Skip to main content

3D Face Recognition Based on Hybrid Data

  • Conference paper
  • First Online:
Book cover Rough Sets (IJCRS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11499))

Included in the following conference series:

  • 697 Accesses

Abstract

Unlike 2D face recognition (FR), the problem of insufficient training data is a major difficulty in 3D face recognition. Traditional Convolutional neural networks (CNNs) can not comprehensively learn all proper filters for FR applications. We embed a handcrafted feature map into our CNN framework—A hybrid data representation is proposed for 3D face. Furthermore, we use a Squeeze-Excitation block to learn the weights of data channels from training face datasets. To overcome the bias of training model based on a small 3D dataset, transfer learning is applied by fine-turning pre-training models, which is trained based on a large 2D face datasets. Tests show that, under challenge conditions such as expression and occlusion, our method outperforms other state-of-the-art methods and can run in real-time.

Supported by The National Natural Science Foundation of China (61876158), Sichuan Science and Technology Program (2019YFS0432).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition 2014, pp. 1701–1708 (2014)

    Google Scholar 

  2. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  3. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 2017 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018), pp. 67–74 (2017)

    Google Scholar 

  4. Klare, B.F., et al.: Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus benchmark A, pp. 1931–1939 (2015)

    Google Scholar 

  5. Whitelam, C., et al.: IARPA Janus benchmark-B face dataset, July 2017

    Google Scholar 

  6. Faltemier, T.C., Bowyer, K.W., Flynn, P.J.: Using a multi-instance enrollment representation to improve 3D face recognition, pp. 1–6 (2007)

    Google Scholar 

  7. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Conf. Comput. Vis. Pattern Recognit. 2018, 1–14 (2018)

    Google Scholar 

  8. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: IEEE International Conference on Advanced Video and Signal Based Surveillance. IEEE Computer Society, Washington, DC, USA, pp. 296–301 (2009)

    Google Scholar 

  9. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992). https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  10. Soltanpour, S., Boufama, B., Wu, Q.M.J.: A survey of local feature methods for 3D face recognition. Pattern Recognit. 72, 391–406 (2017). https://doi.org/10.1016/j.patcog.2017.08.003

    Article  Google Scholar 

  11. Emambakhsh, M., Evans, A.: Nasal patches and curves for expression-robust 3D face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(5), 995–1007 (2017). https://doi.org/10.1109/TPAMI.2016.2565473

    Article  Google Scholar 

  12. Lei, Y., Guo, Y., Hayat, M., Bennamoun, M., Zhou, X.: A two-phase weighted collaborative representation for 3D partial face recognition with single sample. Pattern Recognit. 52(C), 218–237 (2016). https://doi.org/10.1016/j.patcog.2015.09.035

    Article  Google Scholar 

  13. Kim, D., Hernandez, M., Choi, J., Medioni, G.: Deep 3D face identification. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 133–142 (2017)

    Google Scholar 

  14. Li, H., Sun, J., Xu, Z., Chen, L.: Multimodal 2D+3D facial expression recognition with deep fusion convolutional neural network. IEEE Trans. Multimed. 19(12), 2816–2831 (2017). https://doi.org/10.1109/TMM.2017.2713408

    Article  Google Scholar 

  15. Lee, Y., Chen, J., Tseng, C.W., Lai, S.-H.: Accurate and robust face recognition from RGB-D approach. In: Wilson, R.C., Hancock, E.R., Smith, W.A.P. (eds.) Proceedings of the British Machine Vision Conference (BMVC). BMVA Press, pp. 1–14, September 2016. https://doi.org/10.5244/C.30.123

  16. Gong, X., Luo, J., Fu, Z.: Normalization for unconstrained pose-invariant 3D face recognition. In: Sun, Z., Shan, S., Yang, G., Zhou, J., Wang, Y., Yin, Y.L. (eds.) CCBR 2013. LNCS, vol. 8232, pp. 1–8. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02961-0_1

    Chapter  Google Scholar 

  17. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24670-1_36

    Chapter  Google Scholar 

  18. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR 2005, pp. 886–893. IEEE Computer Society, Washington, DC, USA (2005)

    Google Scholar 

  19. Yang, M., Zhang, L.: Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 448–461. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_33

    Chapter  Google Scholar 

  20. Sang, G., Li, J., Zhao, Q.: Pose-invariant face recognition via RGB-D images. Comput. Intell. Neurosci. 2016, 1–9 (2016). https://doi.org/10.1155/2016/3563758. Identifier: 3563758

    Article  Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) The 25th International Conference on Neural Information Processing Systems. Curran Associates Inc., pp. 1097–1105 (2012)

    Google Scholar 

  22. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  23. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning Face Representation from Scratch. eprint arXiv:1411.7923 (2014)

  24. Savran, A., et al.: Bosphorus database for 3D face analysis. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BioID 2008. LNCS, vol. 5372, pp. 47–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89991-4_6

    Chapter  Google Scholar 

  25. Phillips, P.J., et al.: Overview of the face recognition grand challenge. In: CVPR 2005. IEEE Computer Society, San Diego, CA, USA, pp. 947–954, 1069015 (2005)

    Google Scholar 

  26. Mian, A., Bennamoun, M., Owens, R.: An efficient multimodal 2D–3D hybrid approach to automatic face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1927–1943 (2007). https://doi.org/10.1109/TPAMI.2007.1105

    Article  Google Scholar 

  27. Gilani, S.Z., Mian, A., Eastwood, P.: Deep, dense and accurate 3D face correspondence for generating population specific deformable models. Pattern Recognit. 69(C), 238–250 (2017). https://doi.org/10.1016/j.patcog.2017.04.013

    Article  Google Scholar 

  28. Li, H., Huang, D., Morvan, J.-M., Wang, Y., Chen, L.: Towards 3D face recognition in the real: a registration-free approach using fine-grained matching of 3D keypoint descriptors. Int. J. Comput. Vis. 113, 1–15 (2014). https://doi.org/10.1007/s11263-014-0785-6

    Article  MathSciNet  Google Scholar 

  29. Guo, Y., Lei, Y., Liu, L., Wang, Y., Bennamoun, M., Sohel, F.: Ei3D: expression-invariant 3D face recognition based on feature and shape matching. Pattern Recognition Letters 83, 403–412 (2016). https://doi.org/10.1016/j.patrec.2016.04.003. Efficient Shape Representation, Matching, Ranking, and its Applications

    Article  Google Scholar 

  30. Mian, A.S., Bennamoun, M.: Keypoint detection and local feature matching for textured 3D face recognition. Int. J. Comput. Vis. 79(1), 1–12 (2008). https://doi.org/10.1007/s11263-007-0085-5

    Article  Google Scholar 

  31. Drira, H., Amor, B.B., Srivastava, A., Daoudi, M., Slama, R.: 3D face recognition under expressions, occlusions, and pose variations. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2270–2283 (2013). https://doi.org/10.1109/TPAMI.2013.48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Gong, X. (2019). 3D Face Recognition Based on Hybrid Data. In: Mihálydeák, T., et al. Rough Sets. IJCRS 2019. Lecture Notes in Computer Science(), vol 11499. Springer, Cham. https://doi.org/10.1007/978-3-030-22815-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22815-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22814-9

  • Online ISBN: 978-3-030-22815-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics