
ar
X

iv
:2

30
5.

07
27

1v
1 

 [
cs

.D
B

] 
 1

2 
M

ay
 2

02
3

Complexity of conjunctive regular path query homomorphisms∗

Laurent Beaudou† Florent Foucaud† Florent R. Madelaine‡ Lhouari Nourine†

Gaétan Richard§

May 15, 2023

Abstract

A graph database is a digraph whose arcs are labeled with symbols from a fixed alphabet. A
regular graph pattern (RGP) is a digraph whose edges are labeled with regular expressions over the
alphabet. RGPs model navigational queries for graph databases called conjunctive regular path queries

(CRPQs). A match of a CRPQ in the database is witnessed by a special navigational homomorphism
of the corresponding RGP to the database. We study the complexity of deciding the existence of
a homomorphism between two RGPs. Such homomorphisms model a strong type of containment
between the two corresponding CRPQs. We show that this problem can be solved by an EXPTIME
algorithm (while general query containmement in this context is EXPSPACE-complete). We also
study the problem for restricted RGPs over a unary alphabet, that arise from some applications like
XPath or SPARQL. For this case, homomorphism-based CRPQ containment is in NP. We prove that
certain interesting cases are in fact polynomial-time solvable.

1 Introduction

Graphs are a fundamental way to store and organize data. Most prominently, graph database systems
have been developed for three decades and are widely used [37]; recently, such systems have seen an
increased interest both in academic research and in the industry [3]. A graph database can be seen
as a directed graph with arc-labels (possibly also vertex-labels). Various methods are used to retrieve
data in such systems, see for example the recently developed graph query languages G-CORE [2] and
CYPHER [19] for graph databases, with one of the earliest ones being G [11]. Classically, matching
queries in graph databases can be modeled as graph homomorphisms [26]. In this setting, a query is
itself a graph, and a match is modeled by a homomorphism of the query graph to the database graph,
that is, a vertex-mapping that preserves the graph adjacencies and labels. Graph databases can be very
large, thus it is important to study the algorithmic complexity of such queries. In modern applications,
classic homomorphisms are often not powerful enough to model realistic graph data queries, indeed their
nature is inherently local. In recent years, navigational queries, or path queries, have been developed [3].
Such queries are more powerful than classical queries, since they allow for non-local pattern matching,
by means of arbitrary paths or walks instead of arcs. Such queries can also be modeled as a more general
kind of homomorphism, that we call navigational homomorphisms. The most studied type of navigational
queries is the one of regular path queries, that is based on regular expressions [3, 18, 29]. The study of
the algorithmic complexity of such homomorphisms has been recently initiated in [33]. In this paper,
we continue this study by focusing on a strong form of navigational query containment, modeled by
navigational homomorphisms between two queries. We study the general complexity of deciding the
existence of a regular path navigational homomorphism between two graph queries. We also study some
more restricted cases arising from relevant applications.

∗This research was financed by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25), the IFCAM
project “Applications of graph homomorphisms” (MA/IFCAM/18/39), and by the ANR project GRALMECO (ANR-21-
CE48-0004). An extended abstract of this paper was published in the proceedings of the CIE’19 conference [5].

†Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Mines Saint-Étienne, LIMOS, 63000 Clermont-Ferrand,
France. E-mails: laurent.beaudou@uca.fr, florent.foucaud@uca.fr, lhouari.nourine@uca.fr

‡LACL, Université Paris-Est Créteil, Créteil, France. E-mail: florent.madelaine@u-pec.fr
§Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen (France). E-mail: gaetan.richard@unicaen.fr

1

http://arxiv.org/abs/2305.07271v1


Graph databases, classical queries and homomorphisms. Let Σ be a fixed countable alphabet.
A graph database B over Σ is an arc-labeled digraph. More formally, we have B = (DB, EB) where DB is
a finite digraph with vertex set V (DB) and arc set A(DB), and EB : A(DB) → Σ is an arc-label function.

One type of queries of graph databases can be expressed as homomorphisms, see for example [26]. In
this setting, a query Q = (DQ, EQ) for a graph database B = (DB, EB) over Σ is an arc-labeled digraph
over Σ. (As noted in the survey [15], in some applications, graph databases and queries may have vertex-
labels, or even more complicated structures; however, such cases can in fact always be reduced to the
setting of arc-labeled digraphs.)

We say that B matches Q if there exists a homomorphism of Q to B, that is, an arc- and label-
preserving vertex-mapping. More formally, such a homomorphism is a mapping f of V (DQ) to V (DB)
with the property that for every arc (x, y) in DQ, there is an arc (f(x), f(y)) in DB with EQ(x, y) =
EB(f(x), f(y)). If such a homomorphism exists, we note Q → B. Every homomorphic image f(Q) of Q
to B is a match of the query Q in B. We refer to the book [22] for more details on the theory of graph
homomorphisms.

Note that queries and graph databases are modeled by the same kinds of objects, thus we can also
consider homomorphisms between queries. This is a way to model query containment. We say that a
query Q2 is contained in query Q1 if for every graph database B, if Q2 → B then Q1 → B. Note
that if Q1 → Q2, then for any graph database B, to every homomorphism of Q2 to B corresponds
a homomorphism of Q1 to B (by transitivity of homomorphism). Thus Q2 is contained in Q1, and
homomorphism can be seen as a strong form of containment.

The most basic algorithmic problems related to queries of graph databases are the evaluation problem,
which consists in deciding whether a query Q has a match in a database B, and the containment problem,
that is, to decide whether a query Q1 is contained in a query Q2. These two problems can be modeled
by the following decision problem.

Hom
Instance: Two arc-labeled digraphs G and H .
Question: Does G admit a homomorphism to H?

Hom is generally NP-complete, even when H is a small fixed graph (for example a symmetric trian-
gle, in which case Hom is equivalent to the graph 3-colourability problem). To understand better the
complexity of Hom, the following version has been studied extensively, where H is a fixed arc-labeled
digraph, called the non-uniform homomorphism problem. The graph H is called the template.

Hom(H)
Instance: An arc-labeled digraph G.
Question: Does G admit a homomorphism to H?

As shown in [14], the set of Hom(H) problems captures the whole class of constraint satisfaction
problems (CSPs), whose complexity has recently been classified into polynomial cases and NP-complete
cases in [9, 38] independently.

Navigational queries, navigational homomorphisms and RGPs. In a digraph D, a directed walk
is a sequence of arcs of the digraph, such that the head of each arc is the same vertex as the tail of the
next arc. A directed path is a directed walk where each vertex occurs in at most two arcs in the sequence.

Standard homomorphisms are not powerful enough to model many types of queries used in modern
graph database systems. In particular, a homomorphism of a query Q to a database B can only match
a subgraph of B that is no larger than the query Q itself. To the contrary, navigational queries are
types of queries where we may allow arbitrarily large subgraphs of the database to match the query. In
this setting, we still model the query Q (for database B) as an arc-labeled digraph, but the arcs are
labeled with sets of words over the alphabet Σ, rather than single letters. Now, a match of Q in B is a
vertex-mapping f from V (DQ) to V (DB) such that for an arc (x, y) of Q labeled with a set E(x, y) of
words, there exists a directed walk Wxy in DB from f(x) to f(y) such that the concatenation of labels
of the arcs of Wxy is a word of E(x, y).1

1In some applications, instead of the more general walks, trails or simple paths are considered, see for example [28].

2



Perhaps the most popular navigational queries are regular path queries (RPQs), studied in many
contexts [3, 4, 12, 17, 25, 30, 33]. These navigational queries are based on regular expressions: the labels
on query arcs are regular expressions over the alphabet Σ. The advantage of considering such queries is
that regular languages are a relatively simple yet powerful way of defining sets of words, that is both well-
understood and sufficiently expressive for many applications. The combination of regular path queries of
this type over the same variables is called a conjunctive regular path query (CRPQ) [3] and the underlying
graph structure representing it is a regular graph pattern (RGP) [33]. We refer to the recent survey [15]
for more details on this model.

For a fixed countable alphabet Σ, we denote by RegExp(Σ) the set of regular expressions over alphabet
Σ, with the symbols + (union), ∗ (Kleene star), and · (concatenation; sometimes this symbol is omitted).
Moreover, for a regular expression X , as a notation we let X+ := X ·X∗. For any regular expression X
in RegExp(Σ), we denote by L(X) the regular language defined by X .

A RGP P over an alphabet Σ is a pair (DP , EP ), where DP is a digraph with vertex set V (DP ) and
arc set A(DP ) and EP : A(DP ) → RegExp(Σ) is an arc-label function.

Given a directed walk W = a1,2 . . . ak−1,k in a RGP P , the label EP (W ) of W is the regular expression
over Σ formed by the concatenation EP (a1,2) . . . EP (ak−1,k).

We now define homomorphisms of RGPs. Given two RGPs P and Q over alphabet Σ, a navigational
homomorphism (n-homomorphism for short) of P to Q is a mapping f of V (DP ) to V (DQ) such that
for each arc (x, y) in DP , there is a directed walk W in Q from f(x) to f(y) such that the language
L(EQ(W )) is contained in the language L(EP (x, y)). When such an n-homomorphism exists, we write

P
n

−→ Q.
This type of homomorphism was studied in [4, 33], see also [32]. This notion has also been called

embedding [16], a term that originated in the context of interconnection networks [13].
Note that this definition also applies to graph databases since, mathematically speaking, a graph

database is a RGP whose labels are all regular expressions consisting of a unique symbol of Σ. We may
thus define the associated decision problem, that correponds to the task of CRPQ evaluation.

RGPHom
Instance: Two RGPs P and Q.
Question: Does P admit an n-homomorphism to Q?

Again, we may also study the non-uniform version of RGPHom, defined as follows for a fixed RGP
Q. It was introduced in [33] for the restricted case where Q is a graph database.

RGPHom(Q)
Instance: A RGP P .
Question: Does P admit an n-homomorphism to Q?

In [33], the authors study RGPHom(Q) for the specific case where Q is a fixed graph database.
They make a connexion to the classic homomorphism problem Hom(H) and show that RGPHom(Q)
admits a complexity dichotomy: for a specific Q, RGPHom(Q) is either polynomial-time or NP-complete.
Indeed, they showed it to be equivalent to the (classical) homomorphism problems a.k.a. the Constraint
Satisfaction Problems [14], whose complexity delineation follows a dichotomy based on specific algebraic
properties of the template Q, as shown independently by Bulatov [9] and Zhuk [38].

In this paper, we initiate the study of RGPHom(Q) in full generality, that is when Q is not just a
graph database, but any RGP. As we will see, for this case we cannot expect a polynomial-time/NP-
complete dichotomy in the style of the result of [33], since RGPHom(Q) is in fact PSPACE-hard already
for very simple cases, as it can model the problem of deciding the inclusion between regular languages.
Thus, it appears that RGPHom(Q) where Q is a general RGP merits more investigation.

Also note that the complexity of general CRPQ containment (that is, not necessarily witnessed by
a n-homomorphism) has been studied and is known to be EXPSPACE-complete [10, 18] (some special
cases enjoy a lower complexity, see [16], and some extensions are even more intractable [31]). The
homomorphism-based version of CRPQ containment does not capture CRPQ containment in its full
generality (see Figure 1 for an example). However, as we will see, the advantage is that RGPHom(Q) is
computationally easier.

3



Our results and structure of the paper. We show in Section 3 that RGPHom and related problems
are PSPACE-hard (this holds even for RGPHom(Q) for a simple template Q), by a reduction from
Regular Language Inclusion.

We then show in Section 4 that RGPHom is decidable by an EXPTIME algorithm. This shows
that checking homomorphism-based CRPQ containment is computationally more efficient than checking
general CRPQ containment, which is known to be EXPSPACE-complete [10, 18].

Finally, in Section 5, we address the simpler case of a unary alphabet Σ = {a}, and where all arc
labels are either “a” or “a+”. This includes not only all classic homomorphism problems and CSPs,
but also some kinds of queries over hierarchical data such as SPARQL and XPath, studied for example
in [12, 17, 25, 30] (it is known that most queries used in practice are very simple [7]). For this type of
RGPs, RGPHom is in NP. We give a polynomial/NP-complete complexity dichotomy for RGPHom(Q)
in the case of undirected (or symmetric) RGPs Q of this class, in the style of Hell and Nešetřil’s dichotomy
for HomH [20]. Furthermore, we show that even for arbitrary (directed) RGPs Q, RGPHom(Q) follows
a dichotomy, by relating it to (classical) homomorphism problems. We then relate the case of path tem-
plates that have only “a” labels to an interesting (polynomial-time solvable) parallel scheduling problem.
Finally, we show that for all directed path RGP templates Q with arc labels “a” or “a+”, RGPHom(Q)
is polynomial-time solvable. This special case is motivated by previous studies modelling XPath and
SPARQL queries.

We start with some preliminary considerations in Section 2 and we conclude in Section 6.

2 Preliminaries

We now give some definitions and useful results from the literature.

2.1 Regular languages

Given a fixed alphabet Σ, a language is a set of words over Σ. A regular expression over Σ is defined
recursively as follows. A symbol of Σ is a regular expression. Given two regular expressions E1 and E2,
(E1)+(E2), (E1) · (E2) and (E1)

∗ are regular expressions. For a regular expression E, we let L(E) be the
language associated to E in the classic way, where “+” denotes the union, “·” denotes the concatenation,
and “∗” is the Kleene star. A language regular if it is the language associated to some regular expression.
It is well-known that a language is regulat if and only if it can be recognized by a nondeterministic finite
automaton (NFA). We refer to [35] for further details on these matters.

We will use the following decision problems for regular languages.

Regular Language Inclusion
Instance: Two regular expressions E1 and E2 (over the same alphabet).
Question: Is L(E1) ⊆ L(E2)?

Regular Language Universality
Instance: A regular expression E over alphabet Σ.
Question: Is L(E) = Σ∗?

Note that Regular Language Universality is the special case of Regular Language Inclu-
sion where E1 = Σ∗ and E2 = E. The following are classic results.

Theorem 1 ([1, 36]). Regular Language Universality and Regular Language Inclusion are
PSPACE-complete.

2.2 Cores and n-cores

A digraph D is called a core if it does not admit a homomorphism to a proper sub-digraph of itself;
in other words, every endomorphism is an automorphism. Thus, we define similarly the notion of a
navigational core, n-core for short: a RGP P is an n-core if it does not admit a n-homomorphism to a
proper sub-RGP of itself. Cores and n-cores are useful because of the following fact (this is classic in the
case of graphs and their cores, see the book [22]).

4



Proposition 2. Let P be an RGP that is not an n-core and C, a sub-RGP of P such that P
n

−→ C.
Then, for any RGP Q, we have P

n
−→ Q if and only if C

n
−→ Q.

Proof. It is clear that P and C are n-homomorphically equivalent (P
n

−→ C by assumption and C
n

−→ P
by the identity map, since C is a sub-RGP of P ). Thus, by transitivity of n-homomorphisms, any
n-homomorphism of one of them to Q directly translates into an n-homomorphism of the other to Q.

Thus, when studying the problem RGPHom(Q), we may always assume that Q is an n-core, since
RGPHom(Q) has the same complexity as RGPHom(CQ), where CQ is a sub-RGP of Q that is an n-
core. Unfortunately, it is coNP-complete to decide whether a graph is a core [21] (thus deciding whether
a RGP is an n-core is coNP-hard, even if it is a graph database).

Note that, with respect to classic digraph homomorphisms, any digraph G has (up to isomorphism) a
unique minimal subgraph to which it admits a homomorphism, called the core of G. This is not the case
for RGPs and n-homomorphisms. For example, any two RGPs each consisting of a unique directed cycle
with all arc labels equal to “a+” have an n-homomorphism to each other. Thus, if we consider two such
cycles of different lengths and glue them at one vertex, we obtain a RGP P with two minimal sub-RGPs
of P (the two cycles) to which P has an n-homomorphism, and these two are not isomorphic. A similar
phenomenon has been observed in the case of a special subclass of directed tree RGPs, where being an
n-core has been called non-redundancy [12].

2.3 Graph homomorphisms dichotomy

The following classic dichotomy result for Hom(H) problems will be useful.

Theorem 3 (Hell and Nešetřil [20]). For any undirected graph H, Hom(H) is polynomial if H is bipartite
or contains a loop, and NP-complete otherwise.

3 PSPACE-hardness of RGPHom and related problems

In this section, we show that RGPHom and related problems are PSPACE-hard.

3.1 The general RGPHom problem

We first present a very simple reduction from Regular Language Inclusion to RGPHom.

Proposition 4. RGPHom is PSPACE-hard.

Proof. We reduce from Regular Language Inclusion, which is PSPACE-complete (Theorem 1).
Given an input E1, E2 of Regular Language Inclusion, we construct two RGPs P1 and P2 on two
vertices each, where P1 contains a single arc labelled E1 and P2, a single arc labelled E2. Now, we have
L(E1) ⊆ L(E2) if and only if P2

n
−→ P1.

As witnessed by the simplicity of the reduction given in Proposition 4, the PSPACE-hardness of
RGPHom is inherently caused by the hardness of the underlying regular language problem.

3.2 The non-uniform case

We now show that the non-uniform version of the problem still remains PSPACE-hard, even for a very
simple template.

Proposition 5. Let Σ be a fixed alphabet of size at least 2, and let DΣ
2 be the RGP of order 2 over Σ

consisting of a single arc labelled Σ∗. Then, RGPHom(DΣ
2 ) is PSPACE-complete.

Proof. To see that the problem is in PSPACE, note that the homomorphism part of the problem is simple.
Let P be the input RGP. An n-homomorphism of P to DΣ

2 exists if and only if the underlying digraph
of P maps to a single arc (this is the case if and only if it is a balanced digraph of height 1), and for
every arc label E of P , Σ∗ ⊆ L(E) (that is, Σ∗ = L(E)). Since Regular Language Universality is
in PSPACE ([1], see Theorem 1), RGPHom(DΣ

2 ) is in PSPACE.

5



To show that RGPHom(DΣ
2 ) is PSPACE-hard, we reduce Regular Language Universality to

it. Given an input E (over alphabet Σ) of Regular Language Universality, we construct the
RGP P on two vertices consisting of a single arc labelled E. Now, we have L(E) = Σ∗ if and only if

P
n

−→ DΣ
2 .

3.3 Testing for being an n-core

We now give a similar reduction that shows that testing if an RGP is an n-core is also PSPACE-hard.
We define the following decision problem:

N-Core
Instance: A RGP P .
Question: Is P an n-core?

Proposition 6. N-Core is PSPACE-hard.

Proof. We reduce Regular Language Inclusion to N-Core. Given an input E1, E2 of Regular
Language Inclusion (over alphabet Σ), we construct an RGP P (E1, E2) over alphabet Σ∪{X}, where
X /∈ Σ. We have V (P ) = {x, y, z} and P contains an arc (x, y) labelled E1 and an arc (x, z) labelled
X + E2. Now, we have L(E1) ⊆ L(E2) if and only if P is not a core. Since PSPACE=coPSPACE, we
are done.

4 An EXPTIME algorithm for RGPHom

In this section, we show that RGPHom is decidable by an EXPTIME algorithm.
Note that in certain models where simple directed paths rather than directed walks are considered,

like in [29], or when the target RGP is acyclic, there is a simple PSPACE algorithm to decide RGPHom.

Indeed, in those cases, the length of a walk is polynomial. Assume we want to check whether P
n

−→ Q.
We can iterate over all possible mappings and all possible walks: for a mapping f : V (DP ) → V (DQ)
and, for each mapped pair ({x, y}, {f(x), f(y)}) of vertices and each walk W from f(x) to f(y), we check
in polynomial space whether L(EQ(W )) ⊆ EP (x, y).

However, in general, the walks may be arbitrarily long. As we will see, we can still bound their
maximum length and give an EXPTIME algorithm for RGPHom.

For a regular language L over alphabet Σ and a positive integer n, we denote by L|n the n-truncation
of L, that is, the set of words of L whose length is at most n.

Lemma 7. Let A, B1, . . . Bk be a collection of regular expressions over alphabet Σ, and let nA, ni be
the minimum number of states of an NFA recognizing L(A) and L(Bi), respectively. Then, we have that
L(B1) · · ·L(Bk) ⊆ L(A) if, and only if, L(B1)|nAn1

· · ·L(Bk)|nAnk
⊆ L(A).

Proof. It is clear that if L(B1) · · ·L(Bk) ⊆ L(A), then also L(B1)|nAn1
· · ·L(Bk)|nAnk

⊆ L(A), since
L(Bi)|nAni

⊆ L(Bi) for every i with 1 ≤ i ≤ k.
For the converse, we assume that L(B1)|nAn1

· · ·L(Bk)|nAnk
⊆ L(A). That is, any word w1 · · ·wk of

L(B1) · · ·L(Bk) with |wi| ≤ nAni for every i with 1 ≤ i ≤ k, belongs to L(A). We need to prove that all
words of L(B1) · · ·L(Bk) (without length restriction) belong to L(A).

We proceed by induction on the vectors of subword lengths of words in L(B1) · · ·L(Bk). For such a
word w1 · · ·wk, this associated vector is (|w1|, . . . , |wk|), and these vectors are ordered lexicographically.
The induction hypothesis is that all words of L(B1) · · ·L(Bk) whose associated vector is at most (l1, . . . , lk)
(where for any i with 1 ≤ i ≤ k, li is a positive integer), belongs to A. By our assumption, the case
where li ≥ nAni is true.

Now, consider a word w = w1 · · ·wk of L(B1) · · ·L(Bk), whose associated vector is (|w1|, . . . , |wk|),
and where for some j ∈ {1, . . . , k}, |wj | = lj + 1; whenever i 6= j, |wi| ≤ li. Let A and Aj be two NFAs
recognizing A and Bj with smallest numbers nA and nj of states, respectively.

We consider the product automaton A × Aj of A and Aj , with set of states S × Sj (where S and
Sj are the sets of states of A and Aj , respectively), and a transition ((s1, s2), a, (s

′
1, s

′
2)) only if we have

the transitions (s1, a, s
′
1) and (s2, a, s

′
2) in A and Aj , respectively (all other transitions are “dummy

transitions” to a “garbage state”). Consider the run of A×Aj for the word wj . The crucial observation

6



is that, because |wj | = lj + 1 > nAnj , this run necessarily visits two states of A×Aj twice, that is, the
run contains a directed cycle. Consider the shorter run obtained by pruning this cycle. The two runs
start and end at the same two states of A ×Aj . The shorter run corresponds to a word w′

j of length at
most |wj | − 1 ≤ lj . Since wj ∈ L(Bj), the end state of these runs is a pair containing an accepting state
of Aj (thus w′

j belongs to L(Bj) as well). Thus, the word w′ obtained from w by replacing wj with w′
j

belongs to L(B1) · · ·L(Bk), and w′ satisfies the induction hypothesis. Thus, w′ belongs to L(A). But
now, considering the pruned cycle in A×Aj , we can build a valid run for wj in A×Aj that leads to a
valid run for w in A. This proves the inductive step and concludes the proof.

We will now apply Lemma 7 to the case of matching a regular expression to a walk in an RGP.

Proposition 8. Let E be a regular expression over alphabet Σ, and AE an NFA with nE states recognizing
L(E). Let Q = (D,E) be an RGP over Σ. For any two vertices u and v in Q, we can compute a walk W
from u to v satisfying L(E(W )) ⊆ L(E) (if one exists), in time 2O(nE |Q| log(|E|+|Q|)). Moreover, if such
a walk exists, then there exists one of length at most 2nE |Q|.

Proof. Since E and Q are finite, we will assume that |Σ| ≤ |E|+ |Q| (if not, we simply remove the unused
symbols from Σ.)

By Lemma 7, there is a walk W in Q from u to v such that L(E(W )) ⊆ L(E) if and only if there
exists one in the RGP Q′ obtained from Q by replacing each arc-label E(x, y) by a regular expression
defining the nEnB-truncation L(E(x, y))′ of L(E(x, y)) (where nB is the smallest number of states of an
NFA recognizing L(E(x, y))). Thus, we first compute Q′. Note that L(E(x, y))′ contains at most |Σ|nEnB

words.
Next, we will construct an auxiliary digraph G(E,Q, u, v). This digraph has vertex set 2S × V (Q),

where S is the set of states of AE .
Given two states s1 and s2 of AE and a word w over Σ, we say that w reaches s2 from s1 in AE if

there exists a sequence of transitions of AE starting at s1 and ending at s2 using the sequence of letters
of w.

Now, for two vertices (S1, u) and (S2, v) of G(E,Q, u, v), we create the arc ((S1, x), (S2, y)) if and
only if, for each state s of S1 and each word w of L(E(x, y))′, w reaches a state of S2 in AE .

Deciding whether ((S1, x), (S2, y)) is an arc of G(E,Q, u, v) takes time at most |S1|2
nE |L(E(x, y))′|,

which is at most |Σ|O(nE |Q|). Since there are (2nE |Q|)2 pairs of vertices of G(E,Q, u, v), overall the
construction of G(E,Q, u, v) can be done in time |Σ|O(nE |Q|).

Now, we claim that there exists a walk W from u to v with L(E(W )) ⊆ L(E(x, y)) if and only if there
is a directed path in G(E,Q, u, v) from a vertex ({s0}, x) to a vertex (Sf , y), where s0 is the initial state
of AE , and Sf is a subset of the accepting states of AE . Indeed, such a path corresponds precisely to a
walk W from u to v in Q, such that all the words of L(W ) are accepted by AE .

This check can be done in linear time in the size of G(E,Q, u, v) using a standard BFS search, thus we
obtain an additional time complexity of (2nE |Q|)2, which is also at most |Σ|O(nE |Q|). Since |Σ| ≤ |E|+ |Q|
we obtain 2O(nE |Q| log(|E|+|Q|)).

Finally, it is clear that the length of an obtained directed path of G(E,Q, u, v) is at most the number
of vertices of G(E,Q, u, v), which is 2nE |Q|, as claimed. This completes the proof.

We are now ready to prove the main theorem of this section.

Theorem 9. RGPHom is in EXPTIME.

Proof. We proceed as follows. First, we go through all possible vertex-mappings of V (P ) to V (Q) (there
are |V (Q)||V (P )| such possible mappings). Consider such a vertex-mapping, f .

For each arc (x, y) in P with label E(x, y), we proceed as follows. Let A be an NFA recognizing
L(E(x, y)) with smallest possible number nA of states. We apply Proposition 8 to E(x, y), A and Q,
with u = f(x) and v = f(y): thus we can decide in time 2O(nA|Q| log(|E(x,y)|+|Q|)) whether the mapping
f satisfies the definition of an n-homomorphism for the arc (x, y). If yes, we proceed to the next arc;
otherwise, we abort and try the next possible mapping. If we find a valid mapping, we return YES.
Otherwie, we return NO.

Our algorithm has a time complexity of |V (Q)||V (P )| · |P | · 2O(|P ||Q| log(|P |+|Q|)). Let n = |P |+ |Q| be

the input size. We obtain an overall running time of 2O(n2 logn), which is an EXPTIME running time.

We obtain the following corollary.

7



Corollary 10. N-Core is in EXPTIME.

Proof. To decide whether a given RGP P is an n-core, it suffices to check, for each sub-RGP Q of P ,
whether we have P

n
−→ Q. Thus, an exponential number of applications of our EXPTIME algorithm for

RGPHom is a valid EXPTIME algorithm for N-Core.

Note that for two RGPs P and Q, if P
n

−→ Q then the query Q is contained in the query P , but there
are examples where the converse does not hold (see Figure 1). Thus, the problem RGPHom for two
RGPs does not fully capture RGP Query Containment. Nevertheless, we will show that the former
can be solved in EXPTIME, which is better than the (tight) EXPSPACE complexity of RGP Query
Containment shown in [10, 18].

a+b

P

a

Q

Figure 1: Two n-core RGPs P and Q over alphabet {a, b} which have no n-homomorphism in either
direction. From P to Q because one can not map suitably the arc labelled by b, in the other direction
because neither b nor a+ is included in a. However, any database that matches the RGP P would contain
a walk of arcs all labelled by a (because of the arc with label a+ in P ). The database would clearly also
match Q. So Q is contained in P .

5 Specific RGP classes over a unary alphabet: the {a, a+} case

In this section, we consider that the alphabet Σ is unary, say, Σ = {a}. It is known that some unary
languages are undecidable (because the set of unary languages is uncountable, while the set of decidable
languages is countable). Thus, even unary languages are highly nontrivial and it is of interest to study
them. Note that for unary regular languages, Regular Language Inclusion and Regular Lan-
guage Universality are no longer PSPACE-complete but they are coNP-complete (see [23] and [36],
respectively).

The case where all arc-labels of the considered RGPs are equal to “a” is equivalent to the problem of
classic digraph homomorphisms, and thus it captures all CSPss, see [14]. When each label is either “a”
or “a+”, we have two kinds of constraints: arcs labeled “a” must map in a classic, local, way, while for
arcs labeled “a+” can be mapped to an arbitrary (nontrivial) path in the target RGP. Thus, this setting
is useful for example to model descendence relations in hierarchichal data such as XML. THis setting is
for example used in languages like SPARQL or XPath for XML documents, that are tree-structured. We
refer for example to the papers [12, 17, 25, 30]. For digraphs, this type of homomorphisms is related to
the setting where one considers the graph power of the template digraph, a problem studied in [8].

We first show how to transform such problems into a classic homomorphism problem. For an RGP Q
with arc-labels either “a” or “a+”, let D(Q) be the two-arc-labeled digraph obtained from Q by leaving
all arcs labeled “a” untouched, and adding an arc with label “t” from a vertex x to a vertex y if and only
if there is a directed path (regardless of any labels) from x to y in Q (that is, the arcs labeled “t” induce
the transitive closure of the digraph). This construction is computable in polynomial time. See Figure 2
for an example (we adopt the style of [12] by marking the “a+” arcs as doubled).

Proposition 11. RGPHom restricted to RGPs with arc-labels either “a” or “a+” is polynomially re-
ducible to Hom for two-arc-labeled digraphs.

Proof. Let D′
P be the directed tree obtained from DQ by replacing ll arc-labels “a+” by labels “t”. For

any instance P,Q of RGPHom, we have that P
n

−→ Q (as a navigational homomorphism) if and only if
D′

P → D(Q) (as a classic homomorphism of arc-labeled digraphs). Indeed, the arcs labeled “t” in D(Q)
join precisely those pairs to which the two vertices of an arc labeled “a+” can map in a navigational
homomorphism of P to Q. There is no difference in the mapping of arcs labeled “a”. This completes the
proof.

8



Q D(Q)

t

at

t

at

t

t

t

t

t

t

Figure 2: A path RGP Q with arc-labels in {a, a+} (doubled arcs are labeled “a+”, the others are labeled
“a”) and the corresponding two-arc-labeled digraph D(Q).

We show next that the special case we consider here is much easier than the general PSPACE-hard
case.

Proposition 12. For RGPs over an alphabet Σ with a ∈ Σ whose arc-labels are in {a, a+}, RGPHom
is in NP .

Proof. It suffices to apply Proposition 11, by noting that Hom is in NP.

5.1 Undirected RGPs with edge-labels in {a, a+}

We now consider undirected RGPs, where arcs are pairs of vertices, called edges (equivalently, for each
arc from x to y, we have its symmetric arc from y to x with the same label) with arc-labels “a” and
“a+”. In an n-homomorphism of a RGP P to a RGP Q that both satisfy this constraint, two vertices
x and y joined by an edge labelled “a” in P must be mapped to two vertices labelled “a” in Q (as in a
classic graph homomorphism). If x and y are joined by an edge labelled “a+” in P , they simply need
to be mapped to two vertices of Q that are connected by some path in Q. Thus, this can be seen as an
extension of classic graph homomorphisms with additional (binary) connectivity constraints.

Proposition 13. Let Q be an undirected connected n-core RGP over alphabet {a} with arc-labels in
{a, a+}, let {S1, . . . , Sp} be the set of connected components of the sub-RGP Qa of Q induced by the edges
labeled “a”, and denote by Xi the set of vertices of Si incident with an edge labeled “a+”. Then, the
following properties hold.

(a) If Q contains no edge labeled “a”, then Q has at most one edge.

(b) If Q contains a loop at vertex v, then V (Q) = {v}.

(c) If Q is loop-free, then every edge labeled “a+” is a bridge.

(d) Let Si and Sj be two distinct components of Qa. If |Xi| ≤ 1, then Si has no n-homomorphism to
Sj.

(e) For any component Si of Qa and any n-endomorphism f of Si satisfying that f(x) = x for every
vertex x of Xi, f is an n-automorphism of Si.

Proof. (a) If all edges of Q are labelled ”a+” (and Q has at least one edge), since Q is connected, Q maps
to any of its subgraphs containing exactly one edge, a contradiction.

9



(b) If there is a loop at vertex v that is labelled “a”, then Q maps to its subgraph induced by {v}, and
so, V (Q) = {v}. If the loop is labelled “a+” but there are at least two vertices in Q, then Q maps to its
subgraph with that loop removed, contradicting the fact that Q is an n-core.

(c) If two distinct vertices x, y of Q are joined by an edge labelled “a+” that is not a bridge, then Q maps
to its subgraph obtained by removing that edge, a contradiction.

(d) If Si
n

−→ Sj through a n-homomorphism f , we can use f to define an endomorphism f ′ of Q such
that, for any vertex v, f ′(v) = f(v) if v ∈ Si and f(v) = v otherwise. Since f ′ is not an automorphism,
its existence contradicts the fact that Q is an n-core.

(e) If this was not the case, again we could extend f to obtain an endomorphism of Q that is not an
automorphism, a contradiction.

An example of an undirected n-core RGP is given in Figure 3, where the graph induced by the edges
labeled “a” has three components: a single vertex, a triangle and the Grötzsch graph. The two latter
ones are not homomorphic to each other, in accordance with Proposition 13(d).

Figure 3: An undirected n-core RGP over alphabet {a} with edge-labels in {a, a+}. Doubled edges are
labeled “a+”, the others are labeled “a”.

Theorem 14. Let Q be an undirected and connected n-core RGP over alphabet {a} with arc-labels in
{a, a+}. If Q has at most one edge, RGPHom(Q) is solvable in polynomial time. Otherwise, RG-
PHom(Q) is NP-complete.

Proof. Polynomial-time part. Suppose that Q has at most one edge. Then, it either consists of a single
vertex with at most one loop, or of two vertices joined by a unique edge. Let P be an input RGP over
alphabet {a} and with arc-labels in {a, a+}. If Q has one vertex and no loop, P

n
−→ Q if and only if P

has no edge. If Q has one vertex and a loop labelled “a”, always P
n

−→ Q. If Q has one vertex and a
loop labelled “a+”, P

n
−→ Q if and only if P has no edge labelled “a”. If Q has two vertices and an edge

labelled ”a+”, also if and only if P has no edge labelled “a”. Finally, if Q has two vertices and an edge
labelled ”a”, P

n
−→ Q if and only if the subgraph of P induced by the edges labelled “a” is bipartite. All

these conditions can be checked in polynomial time.

NP-complete part. Suppose now that Q has at least two edges. RGPHom(Q) is in NP by Corollary 12.
We reduce from Hom(H), where H is the undirected graph obtained from Qa (the sub-RGP of Q induced
by the edges labelled “a”) by removing all edge-labels. By Proposition 13(a)–(b), H has no loop and
at least one edge. By Proposition 13(c)–(e), H has a connected component with an odd cycle, thus by
Theorem 3, Hom(H) is NP-complete. We trivially reduce Hom(H) to RGPHom(Q) as follows: for an
input undirected graph G of Hom(H), construct the undirected RGP P (G) from G by labelling each

edge with “a”. Now, G → H if and only if P (G)
n

−→ Q.

5.2 Directed path RGPs with all arcs labeled “a”

In this section, we considerRGPHom(Q) when Q is a directed path whose arc labels are all “a” (arguably
the simplest RGP directed graph example) and where instances can have labels in {a, a+}. This case
turns out to have an interesting connection to the following parallel job scheduling problem, studied in
the book [34, Chapter 4.4, p.666].

10



Parallel Job Scheduling With Relative Deadlines
Instance: A set J of jobs, a duration function d : J → N, a relative deadline function r :
J × J → Z, and a maximum time tmax.
Question: Is there a feasible schedule for the jobs, that is, an assignment t : J → N of start
times such that every job finishes before time tmax and for any two jobs j1 and j2, j1 starts
before the time t(j2) + r(j1, j2)?

Parallel Job Scheduling With Relative Deadlines can be solved in polynomial time by a
reduction to a shortest path problem in an edge-weighted digraph, see [34, Chapter 4.4, p.666]. We will
now show that when Q is a directed path whose arc labels are in {a, a+}, RGPHom(Q) can be modeled
as such a scheduling problem.

We sau that a digraph is balanced if it is acyclic and its vertices can be partitioned into levels L1, . . . , Lk

such that for each arc (x, y) with x ∈ Li, we have y ∈ Li+1. A digraph is balanced if and only if it has a
homomorphism to a directed path (the length of this path must be at least the number of levels minus
one).

Theorem 15. Let Q be a RGP whose underlying digraph is a directed path, and whose arc labels are all
“a”. Then, RGPHom(Q) for instances with arc-labels in {a, a+} can be reduced in polynomial time to
Parallel Job Scheduling With Relative Deadlines.

Proof. Let q0, . . . , qn−1 be the vertices of Q, with the arc (qi, qi+1) whenever 0 ≤ i ≤ n − 2. Let P be
an instance of RGPHom(Q). It is clear that the underlying digraph of P must be acyclic, otherwise P
is a NO instance. Now, consider the digraphs PA and QA which are the subdigaphs of the underlying
digraphs of P and Q respectively, that are induced by the arcs labeled “a”. In order for P to be a
YES-instance, we must necessarily have that PA has a homomorphism to QA, that is, PA must be a
balanced digraph, with at most as many levels as the length of Q.

We will now transform P into an equivalent instance P ′. Observe that in an n-homomorphism of P to
Q, necessarily all vertices of P that belong to a same connected component of PA and to the same level
in PA will be mapped to the same vertex of Q. Thus, we may identify all such vertices of P into a single
vertex to obtain P ′. In P ′, all connected components of P ′A are directed paths. Now, observe that if
there is some arc labeled “a+” within some connected component of P ′A, either it creates a directed cycle
(then P is a NO instance and we return NO), or it is not useful since this arc can be mapped trivially.
Thus, we may assume that there is no such arc in P ′. See Figure 4 for an illustration of this process.

P P ′ P ′′

Figure 4: Proof of Theorem 15: illustration of the two-step simplification of an input RGP P into P ′ and
P ′′, with three components in PA. Doubled arcs are labeled “a+”, the others are labeled “a”.

We now perform a second simplification and transform P ′ into yet another equivalent RGP P ′′.
Consider two components C1 and C2 of P ′A. If there are two “a+”-labeled arcs from C1 to C2, then one
of them can be removed to obtain an equivalent instance. Indeed, assume that the vertices of C1 are
u1, u2, . . . , u|C1| and those of C2 are v1, v2, . . . , v|C2| (where (ui, ui+1) and (vi, vi+1) are “a”-labeled arcs
for i less than |C1| and |C2|, respectively). An “a+”-labeled arc (ui, vj) implies that in any homomrophism
of P ′ to Q, if the vertex u0 is mapped to the vertex qa, then v0 must be mapped to a vertex qb with

11



b ≥ a + i − j + 1. Thus, among all such arcs (ui, vj), in P ′ we remove all of them but the one that
maximizes i− j and obtain the equivalent instance P ′′. See again Figure 4 for an illustration.

We can now build the equivalent instance of Parallel Job Scheduling With Relative Dead-
lines. We let J be the set of connected components of P ′′A. We let tmax = n−1. For a connected compo-
nent C of P ′′A, d(C) (recall that C is a directed path) is the number of arcs of C. For two components C1

and C2 with vertices u1, u2, . . . , u|C1| and v1, v2, . . . , v|C2| numbered as before, if there is an “a+”-labeled
arc (ui, vj) from C1 to C2 in P ′′ (recall there is at most one such arc), we let r(C1, C2) = j − i − 1 (the
job C1 must start at least j − i− 1 time units before the job C2). If there is no arc from C1 to C2, then
we let r(C1, C2) = −n, which imposes no time contraint.

It is now clear that any solution s to this instance of Parallel Job Scheduling With Relative
Deadlines corresponds to an n-homomorphism fs of P ′′ to Q (and thus of P to Q), and vice-versa,
where the start time of a job C in s is equal to the index of the image by fs of the source of C.

We obtain the following immediate corollary.

Corollary 16. If Q is an RGP whose underlying digraph is a directed path with all arcs labeled “a”,
RGPHom(Q) can be solved in polynomial time for instances whose arc labels are in {a, a+}.

As we will see in the next section, Corollary 16 can be generalized to all RGPs whose underlying
digraph is a directed path and whose arc labels are in {a, a+}.

5.3 Directed path RGPs with arc-labels in {a, a+}

Our next result is more general than Corollary 16, as we use a stronger method. It also extends a result
from [30], where the statement is proved only for input RGPs whose underlying digraphs are directed
trees. Here we prove it for all kinds of inputs.

But first, we need to define some notions that are useful tools for proving alorithmic results for
homomorphism problems. For an arc-labeled digraph D and a positive integer k, we define the product
digraph Dk as the digraph on vertex set V (D)k, with an arc of label ℓ from (x1, . . . , xk) to (y1, . . . , yk) if
all pairs (xi, yi) with 1 ≤ i ≤ k are arcs of label ℓ in D.

A homomorphism of Dk to D is called a (k-ary) polymorphism of D. For a set S, a function f from
S3 to S is a majority function if for all x, y in S, f(x, x, y) = f(x, y, x) = f(y, x, x) = x. We have the
following theorem, that can be found in [24, Theorem 5.2.4].

Theorem 17 ([24]). Let D be an arc-labeled digraph that has a ternary polymorphism that is a majority
function. Then, Hom(D) is polynomial-time solvable.

Theorem 18. Let Q be an RGP whose underlying digraph is a directed path with arc labels either “a”
or “a+”. Then, RGPHom(Q) can be solved in polynomial time.

Proof. By Proposition 11, it suffices to show that Hom(D(Q)), as defined before Proposition 11, is
polynomial-time solvable. To do this, we show thatD(Q) admits a majority polymorphism f : V (D(Q))3 →
V (D(Q)), and we will obtain the claimed result by Theorem 17.

As previously, let q0, . . . , qn−1 be the vertices of Q, with the arc (qi, qi+1) whenever 0 ≤ i ≤ n−2. This
induces a natural ordering of the vertices with qi ≤ qj if and only if i ≤ j. The majority polymorphism s
we consider is the median: for three (not necessarily distinct) integers i, j, k with 0 ≤ i ≤ j ≤ k ≤ n− 1
and {a, b, c} = {i, j, k}, we let f(qa, qb, qc) = qj .

First, it is clear that f is a majority function by our definition since the median of qi, qi and qj is
always qi.

It remains to show that f is a polymorphism, that is, a homomorphism of D(Q)3 to D(Q). Let
(qa, qb, qc) and (qd, qe, qf ) be two vertices of D(Q)3 such that ((qa, qb, qc), (qd, qe, qf )) is an arc in D(Q)3

(that is, (qa, qd), (qb, qe) and (qc, qf ) are arcs in D(Q) with the same label). Assume without loss of
generality that a ≤ b ≤ c. Since D(Q) has two arc labels, there are two cases to consider.

If the arc is labeled “a”, we necessarily have d = a+ 1, e = b+ 1 and f = c+ 1; since a ≤ b ≤ c, also
d ≤ e ≤ f . Thus, we have f(qa, qb, qc) = qb and f(qd, qe, qf ) = qe = qb+1. Thus there is an arc labeled
“a” from f(qa, qb, qc) to f(qd, qe, qf ), as required.

If the arc is labeled “t”, we have d ≥ a + 1, e ≥ b + 1 and f ≥ c + 1. Since a ≤ b ≤ c, we will have
f(qd, qe, qf ) = qm with m ≥ b+1. Since f(qa, qb, qc) = qb, there is an arc with label “t” from f(qa, qb, qc)
to f(qd, qe, qf ), as required. This completes the proof.

12



We remark that Theorem 18 also applies to RGPs with vertex-labels (where a vertex with a given
label can only be assigned to a vertex with the same label). Indeed, a vertex-label is modeled as a unary
relation, and unary relations trivially satisfy the properties for having a majority polymorphism.

Moreover, using the same method, Theorem 18 extends to labels of the form “a∗”, “ak” or “a≤k”
where k ∈ N.

6 Conclusion

We have seen that RGPHom, which is generally PSPACE-hard (but in NP when the target RGP is
a graph database), is in EXPTIME. This favorably compares to the general complexity of RGP query
containment, which is EXPSPACE-complete [10, 18], and motivates the use of RGP n-homomorphisms
to approximate query containment. It remains to close the gap between the PSPACE lower bound and
the EXPTIME upper bound. This also holds for N-Core.

We have also seen that when all labels are “a” or “a+” (a case that is also in NP, and that corresponds
to XPath and SPARQL queries), we have a complete classification of the NP-complete and polynomial
cases for undirected RGPs, and all RGPs whose underlying digraph is a directed path are polynomial.
It was proved in [30] that when both the input and target is a directed tree with arc-labels in {a, a+},
RGPHom is polynomial-time solvable. Is it true that (for general instances) RGPHom(Q) is polynomial
when Q is a directed tree with arc-labels in {a, a+}? 2 When all arc-labels are “a”, then the only n-core
RGPs whose underlying digraphs are directed trees are, in fact, the directed paths (such a directed tree
maps to its longest directed path). But there are many more n-cores when both labels “a” and “a+” are
used, see Figure 5 for a simple example.

Figure 5: An n-core directed tree RGP with arc-labels in {a, a+}. Doubled edges are labeled “a+”, the
others are labeled “a”.

It would be interesting to study further cases corresponding to relevant applications, such as the ones
of “simple regular expressions” studied in [16]. An interesting case with a unary alphabet is the case
where all labels are in {ak|k ∈ N}. This models a kind of weighted homomorphism, where an arc with
weight k (that is, with label “ak”) can only map to a directed walk with sum of weights equal to k. If
we consider weights of the form {a≤k|k ∈ N}, this would be close to the setting of homomorphisms to
powers of digraphs, also related to the notion of dilation of graph embeddings [8].

References

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman. The design and analysis of computer algorithms,
Addison-Wesley, pp. 27–32, 1974.

[2] R. Angles, M. Arenas, P. Barceló, P. Boncz, G. Fletcher, C. Gutierrez, T. Lindaaker, M. Paradies,
S. Plantikow, J. Sequeda, O. van Rest and H. Voigt. G-CORE: A Core for Future Graph Query

2Note that this would not be true for all acyclic RGPs, indeed there exists an oriented tree T with 27 vertices such that
Hom(T ) is NP-complete [6]. Thus, for the RGP Q(T ) with T as its underlying digraph and all arc-labels equal to “a”,
RGPHom(Q(T )) is NP-complete.

13



Languages. Proceedings of the 2018 International Conference on Management of Data (SIGMOD
2018). ACM, New York, NY, USA, 1421–1432, 2018.

[3] P. Barceló. Querying graph databases. Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS 2013), ACM, pp. 175–188, 2013.

[4] P. Barceló, M. Romero and M. Y. Vardi. Semantic acyclicity on graph databases. SIAM Journal on
Computing 45(4):1339–1376, 2016.

[5] L. Beaudou, F. Foucaud, F. Madelaine, L. Nourine and G. Richard. Complexity of conjunctive regular
path query homomorphisms. Proceedings of the 15th Conference on Computability in Europe (CIE
2019), Lecture Notes in Computer Science 11558:108–119, 2019.

[6] M. Bodirsky, J. Buĺın, F. Starke and M. Wernthaler. The smallest hard trees. Constraints, to appear.
https://link.springer.com/article/10.1007/s10601-023-09341-8

[7] A. Bonifati, W. Martens and T. Timm. An analytical study of large SPARQL query logs. The VLDB
Journal 29(2):655–679, 2020.

[8] R. C. Brewster and P. Hell. Homomorphisms to powers of digraphs. Discrete Mathematics 244(1–3):
31–41, 2002.

[9] A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. Proceedings of the 58th IEEE Annual
Symposium on Foundations of Computer Science (FOCS 2017), IEEE Computer Society, pp. 319–
330, 2017.

[10] D. Calvanese, G. De Giacomo, M. Lenzerini and M. Y. Vardi. Containment of conjunctive regular
path queries with inverse. Proceedings of the 7th international conference on Principles of Knowledge
Representation and Reasoning (KR 2000), Morgan Kaufmann, pp. 176–185, 2000.

[11] I. F. Cruz, A. O. Mendelzon and P. T. Wood. A graphical query language supporting recursion.
Proceedings of the Association for Computing Machinery Special Interest Group on Management of
Data 1987 Annual Conference (SIGMOD 1987), pages 323–330, 1987.

[12] W. Czerwiński, W. Martens, M. Niewerth and P. Parys. Optimizing tree patterns for querying graph-
and tree-structured data. ACM SIGMOD Record 46(1):15–22, 2017.

[13] J. Dı́az, J. Petit and M. J. Serna. A survey of graph layout problems. ACM Computing Surveys
34(3):313–356, 2002.

[14] T. Feder and M. Y. Vardi. The Computational structure of monotone monadic SNP and constraint
catisfaction: a study through datalog and group theory. SIAM Journal on Computing 28(1):57–104,
1998.

[15] D. Figueira. Foundations of Graph Path Query Languages – Course Notes for the Reasoning Web
and Declarative Artificial Intelligence 17th International Summer School 2021. Lecture Notes in
Computer Science 13100: 1–21, 2021.

[16] D. Figueira, A. Godbole, S. N. Krishna, W. Martens, M. Niewerth and T. Trautner. Containment
of Simple Conjunctive Regular Path Queries. Proceedings of the 17th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2020), 371–380, 2020.

[17] S. Flesca, F. Furfaro and E. Masciari. On the minimization of XPath queries. Journal of the ACM
55(1):2:1–2:46, 2008.

[18] D. Florescu, A. Levy and D. Suciu. Query containment for conjunctive queries with regular expres-
sions. Proceedings of the 17th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS 1998), ACM, pp. 139–148, 1998.

[19] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg,
P. Selmer and A. Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs. In
Proceedings of the 2018 International Conference on Management of Data (SIGMOD 2018). ACM,
New York, NY, USA, 1433-1445.

14

https://link.springer.com/article/10.1007/s10601-023-09341-8


[20] P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory Series B
48(1):92–110, 1990.

[21] P. Hell and J. Nešetřil. The core of a graph. Discrete Mathematics 109(1–3):117–126, 1992.

[22] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and Its
Applications, Oxford University Press, 2004.

[23] H. B. Hunt III, D. J. Rosenkrantz and T. G. Szymanski. On the equivalence, containment, and
covering problems for the regular and context-free languages. Journal of Computer and System
Sciences 12(2):222–268, 1976.

[24] P. G. Jeavons, D. A. Cohen and M. Gyssens. Closure properties of constraints. Journal of the ACM
44:527–548, 1997.

[25] B. Kimelfeld and Y. Sagiv. Revisiting redundancy and minimization in an XPath fragment. Proceed-
ings of the 11th International Conference on Extending Database Technology (EDBT 2011), ACM
International Conference Proceeding Series 261:61–72, 2008.

[26] P. G. Kolaitis and M. Y. Vardi. Conjunctive query-containment and constraint satisfaction. Journal
of Computer and System Sciences 61:302–332, 2000.

[27] W. Martens, F. Neven and T. Schwentick. Complexity of decision problems for XML schemas and
chain regular expressions. SIAM Journal on Computing 39(4):1486–1530, 2009.

[28] W. Martens and T. Popp. The complexity of regular trail and simple path queries on undi-
rected graphs. Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS 2022), pages 165–174, ACM, 2022.

[29] A. O. Mendelzon and P. T. Wood. Finding regular simple paths in graph databases. SIAM Journal
on Computing 24(6):1235–1258, 1995.

[30] G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. Journal of the ACM
51(1):2–45, 2004.

[31] J. L. Reutter, M. Romero and M. Y. Vardi. Regular queries on graph databases. Theory of Computing
Systems 61(1):31–83, 2017.

[32] M. Romero. The tractability frontier of well-designed SPARQL queries. Proceedings of the 37th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS 2018), pages 295–
306, 2018.

[33] M. Romero, P. Barceló and M. Y. Vardi. The homomorphism problem for regular graph patterns.
Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2017),
IEEE Computer Society, pp. 1–12, 2017.

[34] R. Sedgewick and K. Wayne. Algorithms, 4th edition. Addison-Wesley Professional, 2011.

[35] M. Sipser. Introduction to the theory of computation, 3rd edition, Cengage Learning, 2012.

[36] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time: preliminary report.
Proceedings of the fifth annual ACM Symposium on Theory of Computing (STOC 1973), pages 1–9.

[37] M. Yannakakis. Graph-theoretic methods in database theory. Proceedings of the 9th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1990), pages 230–242,
ACM, 1990.

[38] D. Zhuk. A Proof of CSP Dichotomy Conjecture. Proceedings of the 58th IEEE Annual Symposium
on Foundations of Computer Science (FOCS 2017), IEEE Computer Society, pp. 331–342, 2017.

15


	1 Introduction
	2 Preliminaries
	2.1 Regular languages
	2.2 Cores and n-cores
	2.3 Graph homomorphisms dichotomy

	3 PSPACE-hardness of RGPHom and related problems
	3.1 The general RGPHom problem
	3.2 The non-uniform case
	3.3 Testing for being an n-core

	4 An EXPTIME algorithm for RGPHom
	5 Specific RGP classes over a unary alphabet: the {a,a+} case
	5.1 Undirected RGPs with edge-labels in {a,a+}
	5.2 Directed path RGPs with all arcs labeled ``a''
	5.3 Directed path RGPs with arc-labels in {a,a+}

	6 Conclusion

