances in Neural Networks – ISNN 2019. ISNN 2019. Lecture Notes in Computer Science(), vol 11555. Springer, Cham. https://doi.org/10.1007/978-3-030-22808-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22808-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22807-1

  • Online ISBN: 978-3-030-22808-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics