Skip to main content

Cross-Subject EEG Signal Classification with Deep Neural Networks Applied to Motor Imagery

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11557))

Abstract

The Brain-Computer Interface (BCI) is a system able to serve as a mean of communication between machine and human where the brainwaves are the control signals acquired by electroencephalography (EEG). One of the most used brainwaves is the sensorimotor rhythm (SMR) which appears for real or imagined motor movement. In general, EEG signals need feature extraction methods and classification algorithms to interpret the raw signals. Deep learning approaches; however, permit the processing of the raw data without any transformation. In this paper, we present a deep learning neural network architecture to classify SMR signals due to its success for some previous works and to visualize the learned features. The architecture is composed of three parts. The first part contains a temporal convolution operation followed by a spatial convolution one. The second part contains recurrent layers. Finally, we use a dense layer to assign the signal to its class. The model is trained with Adam optimizer algorithm. Also, we use various regularization techniques such as dropout to prevent learning problem like overfitting. To evaluate the performance of the proposed architecture, the well known Dataset IIa of the BCI Competition IV is used. As a result, we get equivalent results to those ones of EEGNet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baldi, P., Sadowski, P.J.: Understanding dropout. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, vol. 00125, pp. 2814–2822. Curran Associates, Inc. (2013)

    Google Scholar 

  2. Cho, K., et al.: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv:1406.1078 [cs, stat], June 2014

  3. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv:1511.07289 [cs], November 2015

  4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks, vol. 03417, p. 8 (2010)

    Google Scholar 

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. In: Adaptive Computation and Machine Learning, The MIT Press. Cambridge (2016)

    Google Scholar 

  6. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv:1406.2661 [cs, stat], June 2014

  7. Hjorth, B.: EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29(3), 306–310 (1970). https://doi.org/10.1016/0013-4694(70)90143-4

    Article  Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  9. Kaur, E.T., Singh, B.: Brain computer interface: a review. Int. Res. J. Eng. Technol. 04(04), 9 (2017)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 [cs], December 2014

  11. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Article  Google Scholar 

  12. Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., Yger, F.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018). https://doi.org/10.1088/1741-2552/aab2f2

    Article  Google Scholar 

  13. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1–R13 (2007). https://doi.org/10.1088/1741-2560/4/2/R01. 01903

    Article  Google Scholar 

  14. Mao, W., Zhu, J., Li, X., Zhang, X., Sun, S.: Resting state EEG based depression recognition research using deep learning method. In: Wang, S., Yamamoto, V., Su, J., Yang, Y., Jones, E., Iasemidis, L., Mitchell, T. (eds.) BI 2018. LNCS (LNAI), vol. 11309, pp. 329–338. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05587-5_31

    Chapter  Google Scholar 

  15. McFarland, D.J., Wolpaw, J.R.: Brain-computer interfaces for communication and control. Commun. ACM 54(5), 60 (2011). https://doi.org/10.1145/1941487.1941506. 06351

    Article  Google Scholar 

  16. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12(2), 1211–1279 (2012). https://doi.org/10.3390/s120201211

    Article  Google Scholar 

  17. Nijholt, A.: BCI for games: a ‘state of the art’ survey. In: Stevens, S.M., Saldamarco, S.J. (eds.) ICEC 2008. LNCS, vol. 5309, pp. 225–228. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89222-9_29

    Chapter  Google Scholar 

  18. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training Recurrent Neural Networks. arXiv:1211.5063 [cs], November 2012

  19. Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001). https://doi.org/10.1109/5.939829

    Article  Google Scholar 

  20. Ramadan, R.A., Vasilakos, A.V.: Brain computer interface: control signals review. Neurocomputing 223, 26–44 (2017). https://doi.org/10.1016/j.neucom.2016.10.024

    Article  Google Scholar 

  21. Schirrmeister, R.T., Gemein, L., Eggensperger, K., Hutter, F., Ball, T.: Deep learning with convolutional neural networks for decoding and visualization of EEG pathology. arXiv:1708.08012 [cs, stat], August 2017

  22. Smith, S.L., Kindermans, P.J., Ying, C., Le, Q.V.: Don’t decay the learning rate, increase the batch size. arXiv:1711.00489 [cs, stat], November 2017

  23. Sun, M., Wang, F., Min, T., Zang, T., Wang, Y.: Prediction for high risk clinical symptoms of epilepsy based on deep learning algorithm. IEEE Access 1–1 (2018). https://doi.org/10.1109/ACCESS.2018.2883562

    Article  Google Scholar 

  24. Tan, C., Sun, F., Zhang, W., Chen, J., Liu, C.: Multimodal classification with deep convolutional-recurrent neural networks for electroencephalography. arXiv:1807.10641 [cs], July 2018

  25. Tan, C., Sun, F., Zhang, W., Chen, J., Liu, C.: Multimodal classification with deep convolutional-recurrent neural networks for electroencephalography. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10635, pp. 767–776. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70096-0_78

    Chapter  Google Scholar 

  26. Tangermann, M., et al.: Review of the BCI competition IV. Front. Neurosci. 6, (2012). https://doi.org/10.3389/fnins.2012.00055

  27. Vaid, S., Singh, P., Kaur, C.: EEG signal analysis for BCI interface: a review. In: Fifth International Conference on Advanced Computing & Communication Technologies (ACCT), 2015, pp. 143–147. IEEE (2015)

    Google Scholar 

  28. Wang, P., Jiang, A., Liu, X., Shang, J., Zhang, L.: LSTM-based EEG classification in motor imagery tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 26(11), 2086–2095 (2018). https://doi.org/10.1109/TNSRE.2018.2876129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouad Riyad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riyad, M., Khalil, M., Adib, A. (2019). Cross-Subject EEG Signal Classification with Deep Neural Networks Applied to Motor Imagery. In: Renault, É., Boumerdassi, S., Leghris, C., Bouzefrane, S. (eds) Mobile, Secure, and Programmable Networking. MSPN 2019. Lecture Notes in Computer Science(), vol 11557. Springer, Cham. https://doi.org/10.1007/978-3-030-22885-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22885-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22884-2

  • Online ISBN: 978-3-030-22885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics