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We introduce and study the BICOLORED P3 DELETION problem defined as follows. The input is a graph G =

(V,E) where the edge set E is partitioned into a set Er of red edges and a set Eb of blue edges. The question is

whether we can delete at most k edges such that G does not contain a bicolored P3 as an induced subgraph. Here, a

bicolored P3 is a path on three vertices with one blue and one red edge. We show that BICOLORED P3 DELETION is

NP-hard and cannot be solved in 2o(|V |+|E|) time on bounded-degree graphs if the ETH is true. Then, we show that

BICOLORED P3 DELETION is polynomial-time solvable when G does not contain a bicolored K3, that is, a triangle

with edges of both colors. We also provide a polynomial-time algorithm for the case that G contains no blue P3,

red P3, blue K3, and red K3. Finally, we show that BICOLORED P3 DELETION can be solved in O(1.84k · |V | ·

|E|) time and that it admits a kernel with O(k∆min(k,∆)) vertices, where ∆ is the maximum degree of G.
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1 Introduction

Graph modification problems are a popular topic in computer science. In these problems, one is given a

graph and wants to apply a minimum number of modifications, for example edge deletions, to obtain a

graph that fulfills some graph property Π.
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An important reason for the popularity of graph modification problems is their usefulness in graph-

based data analysis. A classic problem in this context is CLUSTER EDITING where we may insert and

delete edges and Π is the set of cluster graphs. These are exactly the graphs that are disjoint unions of

cliques and it is well-known that a graph is a cluster graph if and only if it does not contain a P3, a path

on three vertices, as induced subgraph. CLUSTER EDITING has many applications [4], for example in

clustering gene interaction networks [3] or protein sequences [30]. The variant where we may only delete

edges is known as CLUSTER DELETION [26]. Further graph-based data analysis problems that lead to

graph modification problems for some graph property Π defined by small forbidden induced subgraphs

arise in the analysis of biological [8, 18] or social networks [6, 24].

Besides the application, there is a more theoretical reason why graph modification problems are very

important in computer science: Often these problems are NP-hard [23, 31] and thus they represent in-

teresting case studies for algorithmic approaches to NP-hard problems. For example, by systematically

categorizing graph properties based on their forbidden subgraphs one may outline the border between

tractable and hard graph modification problems [2, 22, 31].

In recent years, multilayer graphs have become an increasingly important tool for integrating and an-

alyzing network data from different sources [21]. Formally, multilayer graphs can be viewed as edge-

colored (multi-)graphs, where each edge color represents one layer of the input graph. With the advent

of multilayer graphs in network analysis it can be expected that graph modification problems for edge-

colored graphs will arise in many applications as it was the case in uncolored graphs.

One example for such a problem is MODULE MAP [27]. Here, the input is a simple graph with red and

blue edges and the aim is to obtain by a minimum number of edge deletions and insertions a graph that

contains no P3 with two blue edges, no P3 with a red and a blue edge, and no a triangle, called K3, with

two blue edges and one red edge. MODULE MAP arises in computational biology [1, 27]; the red layer

represents genetic interactions and the blue layer represents physical protein interactions [1].

Motivated by the practical application of MODULE MAP, an edge deletion problem with bicolored

forbidden induced subgraphs, we aim to study such problems from a more systematic and algorithmic

point of view. Given the importance of P3-free graphs in the uncolored case, we focus on the problem

where we want to destroy all bicolored P3s, that is, all P3s with one blue and one red edge, by edge

deletions.

BICOLORED P3 DELETION (BPD)

Input: A two-colored graph G = (V,Er , Eb) and an integer k ∈ N.

Question: Can we delete at most k edges from G such that the remaining graph contains no

bicolored P3 as induced subgraph?

We use E := Er ⊎ Eb to denote the set of all edges of G, n := |V | to denote the number of vertices

in G, and m := |E| to denote the number of edges in G.

Bicolored P3s are closely connected to Gallai colorings of complete graphs [14, 17]. A Gallai coloring

is an edge-coloring such that the edges of every triangle receive at most two different colors. When we

view nonedges of G as edges with a third color, say green, then a bicoloredP3 is the same as a triangle that

violates the property of Gallai colorings. Thus, BPD is essentially equivalent to the following problem:

Given a complete graph with an edge-coloring with the colors red, blue, and green that is not a Gallai

coloring, can we transform the coloring into a Gallai coloring by recoloring at most k blue or red edges

with the color green?
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Our Results. We show that BPD is NP-hard and that, assuming the Exponential-Time Hypothesis

(ETH) [20], it cannot be solved in a running time that is subexponential in the instance size. We then

study two different aspects of the computational complexity of the problem.

First, we consider special cases that can be solved in polynomial time, motivated by similar studies for

problems on uncolored graphs [7]. We are in particular interested in whether or not we can exploit struc-

tural properties of input graphs that can be expressed in terms of colored forbidden subgraphs. We show

that BPD can be solved in polynomial time on graphs that do not contain a certain type of bicolored K3s

as induced subgraphs, where bicolored K3s are triangles with edges of both colors. Moreover, we show

that BPD can be solved in polynomial time on graphs that contain no K3s with one edge color and no P3s

with one edge color as induced subgraphs.

Second, we consider the parameterized complexity of BPD with respect to the natural parameter k.

We show that BPD can be solved in O(1.84k · nm) time and that it admits a problem kernel with

O(k∆min(k,∆)) vertices, where ∆ is the maximum degree in G. As a side result, we show that BPD

admits a trivial problem kernel with respect to ℓ := m− k.

2 Preliminaries

We consider undirected simple graphs G with vertex set V and edge set E, where E is partitioned into a

set Eb of blue edges and a set Er of red edges, denoted by G = (V,Er, Eb). For a vertex v, NG(v) :=
{u | {u, v} ∈ E} denotes the open neighborhood of v and NG[v] := NG(v) ∪ {v} denotes the closed

neighborhood of v. For a vertex set W , NG(W ) :=
⋃

w∈W N(w) \W denotes the open neighborhood

of W and NG[W ] := NG(W ) ∪ W denotes the closed neighborhood of W . The degree deg(v) :=
|NG(v)| of a vertex v is the size of its open neighborhood. We let N2

G(v) := NG(NG(v))\{v} denote the

second neighborhood of v. For any two vertex sets V1, V2 ⊆ V , we denote by EG(V1, V2) := {{v1, v2} ∈
E | v1 ∈ V1, v2 ∈ V2} the set of edges between V1 and V2 in G and write EG(V

′) := EG(V
′, V ′). In

each context we may omit the subscript G if the graph is clear from the context.

For any V ′ ⊆ V , G[V ′] := (V ′, E(V ′) ∩ Er, E(V ′) ∩ Eb) denotes the subgraph induced by V ′. We

say that some graph H = (V H , EH
r , EH

b ) is an induced subgraph of G if there is a set V ′ ⊆ V , such

that G[V ′] is isomorphic to H , otherwise G is called H-free. Two vertices u and v are connected if there

is a path from u to v in G. A connected component is a maximal vertex set S such that each two vertices

are connected in G[S]. A clique in a graph G is a set K ⊆ V of vertices such that in G[K] each pair

of vertices is adjacent. The graph ({u, v, w}, {{u, v}}, {{v, w}}) is called bicolored P3. We say that a

vertex v ∈ V is part of a bicolored P3 in G if there is a set V ′ ⊆ V with v ∈ V ′ such that G[V ′] is a

bicolored P3. Furthermore, we say that two edges {u, v} and {v, w} form a bicolored P3 if G[{u, v, w}]
is a bicolored P3. An edge e is part of a bicolored P3 if there exists some other edge e′ such that e and e′

form a bicolored P3. For any edge set E′ we denote by G − E′ := (V,Er \ E′, Eb \ E′) the graph we

obtain by deleting all edges in E′. As a shorthand, we write G − e := G − {e} for an edge e. An edge

deletion set S is a solution for an instance (G, k) of BPD if G− S is bicolored-P3-free and |S| ≤ k.

A branching rule for some problem L is a computable function that maps an instance w of L to a tuple

of instances (w1, . . . , wt) of L. A branching rule is called correct if w is a yes-instance for L if and only if

there is some i ∈ {1, . . . , t} such that wi is a yes-instance of L. The application of branching rules gives

rise to a search tree whose size is analyzed using branching vectors; for more details refer to the textbook

of Fomin and Kratsch [13]. A reduction rule for some problem L is a computable function that maps an

instance w of L to an instance w′ of L such that w is a yes-instance if and only if w′ is a yes-instance.
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Parameterized Complexity is the analysis of the complexity of problems depending on the input size n
and a problem parameter k [9, 10]. A problem is called fixed-parameter tractable if there exists an al-

gorithm with running time f(k) · nO(1) for some computable function f that solves the problem. An

important tool in the development of parameterized algorithms is problem kernelization. Problem kernel-

ization is a polynomial-time preprocessing by reduction rules: A problem L admits a problem kernel if,

given any instance I of L with parameter k, one can compute an equivalent instance I ′ of L with param-

eter k′ in polynomial time such that k′ ≤ k and the size of I ′ is bounded by some computable function g
only depending on k. The function g is called kernel size. The Exponential Time Hypothesis (ETH) is a

standard complexity theoretical conjecture used to prove lower bounds. It implies that 3-SAT cannot be

solved in 2o(|φ|) time where φ denotes the input formula [20].

3 Bicolored P3 Deletion is NP-hard

In this section we prove the NP-hardness of BPD. This motivates our study of polynomial-time solvable

cases and the parameterized complexity in Sections 4 and 5, respectively.

Theorem 3.1. BPD is NP-hard even if the maximum degree of G is 8.

Proof: We present a polynomial-time reduction from the NP-hard (3,4)-SAT problem where one is given

a 3-CNF formula φ where each variable occurs in at most four clauses, and the question is if there is a

satisfying assignment for φ [29].

Let φ be a 3-CNF formula with variables X = {x1, . . . , x|X|} and clauses C = {C1, . . . , C|C|} with

four occurrences per variable. For a given variable xi that occurs in a clause Cj we define the occur-

rence number Ψ(Cj , xi) as the number of clauses in {C1, C2, . . . , Cj} where xi occurs. Intuitively,

Ψ(Cj , xi) = r means that the rth occurrence of variable xi is the occurrence in clause Cj . Since each

variable occurs in at most four clauses, we have Ψ(Cj , xi) ∈ {1, 2, 3, 4}.

Construction: We describe how to construct an equivalent instance (G = (V,Er , Eb), k) of BPD

from φ.

For each variable xi ∈ X we define a variable gadget as follows. The variable gadget of xi consists

of a central vertex vi and two vertex sets Ti := {t1i , t
2
i , t

3
i , t

4
i } and Fi := {f1

i , f
2
i , f

3
i , f

4
i }. We add a blue

edge from vi to every vertex in Ti and a red edge from vi to every vertex in Fi.

For each clause Cj ∈ C we define a clause gadget as follows. The clause gadget of Cj consists of three

vertex sets Aj := {a
1
j , a

2
j , a

3
j}, Bj := {b

1
j , b

2
j , b

3
j}, and Wj := {w

1
j , w

2
j , w

3
j , w

4
j }. We add blue edges such

that the vertices in Bj ∪Wj form a clique with only blue edges in G. Moreover, for each p ∈ {1, 2, 3},
we add a blue edge {apj , b

p
j} and a red edge {apj , u} for every u ∈ Wj ∪Bj \ {b

p
j}. Observe that there are

no edges between a1j , a2j , and a3j ; all other vertex pairs are connected either by a red edge or a blue edge.

We connect the variable gadgets with the clause gadgets by identifying vertices in Ti ∪Fi with vertices

in Aj as follows. Let Cj be a clause containing variables xi1 , xi2 , and xi3 . For each p ∈ {1, 2, 3} we set

apj =

{

t
Ψ(Cj,xip )

ip
if xip occurs as a positive literal in Cj , and

f
Ψ(Cj,xip)

ip
if xip occurs as a negative literal in Cj .

Now, for every variable xi ∈ X each vertex in Ti∪Fi is identified with at most one vertex apj . Figure 1

shows an example of a clause gadget and its connection with the variable gadgets. To complete the

construction of the BPD instance (G, k) we set k := 4 · |X |+ 14 · |C|.



Destroying Bicolored P3s by Deleting Few Edges 5

a11 = t11

a21 = f1
2

a31 = t13

b11

b21

b31

v1 v2 v3

Figure 1: The lower part of the figure shows the clause gadget of a clause C1 = (x1 ∨ x2 ∨ x3). The upper part of

the figure shows variable gadgets representing variables x1, x2, and x3. The vertices a1
1, a

2
1, and a3

1 from the clause

gadget are identified with vertices from the variable gadgets. The bold lines represent blue edges and the thin lines

represent red edges.

Intuition: Before showing the correctness of the reduction, we describe its idea. For each variable xi

we have to delete all blue edges in E({vi}, Ti) or all red edges in E({vi}, Fi) in the corresponding

variable gadget. Deleting the edges in E({vi}, Ti) assigns true to the variable xi while deleting the edges

in E({vi}, Fi) assigns false to xi. Since we identify vertices in Ti∪Fi with vertices in Aj the information

of the truth assignment is transmitted to the clause gadgets. We will be able to make a clause-gadget bi-

colored-P3-free with 14 edge deletions if and only if there is at least one vertex in Aj which is incident

with a deleted edge of its variable gadget.

Correctness: We now show the correctness of the reduction by proving that there is a satisfying assign-

ment for φ if and only if (G, k) is a yes-instance of BPD.

(⇒) Let A : X → {true, false} be a satisfying assignment for φ. In the following, we construct a

solution S for (G, k).

For each variable xi, we add E({vi}, Ti) to S ifA(xi) = true and we add E({vi}, Fi) to S ifA(xi) =
false. Note that for each variable we add exactly four edges to S. For each Cj ∈ C we add the following

edges: Since A is satisfying, Cj contains a variable xi such that A(xi) satisfies Cj . By the construction

of G there is exactly one p ∈ {1, 2, 3} such that apj = t
Ψ(Cj,xi)
i if xi occurs as a positive literal in Cj

or apj = f
Ψ(Cj,xi)
i if xi occurs as a negative literal inCj . For both q ∈ {1, 2, 3}\{p}we addE({aqj},Wj∪

Bj) to S. Note that since |E({aqj},Wj ∪ Bj)| = |Wj ∪ Bj | = 7 we add exactly 14 edges per clause.

Thus, we have an overall number of 4 · |X |+ 14 · |C| edges in S.

Let G′ := G−S. It remains to show that there is no bicolored P3 in G′. Let Cj ∈ C. We first show that

no edge in EG′(Aj ∪ Bj ∪Wj) is part of a bicolored P3 in G′. For any two vertices u1, u2 ∈ Wj ∪ Bj

it holds that NG′ [u1] = NG′ [u2]. Hence, no edge in EG′(Wj ∪ Bj) is part of an induced P3 in G′ and

therefore no edge in EG′(Wj ∪ Bj) is part of a bicolored P3 in G′. It remains to show that no edge
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in EG′(Aj ,Wj ∪ Bj) is part of a bicolored P3 in G′. Without loss of generality assume that E({a1j} ∪

{a2j},Wj∪Bj) ⊆ S and E({a3j},Wj∪Bj)∩S = ∅. Thus, the only possible edges in EG′(Aj∪Bj∪Wj)

that might form a bicolored P3 in G′ are the edges in E({a3j},Wj ∪Bj). We show for every u ∈ Wj ∪Bj

that {a3j , u} ∈ EG′(Aj ,Wj ∪ Bj) is not part of an induced bicolored P3 in G′. Since {a3j} ∪ Bj ∪Wj

is a clique in G′, the edge {a3j , u} may only form a bicolored P3 with an edge {a3j , vi}, where vi is

the central vertex of the variable gadget of a variable xi occurring in Cj . By the construction of G it

follows that a3j ∈ {t
Ψ(Cj,xi)
i , f

Ψ(Cj,xi)
i } for exactly one variable xi. Since E({a3j},Wj ∪ Bj) ∩ S = ∅,

the assignment A(xi) satisfies clause Cj by the construction of S. If A(xi) = true, then {a3j , vi} =

{t
Ψ(Cj,xi)
i , vi} ∈ EG({vi}, Ti) ⊆ S and therefore {a3j , vi} is not an edge of G′. Analogously, ifA(xi) =

false, then {a3j , vi} = {f
Ψ(Cj,xi)
i , vi} ∈ EG({vi}, Fi) ⊆ S is not an edge of G′. Hence, no edge

in EG′(Aj ∪Bj ∪Wj) is part of a bicolored P3 in G′.

Let xi ∈ X . We show that no edge in EG′({vi} ∪ Ti ∪ Fi) is part of a bicolored P3 in G′. Since

either EG({vi}, Ti) ⊆ S or EG({vi}, Fi) ⊆ S, all edges in EG′({vi} ∪ Ti ∪ Fi) have the same color.

Hence, there is no bicolored P3 in G′ consisting of two edges from one variable gadget. Since there is no

vertex in G′ that is adjacent to two vertices of distinct variable gadgets, an edge e ∈ EG′({vi} ∪ Ti ∪ Fi)
may only form a bicolored P3 with an edge in EG′(Aj ∪ Bj ∪Wj) for some clause Cj . However, since

no edge in EG′(Aj ∪ Bj ∪Wj) is part of a bicolored P3 in G′ as shown above, e does not form a bi-

colored P3 with an edge from a clause gadget. Therefore, no edge in EG′({vi} ∪ Ti ∪ Fi) is part of a

bicolored P3. It follows that G′ does not contain any bicolored P3.

(⇐) Conversely, let S be a solution for (G, k). For every variable xi ∈ X we have |S ∩EG({vi}, Ti ∪
Fi)| ≥ 4 since every edge in EG({vi}, Ti) forms a bicolored P3 with every edge in EG({vi}, Fi).

Before we define a satisfying assignment A : X → {true, false} for φ, we take a more detailed look

at the edges of the clause gadgets that need to be in S. Let Cj ∈ C be a clause and let Gj := G[Aj ∪
Bj ∪Wj ] be the induced subgraph of the corresponding clause gadget. We show that 14 edge deletions

are necessary and sufficient to transform Gj into a bicolored-P3-free graph. Obviously, for pairwise

distinct p, q, r ∈ {1, 2, 3}, deleting the 14 edges in EGj
({apj , a

q
j}, Bj ∪ Wj) transforms Gj into a bi-

colored-P3-free graph, since {arj} ∪ Bj ∪Wj is a clique in Gj . Hence, deleting 14 edges is sufficient.

It remains to show that when deleting less than 14 edges there are still bicolored P3s in Gj . To this

end, we show that either one of the vertices in Aj is not incident with an edge deletion in Gj or we

need more than 14 edge deletions to transform Gj into a bicolored-P3-free graph. We consider three

vertices u1, u2, u3 ∈ Bj ∪Wj representing the endpoints of deleted edges incident with a1j , a2j , and a3j ,

respectively. Let Sj := {{apj , up} | p ∈ {1, 2, 3}}. The following claim gives a lower bound on the

number of edge deletions in Gj after deleting Sj .

Claim 1. There are at least 12 edge-disjoint bicolored P3s in Gj − Sj .

Proof . We define three setsP1,P2, andP3 containing bicoloredP3s and show that the unionP1∪P2∪P3

contains at least 12 edge-disjoint bicolored P3s in Gj − Sj . Here, we represent bicolored P3s by edge

sets of size two. For each p ∈ {1, 2, 3} we set

Pp := {{{apj , w}, {w, up}} | w ∈ (Bj ∪Wj) \ {b
p
j , up}}.

Let p ∈ {1, 2, 3}. Since EGj
(Wj ∪ Bj) ⊆ Eb, and EGj

({apj}, (Bj ∪Wj) \ {b
p
j}) ⊆ Er, it follows that

every set P ∈ Pp is a bicolored P3 in Gj − Sj . Obviously, the bicolored P3s in Pp are edge-disjoint and

|Pp| = |(Bj ∪Wj) \ {b1j , u1}| = 5.
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We now show that the union P1 ∪P2 ∪P3 contains at least 12 edge-disjoint bicolored P3s in Gj −Sj .

To this end, consider the following subset

P := (P1 ∪ P2 ∪ P3) \ {Q1, Q2, Q3} ⊆ P
1 ∪ P2 ∪ P3,

where

Q1 := {{a2j , u1}, {u1, u2}},

Q2 := {{a3j , u1}, {u1, u3}},

Q3 := {{a3j , u2}, {u2, u3}}.

Obviously, Q1, Q2, Q3 6∈ P and |P| ≥ 3 · 5 − 3 = 12. It remains to show that all bicolored P3s in P

are edge-disjoint. Assume towards a contradiction that there are P,R ∈ P with P 6= R and P ∩ R 6= ∅.
Since every Pp contains edge-disjoint bicolored P3s, it follows that P ∈ Pp and R ∈ Pr for some p 6= r.

Without loss of generality assume p < r. Since for every w ∈ Bj ∪Wj , the edges {arj , w} are not part

of any bicolored P3 in Pp and, conversely, the edges {apj , w} are not part of any bicolored P3 in Pr it

follows that P ∩R = {{up, ur}}. We conclude R = {{arj , up}, {up, ur}}.
Consider the case p = 1 and r = 2. Then, R = Q1 6∈ P. Analogously, if p = 1 and r = 3,

then R = Q2 6∈ P, and if p = 2 and r = 3, then R = Q3 6∈ P. In every case we have R 6∈ P which

contradicts the assumption P,R ∈ P. Hence, there are no bicolored P3s in P that share an edge and

therefore P1 ∪ P2 ∪ P3 contains at least 12 edge-disjoint bicolored P3s as claimed. ✸

Claim 1 implies that if every vertex in Aj is incident with an edge in S ∩ EGj
(Aj , Bj ∪ Wj), we

have |S ∩ EGj
(Aj ∪ Bj ∪ Wj)| ≥ 3 + 12 = 15. We now show that deleting EGj

({apj , a
q
j}, Bj ∪

Wj) for distinct p, q ∈ {1, 2, 3} are the only three possible ways to transform Gj into a bicolored-P3-

free graph with less than 15 edge deletions. By Claim 1, we can assume without loss of generality

that EGj
({a3j},Wj ∪Bj)∩S = ∅. We show that this implies that all edges incident with a1j and a2j in Gj

are deleted by S.

Claim 2. If EGj
({a3j},Wj ∪Bj) ∩ S = ∅, then EGj

({apj}, Bj ∪Wj) ⊆ S for p = 1 and for p = 2.

Proof . First, note that no edge {b3j , w} with w ∈ Bj ∪Wj is an element of S, since otherwise {a3j , b
3
j} ∈

Eb and {a3j , w} ∈ Er form a bicolored P3 in Gj − S which contradicts the fact that G− S is bicolored-

P3-free. Next, consider {apj , b
3
j}. Clearly, {apj , b

3
j} is an element of S, since otherwise {apj , b

3
j} ∈ Er

and {a3j , b
3
j} ∈ Eb form a bicolored P3 in Gj − S which contradicts the fact that G− S is bicolored-P3-

free.

It remains to show that EGj
({apj}, (Bj \ {b3j}) ∪Wj) ⊆ S. Assume towards a contradiction that there

exists an edge {apj , w} in Gj − S with w ∈ (Bj ∪ Wj) \ {b3j}. If w = bpj , the edges {apj , b
p
j} ∈ Eb

and {bpj , a
3
j} ∈ Er form a bicolored P3 in Gj − S. Otherwise, if w 6= bpj the edges {apj , w} ∈ Er

and {w, b3j} ∈ Eb form a bicolored P3 in Gj − S. Both cases contradict the fact that G− S is bicolored-

P3-free and therefore EGj−S({a
p
j}, Bj ∪Wj) = ∅ as claimed. ✸

We conclude from Claim 2 that deleting the 14 edges in EGj
({apj , a

q
j}, Bj ∪Wj) for distinct p, q ∈

{1, 2, 3} are the only three possible ways to destroy all bicoloredP3s in Gj with at most 14 edge deletions.

This fact combined with the fact that we need at least 4 edge deletions per variable gadget and |S| ≤ 4 ·
|X |+14·|C| implies that |EG(Aj∪Bj∪Wj)∩S| = 14 for each clause Cj and |EG({vi}∪Ti∪Fi)∩S| = 4
for each variable xi.
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We now define a satisfying assignmentA : X → {true, false} for φ by

A(xi) :=

{

true if E({vi}, Ti) ⊆ S, and

false if E({vi}, Fi) ⊆ S.

The assignmentA is well-defined since in each variable gadget either all red or all blue edges belong to S.

Let Cj ∈ C be some clause in φ. It remains to show that Cj is satisfied byA. Since |EG(Aj∪Bj∪Wj)∩
S| = 14 there are distinct p, q ∈ {1, 2, 3} such that S ∩ EG(Aj ∪Bj ∪Wj) = EG({a

p
j , a

q
j}, Bj ∪Wj).

Without loss of generality assume p = 1 and q = 2. Therefore EG({a3j},Wj ∪ Bj) ∩ S = ∅. By the

construction of G we know that there is a variable xi ∈ X occurring in Cj such that either a3j = t
Ψ(Cj,xi)
i

or a3j = f
Ψ(Cj,xi)
i . We show that clause Cj is satisfied by the assignmentA(xi).

For all w ∈ Wj , G−S contains the red edge {a3j , w}. Moreover,G−S contains the blue edge {a3j , b
3
j}.

Since no vertex in Wj ∪ Bj is adjacent to vi we conclude that {a3j , vi} ∈ S since otherwise {a3j , vi} is

part of a bicolored P3 in G′ which contradicts the fact that G′ is bicolored-P3-free. If a3j = t
Ψ(Cj,xi)
i ,

then variable xi occurs as a positive literal in Cj by the construction of G. Then, {a3j , vi} ∈ E({vi}, Ti).

We conclude from {a3j , vi} ∈ S that E({vi}, Ti) ⊆ S and therefore A(xi) = true. Analogously, if a3j =

f
Ψ(Cj,xi)
i , then {a3j , vi} ∈ E({vi}, Fi). From {a3j , vi} ∈ S we conclude A(xi) = false. In both cases,

the assignment A satisfies Cj which completes the correctness proof.

Note that for any instance φ of (3,4)-SAT it holds that |C| ≤ 4
3 |X |. Thus, in the proof of Theorem 3.1

we constructed a graph with 8 · |X | + 42 · |C| ∈ O(|X |) edges, k = 4 · |X | + 14 · |C| ∈ O(|X |), and

therefore ℓ = 4 · |X |+ 28 · |C| ∈ O(|X |) for the dual parameter ℓ = m − k. Considering the ETH [20]

and the fact that there is a reduction from 3-SAT to (3,4)-SAT with a linear blow-up in the number of

variables [29] this implies the following.

Corollary 3.2. If the ETH is true, then BPD cannot be solved in 2o(n+m+k+ℓ) time even if the maximum

degree in G is 8.

4 Polynomial-Time Solvable Cases

Since BPD is NP-hard, there is little hope to find a polynomial-time algorithm that solves BPD on arbi-

trary instances. In this section we provide polynomial-time algorithms for two special cases of BPD that

are characterized by colored forbidden induced subgraphs.

4.1 BPD on Bicolored K3-free Graphs

Our first result is a polynomial-time algorithm for BPD, when G = (V,Er , Eb) does not contain a certain

type of bicolored K3s.

Definition 4.1. Three vertices u, v, w form a bicolored K3 if G[{u, v, w}] contains exactly three edges

such that exactly two of them have the same color. A bicolored K3 is endangered in G if at least one of

the two edges with the same color is part of a bicolored P3 in G.

A bicolored K3 on vertices u, v, w can be seen as an induced subgraph of G, such that after one edge

deletion in EG({u, v, w}) one might end up with a new bicolored P3 containing the vertices u, v, and w.

This happens, if we delete one of the two edges with the same color. If the bicolored K3 is endangered,
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it might be necessary to delete one of these two edges to transform G into a bicolored-P3-free graph.

Intuitively, a graph G that contains no (endangered) bicolored K3 can be seen as a graph from which we

can delete any edge that is part of a bicolored P3 without producing a new one. Note that the following

result also implies that BPD can be solved in polynomial time on triangle-free graphs and thus also on

bipartite graphs.

Theorem 4.2. BPD can be solved in O(nm
3

2 ) time if G contains no endangered bicolored K3.

Proof: We prove the theorem by reducing BPD to VERTEX COVER on bipartite graphs which can be

solved in polynomial time since it is equivalent to computing a maximum matching.

VERTEX COVER

Input: A graph G = (V,E) and an integer k ∈ N.

Question: Is there a vertex cover of size at most k in G, that is, a set S ⊆ V with |S| ≤ k
such that every edge e ∈ E has at least one endpoint in S?

Let (G = (V,Eb, Er), k) be an instance of BPD where G contains no endangered bicolored K3. We

define an instance (G′, k′) of VERTEX COVER as follows. Let G′ = (V ′, E′) be the graph with vertex

set V ′ := Er ∪ Eb and edge set E′ := {{e1, e2} ⊆ Eb ∪ Er | e1 and e2 form a bicolored P3 in G}. That

is, G′ contains a vertex for each edge of G and edges are adjacent if they form a P3 in G. Moreover,

let k′ = k. The graph G′ is obviously bipartite with partite sets Eb and Er.

We now show that (G, k) is a yes-instance for BPD if and only if (G′, k′) is a yes-instance for VERTEX

COVER.

(⇒) Let S be a solution for (G, k). Note that the edges of G are vertices of G′ by construction and

therefore S ⊆ V ′. We show that S is a vertex cover in G′. Assume towards a contradiction that there is

an edge {x, y} ∈ E′ with x, y 6∈ S. By the definition of E′, the edges x and y form a bicolored P3 in G.

This contradicts the fact that G − S is bicolored-P3-free. Hence, S is a vertex cover of size at most k
in G′.

(⇐) Let C ⊆ V ′ with |C| ≤ k be a minimal vertex cover of G′. Note that the vertices of G′ are

edges of G by construction and therefore C ⊆ E. We show that G − C is bicolored-P3-free. Assume

towards a contradiction that there are edges x = {u, v} ∈ Eb \ C and y = {v, w} ∈ Er \ C forming

a bicolored P3 in G − C. Then, x and y do not form a bicolored P3 in G since otherwise there is an

edge {x, y} ∈ E′, which has no endpoint in the vertex cover C. It follows that there is an edge {u,w}
in G that is not present in G − C. Consequently, {u,w} ∈ C. Obviously, the vertices u, v, w form

a bicolored K3. Since x and y form a bicolored P3 in G − C, one of these edges has the same color

as {u,w}. Since {u,w} ∈ C and C is minimal, it follows that {u,w} ∈ V ′ is an endpoint of an edge

in G′ and thus {u,w} is part of a bicolored P3 in G. Therefore, G[{u, v, w}] forms an endangered

bicolored K3 in G which contradicts the fact that G contains no endangered bicolored K3. This proves

the correctness of the reduction.

For a given instance (G, k) of BPD, the VERTEX COVER instance (G′, k′) can be computed inO(nm)
time by computing all bicolored P3s of G. Since VERTEX COVER can be solved in O(|E′| ·

√

|V ′|)
time on bipartite graphs [19] and since |V ′| = m and |E′| ≤ nm, we conclude that BPD can be solved

in O(nm
3

2 ) time on graphs without endangered K3s.
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4.2 BPD on Graphs without Monochromatic K3s and P3s

We now show a second polynomial-time solvable special case that is characterized by four colored for-

bidden induced subgraphs: the two monochromatic K3s, these are the K3s where all three edges have

the same color, and the two monochromatic P3s, these are the P3s where both edges have the same color.

Observe that a graph that does not contain these forbidden induced subgraphs may still containK3s orP3s.

We provide two reduction rules that lead to a polynomial-time algorithm for this special case. These

rules can also be applied to general instances of BPD and thus their running time bound is given for

general graphs. We will later show that on graphs without monochromatic K3s and P3s we can apply

them exhaustively in O(n) time.

Reduction Rule 1. a) Remove all bicolored-P3-free components from G.

b) If G contains a connected component C of size at most five, then compute the minimum number of

edge deletions kC to make G[C] bicolored-P3-free, remove C from G, and set k ← k − kC .

Lemma 4.3. Reduction Rule 1 is correct and can be exhaustively applied in O(nm) time.

Proof: The correctness of Reduction Rule 1 is obvious. Part a) can be exhaustively applied in O(nm)
time as follows: First compute the connected components of G in O(n + m) via breadth-first search.

Then, enumerate all bicolored P3s and label the vertices that are not part of any bicolored P3 in O(nm)
time. Finally, remove all connected components without labeled vertices in O(n + m) time. Part b)

of Reduction Rule 1 can be applied exhaustively in O(n) time since we only need to find and remove

connected components of constant size.

The second reduction rule involves certain bridges that may be deleted greedily. An edge e is a bridge

if the graph G− e has more connected components than G.

Reduction Rule 2. a) Remove all bridges from G that are not contained in any bicolored P3.

b) If G contains a bridge {u, v} such that

• the connected component C containing v in G− {u, v} is bicolored-P3-free and

• {u, v} forms a bicolored P3 with some edge {v, w} of C in G,

then remove C from G and set k ← k − 1.

Lemma 4.4. Reduction Rule 2 is correct and can be applied exhaustively in O(nm) time.

Proof: Let (G, k) be the original instance and (G′, k′) be the instance after the application of the rule.

We first show the correctness of the two parts of the rule. For part a), observe that for every subgraph G∗

of G, any bridge {u, v} that is removed by the rule is not part of a bicolored P3. Thus, any solution for G
is a solution for G − {u, v} and vice versa. For part b), observe first that if (G′, k′) has a solution S′,

then S′ ∪ {u, v} is a solution for (G, k) and thus (G, k) is also a yes-instance. It remains to show that

if (G, k) is a yes-instance, then so is (G′, k′). Consider a solution S with |S| ≤ k for G. Observe

that {u, v} ∈ S or {v, w} ∈ S. This implies S′ := S ∩ E(G[V \ C]) ≤ k − 1. Finally, observe that

since G[V \ C] = G′, S′ is a solution of size at most k − 1 for G′.

The running time can be seen as follows: We compute in O(n+m) time the bridges of G [28]. Given

the bridges, one can compute inO(n+m) the block-cut-forestF of G. The vertices of F are maximal 2-

edge-connected components of G and the edges correspond to the bridges of G. Then inO(nm) time, we



Destroying Bicolored P3s by Deleting Few Edges 11

enumerate all bicolored P3s. Using the set of bicolored P3s, we can compute for each 2-edge-connected

component whether it contains a bicolored P3. Moreover, for each bridge e and each incident 2-edge-

connected component C, we can compute whether e forms a bicolored P3 with some edge of C. Finally,

we can compute for each bridge the set of edges with which it forms a conflict. This additional information

can be computed in O(nm) time. We incorporate this information into the block-cut-forest F as follows:

A vertex of F is colored black if the corresponding 2-edge-connected component contains a bicolored P3,

otherwise it is colored white.

The exhaustive application of the rule is now performed on the block-cut-forest F via the following

algorithm. First, remove all white singletons from G and F . Then, remove all bridges of G from G and F
that are not part of in any bicolored P3 in G. Checking whether one of these two conditions is fulfilled

can be performed inO(n+m) time per removed edge and vertex. In the following, we assume that these

removals have been applied exhaustively.

To describe the final part of the reduction, we denote for each vertex v of G the 2-edge-connected

component of G containing v by [v]. Note that [v] is a vertex of F . Now we check for each vertex v of G
whether it is incident with a bridge {u, v} that fulfills the condition of part b) of the rule.

To do this efficiently, we characterize such bridges as follows.

Claim 3. A bridge {u, v} and a vertex v fulfill the condition of Reduction Rule 2 b) if and only if

• {u, v} forms a bicolored P3 with some edge of [v] or some bridge that is incident with v,

• [v] is white,

• NF ([v]) \ {[u]} contains only white leaf-vertices, and

• all other bridges incident with some vertex of [v] form a bicolored P3 with {u, v} and are not part

of any further bicolored P3.

Proof . Let C denote the connected component containing v after the deletion of {u, v}. Clearly, the

stated conditions are sufficient for {u, v} and v to fulfill the requirements of the rule. For most conditions

it is also clear that they are necessary for C to be bicolored P3-free. The only non-obvious condition is

that NF ([v])\{[u]} contains only leaf-vertices. This condition is necessary since, otherwise,C would con-

tain some bridge e that is not incident with a vertex of [v]. This bridge is part of some bicolored P3, since

it has not been removed previously. This bicolored P3 would also be contained in C since e and {u, v}
are not incident. ✸

This characterization gives us now a way to check in O(n+m) time whether G contains some bridge

that fulfills the condition of Reduction Rule 2 b). This check is done as follows. We consider each vertex x
of F . At most two bridges incident with some vertex of x are candidates for fulfilling the conditions of the

claim: all incident bridges must be incident with the same vertex v of x for the conditions to be fulfilled

and an edge {u, v} must be the only incident bridge of its color if the conditions are fulfilled. For each

candidate edge, we check in O(|NF ([v])|) time whether the conditions of the claim are fulfilled using

the precomputed information about the conflicts in G. Thus, the total running time for this final check is

linear in the number of edges of F and thus in O(n+m). Note that after removing some edge {u, v} in

this way, the remaining vertices of C are removed via the previous two checks.

Altogether, applying the rules using F needsO(n+m) time per removed vertex and edge. Since each

application removes some vertex or bridge of G, there are in total O(n) applications. Moreover, after
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removing all isolated vertices from G, we have n ≤ 2m and thus the overall running time of O(nm) for

the application of the rule follows.

As we will show later, any graph without monochromatic P3s and monochromatic K3s to which the

above reduction rules do not apply has maximum degree two. These graphs can be solved in linear time

as we see in the following lemma.

Lemma 4.5. Let (G, k) be an instance of BPD such that G has maximum degree 2. Then, (G, k) can be

solved in O(n) time.

Proof: In the following, we construct a solution S for (G, k). If G has maximum degree 2, then each

connected component of G is either a path or a cycle. The algorithm first deals with cycles and then

considers the remaining paths. Observe that every connected component of size at most 3 can be solved

withinO(1) time. For the rest of the proof we assume that every connected component has size at least 4.

First, we consider each connected component C of G which is a cycle. We either transform C into

one or two paths or solve C directly. First, assume that C contains three subsequent edges e1, e2, and e3
of the same color, then edge e2 is not part of any bicolored P3. Hence e2 can be removed without de-

creasing k. The remaining connected component is a path and will be solved in the second step. Second,

assume that C contains two subsequent edges e1 and e2 with the same color. Recall that we may assume

that |C| ≥ 4. Further, let e0 be the other edge that is incident with e1 and let e3 be the other edge that

is incident with e2. According to our assumption, e0 and e1 form a bicolored P3 and e2 and e3 form a

bicolored P3. Hence, either e0 ∈ S or e1 ∈ S and either e2 ∈ S or e3 ∈ S. Since e1 and e2 have

the same color and no further edges are incident with e1 and e2, we may assume that e0, e3 ∈ S. The

remaining connected components are paths and will be solved in the second step. Third, consider the case

that C contains no two subsequent edges of the same color. Then C consists of 2ℓ edges e1, . . . , e2ℓ
and each two subsequent edges form a bicolored P3. Thus, C contains a set of ℓ edge-disjoint bi-

colored P3s: {e1, e2}, {e3, e4}, . . . , {e2ℓ−1, e2ℓ} and contains exactly ℓ blue edges. Thus, deleting the

ℓ blue edges of C is optimal.

In a second step, we consider each connected component that is a path. Let Pn be a path consisting of n
vertices v1, . . . , vn. Visit the edges {vi, vi+1} for increasing i starting at v1. For each edge, check whether

it is part of some bicolored P3. Let {vi, vi+1} be the first encountered edge that is in a bicolored P3.

Then, delete {vi+1, vi+2}, decrease k by one, and continue with {vi+2, vi+3} if it exists. First, observe

that {vi+1, vi+2} exists since {vi, vi+1} does not form a bicolored P3 with {vi−1, vi}. Second, observe

that the deletion of {vi+1, vi+2} is simply an application of Reduction Rule 2 and therefore correct.

Clearly, this greedy algorithm runs in O(n) time.

In altogether O(n) time, we can consider each cycle C and either solve C or delete one or two edges,

which transforms C into one or two paths. The greedy algorithm for paths runs inO(n) time on all paths.

Thus, the remaining instance can be solved in O(n) time. The overall running time follows.

We have now all ingredients to present the polynomial-time algorithm for graphs without monochro-

matic K3 and monochromaticP3. In order to prove the correctness of the algorithm and the linear running

time, we make the following observation about such graphs.

Lemma 4.6. Let G be a graph that contains no monochromaticK3 and no monochromatic P3 as induced

subgraphs. Then, the maximum blue degree and the maximum red degree in G are 2.
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Figure 2: The (uncolored) small graphs used in this work.
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Figure 3: Subgraphs used in the proof of Theorem 4.7 (a) |N(v)| = 4, (b) G[N [v]] is a diamond and (c) G[N [v]] is

a paw.

Proof: We show the proof only for the blue degree, the bound for the red degree can be shown symmet-

rically. Assume towards a contradiction that G contains a vertex t with at least three blue neighbors u, v,

and w. Since G contains no blue P3, the subgraph G[{u, v, w}] has three edges. Moreover, since G
contains no monochromatic K3 not all of the three edges in G[{u, v, w}] are red. Assume without loss of

generality that {u, v} is blue. Then G[{u, v, t}] is a blue K3, a contradiction.

Theorem 4.7. BPD can be solved in O(n) time if G contains no monochromatic K3 and no monochro-

matic P3.

Proof: The algorithm first applies Reduction Rule 1 exhaustively. Afterwards, Reduction Rule 2 is applied

on all bridges {u, v} with deg(u) ≥ 3 or deg(v) ≥ 3. Thus, let G be the graph after the applications of

Reduction Rules 1 and 2 as described above. We show that G has maximum degree at most 2. Afterwards,

Lemma 4.5 applies and the remaining instance can be solved in O(n) time. Observe that by Lemma 4.6,

the maximum degree in G is 4. For an illustration of the small uncolored graphs used in this proof see

Figure 2.

First, assume that the maximum degree of G is 4 and let v be a vertex of degree 4. We show that N [v]
is a connected component of G. This implies that N [v] is removed by Reduction Rule 1 in this case. By

Lemma 4.6, the vertex v has exactly two blue neighbors u1, u2 and exactly two red neighbors w1, w2.

Since G contains no monochromatic P3 and no monochromatic K3, {u1, u2} is red and {w1, w2} is blue.

Now assume towards a contradiction, that one of these four vertices has a neighbor t /∈ N [v] in G.

Without loss of generality assume that this vertex is u1. See Figure 3 (a) for an example. Then, {u1, t}
is red because otherwise G[{u1, v, t}] is a blue P3. This implies that {u2, t} is blue because other-

wise G[{u1, u2, t}] is a red P3 or a red K3. Then, however, G[{u2, v, t}] is a blue P3, a contradiction.

Altogether, this implies that N [v] is a connected component of G. Hence, if G is reduced with respect to

Reduction Rule 1, then G contains no vertices of degree 4.

Second, assume that the maximum degree of G is 3 and let v be a vertex of degree 3. If G[N [v]] is a K4,
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then N [v] is a connected component of G and is removed by Reduction Rule 1. Next, assume G[N [v]]
is a diamond, and let t, u, and w denote the neighbors of v where u is the other vertex that has degree

three in G[N [v]]. See Figure 3 (b) for an example. Assume without loss of generality that u is a blue

neighbor of v. Then, by Lemma 4.6, one of t and w, say w, is a red neighbor of v. This implies that t
is a blue neighbor of v, because otherwise G[{v, w, t}] is a red P3. Consequently, t is a red neighbor

of u because otherwise t, v, and u form a blue K3. Hence, w is a blue neighbor of u because other-

wise G[{u,w, t}] is a red P3. Altogether, we have that t and w each have a red and a blue neighbor

in {u, v}. Since N [v] = N [u], we have that t and w cannot have a neighbor in V \N [v] as such a neigh-

bor would form a monochromatic P3 with one of u and v. Hence, N [v] is a connected component of G in

this case and consequently removed by Reduction Rule 1.

Thus G[N [v]] is neither a K4 nor a diamond if G is reduced with respect to Reduction Rule 1. More-

over, G[N [v]] cannot be a claw since in this case G contains a monochromatic P3. Hence, the only

remaining case is that G[N [v]] is a paw. Let t, u, and w be the neighbors of v where u and w are adjacent.

For an example see Figure 3 (c). Assume furthermore without loss of generality that v is incident with

two blue edges. This implies that t is a red neighbor of v as otherwise t, v, and u form a monochro-

matic P3. Also, u and w are blue neighbors of v. Consequently, {u,w} is red. As in the proof above

for the case that G[N [v]] is a diamond, u and w have no further neighbor in G. Thus, {v, t} is a bridge

with deg(v) = 3 that fulfills the condition of Reduction Rule 2 b) and thus {v, t} is removed by this rule.

Altogether this implies that any instance to which Reduction Rules 1 and 2 have been applied as described

above has maximum degree 2. By Lemma 4.5, we can thus solve the remaining instance in linear time.

Next, we consider the running times of Reduction Rules 1 and 2 in more detail since for both rules

the running time analysis given above did not assume that G contains no monochromatic P3 and no

monochromatic K3.

First, we apply Reduction Rule 1 exhaustively. Since G has maximum degree at most four, we can label

all vertices that are part of some bicolored P3 in O(n) time and thus Reduction Rule 1 can be applied

exhaustively in O(n) time. Observe that in the resulting graph the maximum degree of G is three since

vertices of degree four are in connected components of size five.

Next, we consider the running time of Reduction Rule 2, after Reduction Rule 1 was applied exhaus-

tively. Recall that Reduction Rule 2 is only applied to bridges that have at least one endpoint with degree

three. To apply the rule exhaustively, we first compute in O(n) time the set of all vertices of degree three.

For each such vertex v, the graph G[N [v]] is a paw because otherwise, N [v] is a connected component

of constant size as shown above. Hence, there exist two vertices u,w ∈ N(v) such that N(u) = {v, w}
and N(w) = {u, v}. The vertices u and w can be determined inO(1) time. Let t ∈ N(v)\{u,w}. Then,

Reduction Rule 2 removes {v, t} from G. Thus, in O(1) time, we may apply Reduction Rule 2 on the

bridge containing v. Consequently, the rule can be applied exhaustively on all degree-three verticesO(n)
time. Afterwards, the remaining instance has maximum degree two and can be solved in O(n) time.

Hence, the overall running time is O(n).

5 Parameterized Complexity

In this section we study the parameterized complexity of BPD parameterized by k, ℓ := m−k, and (k,∆),
where ∆ denotes the maximum degree of G. We first provide an O(1.84k · nm)-time fixed-parameter

algorithm for BPD. Afterwards, we study problem kernelizations for BPD parameterized by (k,∆) and ℓ.
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Figure 4: The graphs used in the proof of Theorem 5.6 (a) LC-Diamond, (b) LO-Diamond, (c) IIZ-Diamond and (d)

CC-Hourglass. The names refer to the shapes of the connected components of both colors. Due to symmetry we use

the same names if we swap the red and blue colors of the edges in each graph.

5.1 A Fixed-Parameter Algorithm for Bicolored P3 Deletion

We now provide a fixed-parameter algorithm that solves BPD parameterized by k. Note that there is a

naive O(2k · nm) branching algorithm for BPD: For a given instance (G, k), check in O(nm) time if G
contains a bicolored P3. If this is not the case, then answer yes. Otherwise, answer no if k < 1. If k ≥ 1,

then compute a bicolored P3 formed by the edges e1 and e2 and branch into the cases (G − e1, k − 1)
and (G− e2, k− 1). We modify this simple algorithm by branching on slightly more complex structures,

obtaining a running time ofO(1.84k · nm). Note that by Corollary 3.2 a subexponential algorithm in k is

not possible when assuming the ETH.

The basic idea of the algorithm is to branch on LC-Diamonds, LO-Diamonds, IIZ-Diamonds and CC-

Hourglasses. For the definition of these structures see Figure 4. We say that a graph G is nice if G has

none of the structures from Figure 4 as induced subgraph and every edge of G forms a bicolored P3 with

at most one other edge of G. We give a polynomial-time algorithm that solves BPD when the input graph

is nice. To this end consider the following proposition.

Proposition 5.1. Let (G = (V,Er, Eb), k) be an instance of BPD such that G is nice. Moreover, let p be

the number of bicolored P3s in G. Then, for every two edges e1 and e2 forming a bicolored P3 in G there

is an edge e ∈ {e1, e2} such that

a) G− e contains p− 1 bicolored P3s and every bicolored P3 of G− e is a bicolored P3 in G, and

b) G− e is nice.

Proof: For the proof of Statement a), let u and v denote the endpoints of e1 ∈ Eb and let v and w denote

the endpoints of e2 ∈ Er. Note that the number of bicolored P3s in G − e1 and G − e2 is at least p− 1
since every edge of G is part of at most one bicolored P3 since G is nice. It remains to show that there is

an edge e ∈ {e1, e2} such that the number of bicolored P3s in G − e is at most p − 1, and that every bi-

colored P3 in G − e is a bicolored P3 in G. Assume towards a contradiction that there are at least p
bicolored P3s in G−e1 and in G−e2. Then, there exist vertices z1, z2 ∈ V , such that {u, z1} and {z1, v}
form a bicolored P3 in G− e1 and also {v, z2} and {z2, w} form a bicolored P3 in G− e2.

First, assume z1 = z2 =: z. If {v, z} ∈ Er, then {u, z} ∈ Eb, {w, z} ∈ Eb, and G[{u, v, w, z}] is

an LC-Diamond with two red and three blue edges. This contradicts the fact that G contains no induced
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LC-Diamond. Analogously, if {v, z} ∈ Eb, then G[{u, v, w, z}] is an LC-Diamond with two blue and

three red edges. We conclude z1 6= z2.

Second, assume {v, z1} ∈ Eb. Then, {u, z1} ∈ Er. Since every edge of G is part of at most one bi-

colored P3, there is an edge {z1, w} ∈ E. If {z1, w} ∈ Er, then G[{u, v, w, z1}] is an LC-Diamond.

Otherwise, if {z1, w} ∈ Eb, then G[{u, v, w, z1}] is an IIZ-Diamond. This contradicts the fact that G
contains no induced LC- or IIZ-Diamond. Therefore, {v, z1} ∈ Er. With the same arguments we can

show that {v, z2} ∈ Eb.

From {v, z1} ∈ Er and {v, z2} ∈ Eb we conclude that {u, z1} ∈ Eb and {w, z2} ∈ Er. Next,

if we have E({u, v, w, z1, z2}) = {{u, v}, {u, z1}, {v, w}, {v, z1}, {v, z2}, {w, z2}} =: A, then the

graph G[{u, v, w, z1, z2}] is an induced CC-Hourglass which contradicts the fact that G does not con-

tain induced CC-Hourglasses. Hence, E({u, v, w, z1, z2}) ) A. Consider the following cases.

Case 1: {u,w} ∈ E. Then {u, v} and {v, w} do not form a bicolored P3, which contradicts the choice

of {u, v} and {v, w}.

Case 2: {z1, w} ∈ E. If {z1, w} ∈ Eb, then G[{u, v, w, z1}] is an induced LC-Diamond. Otherwise,

if {z1, w} ∈ Er , then G[{u, v, w, z1}] is an induced LO-Diamond. Both cases contradict the fact that G
is nice.

Case 3: {z2, u} ∈ E. If {z2, u} ∈ Er, then G[{u, v, w, z2}] is an induced LC-Diamond. Otherwise,

if {z1, w} ∈ Eb, then G[{u, v, w, z2}] is an induced LO-Diamond. Both cases contradict the fact that G
is nice.

Case 4: {z1, z2} ∈ E. If {z1, z2} ∈ Eb, then G[{z1, z2, w, v}] is an LC-Diamond. Otherwise,

if {z1, z2} ∈ Er, then G[{z1, z2, u, v}] is an LC-Diamond. Both cases contradict the fact that G is nice.

All cases lead to a contradiction. Hence, there exists e ∈ {e1, e2} such that G − e contains p − 1
bicolored P3s which proves Statement a).

Next, we show Statement b). To this end, let e1 and e2 be two edges forming a bicolored P3 in G.

Let e ∈ {e1, e2} that satisfies a). We show that G − e is nice. From a) we know that every bicolored P3

of G − e is also a bicolored P3 in G. Hence, the fact that every edge of G is part of at most one bi-

colored P3 implies that every edge of G− e is part of at most one bicolored P3.

First, assume towards a contradiction that G − e contains an induced LC-, LO- or IIZ-Diamond (G −
e)[{u, v, w, z}] as given in Figure 4. Since G contains no such structure, we conclude e = {u,w} and

{u, v, w, z} is a clique in G. Then, deleting e from G produces a new bicolored P3 on edges {u, v}
and {v, w} in G− e which contradicts Statement a). Therefore, G− e contains no induced LC-, LO- and

IIZ-Diamonds.

Second, assume towards a contradiction that the graphG−e contains some induced CC-Hourglass (G−
e)[{u, v, w, z1, z2}] as given in Figure 4. Then, since G does not contain an induced CC-Hourglass, both

endpoints of e are elements of {u, v, w, z1, z2} and G[{u, v, w, z1, z2}] contains exactly seven edges.

Case 1: e = {u,w} (or e = {z1, z2}). Then, G − e contains the new bicolored P3 formed by the

edges {u, v} and {u,w} (by {z1, v} and {v, z2}, respectively) which contradicts a).

Case 2: e = {z1, w}. Then, G[{u, v, w, z1}] is an induced LC-Diamond in G if e ∈ Eb or an induced

LO-Diamond in G if e ∈ Er which contradicts the fact that G has no induced LC-Diamonds and LO-

Diamonds.

Case 3: e = {z2, u} Then, G[{u, v, w, z2}] is an induced LO-Diamond in G if e ∈ Eb or an induced

LC-Diamond in G if e ∈ Er which contradicts the fact that G has no induced LC-Diamonds and LO-

Diamonds.
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All cases lead to a contradiction and therefore G − e contains no induced LC-, LO-, IIZ-Diamonds,

CC-Hourglasses and every edge of G− e is part of at most one bicolored P3.

Proposition 5.1 implies a simple algorithm for BPD on such graphs.

Corollary 5.2. Let (G, k) be an instance of BPD where G is nice. Then, we can decide in O(nm) time

whether (G, k) is a yes- or a no-instance of BPD.

Proof: We solve BPD with the following algorithm: First, enumerate all bicolored P3s in O(nm) time.

Second, check if there are at most k bicolored P3s. If yes, (G, k) is a yes-instance. Otherwise, (G, k) is a

no-instance.

It remains to show that this algorithm is correct. Assume G contains p bicolored P3s. Since every edge

of G forms a bicolored P3 with at most one other edge, all bicolored P3s in G are edge-disjoint. Hence, p
edge deletions are necessary. By Proposition 5.1 a) we can eliminate exactly one bicolored P3 with one

edge deletion without producing other bicolored P3s. By Proposition 5.1 b) this can be done successively

with every bicolored P3, since after deleting one of its edges we do not produce LC-, LO-, IIZ-Diamonds,

CC-Hourglasses or edges that form a bicolored P3 with more than one other edge. Thus, p edge deletions

are sufficient. Hence, the algorithm is correct.

Next, we describe how to transform an arbitrary graph G into a nice graph G′ by branching. To this

end consider the following branching rules applied on an instance (G, k) of BPD.

Branching Rule 1. If there are three distinct edges e1, e2, e3 ∈ Er ∪ Eb such that e1 forms a bi-

colored P3 with e2 and with e3, then branch into the cases

• I1 := (G− e1, k − 1), and

• I2 := (G− {e2, e3}, k − 2).

Lemma 5.3. Branching Rule 1 is correct.

Proof: We show that (G, k) is a yes-instance of BPD if and only if at least one of the instances I1 or I2
is a yes-instance of BPD.

(⇐) Assume I1 is a yes-instance or I2 is a yes-instance. In each branching case Ii, the parameter k is

decreased by the exact amount pi of edges deleted from G. Therefore, if some Ii has a solution of size at

most k − pi, then (G, k) has a solution.

(⇒) Let S be a solution for G. Since e1 and e2 form a bicolored P3, at least one of these edges belongs

to S. If e1 ∈ S, then I1 is a yes-instance since we can transform G − e1 into a bicolored-P3-free graph

by deleting the at most k − 1 edges in S \ {e1}. Otherwise, if e1 6∈ S, then e2, e3 ∈ S. Hence, I2
is a yes-instance since we can transform G − {e2, e3} into a bicolored-P3-free graph by deleting the at

most k − 2 edges in S \ {e2, e3}.

Branching Rule 2. If there are vertices u, v, w, z ∈ V such that G[{u, v, w, z}] is an LC-Diamond

(Figure 4 (a)) or an LO-Diamond (Figure 4 (b)) or an IIZ-Diamond (Figure 4 (c)), then branch into the

cases

• I1 := (G− {v, w}, k − 1),

• I2 := (G− {{u, v}, {u, z}}, k− 2), and
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• I3 := (G− {{u, v}, {v, z}, {w, z}}, k− 3).

Lemma 5.4. Branching Rule 2 is correct.

Proof: We show that (G, k) is a yes-instance of BPD if and only if at least one of the instances I1, I2,

or I3 is a yes-instance of BPD.

(⇐) This direction holds since in every instance Ii the parameter k is decreased by the exact amount

of edges deleted from G.

(⇒) Let S be a solution for G. In LO-Diamonds, LC-Diamonds, and in IIZ-Diamonds, the edges {u, v}
and {v, w} form a bicolored P3 in G and therefore {u, v} ∈ S or {v, w} ∈ S. If {v, w} ∈ S, then I1 is a

yes-instance. Otherwise, if {v, w} 6∈ S it follows that {u, v} ∈ S. If {u, z} ∈ S, we have {u, v}, {u, z} ∈
S and therefore I2 is a yes-instance. So we assume {v, w} 6∈ S, {u, v} ∈ S, {u, z} 6∈ S and consider the

following cases.

Case 1: G[{u, v, w, z}] is an LC-Diamond. Then, {u, z} and {v, z} form a bicolored P3 in G−{u, v}.
Since {u, z} 6∈ S, it follows that {v, z} ∈ S. The edges {v, w} and {w, z} form a bicolored P3 in G −
{{u, v}, {v, z}} which implies {v, w} ∈ S or {w, z} ∈ S. Since {v, w} 6∈ S, we have {w, z} ∈ S.

Thus, {u, v}, {v, z}, {w, z} ∈ S and therefore I3 is a yes-instance.

Case 2: G[{u, v, w, z}] is an LO-Diamond. Then, {u, z} and {w, z} form a bicoloredP3 in G−{u, v}.
Since {u, z} 6∈ S, it follows that {w, z} ∈ S. The edges {v, w} and {v, z} form a bicolored P3 in G −
{{u, v}, {w, z}} which implies {v, w} ∈ S or {v, z} ∈ S. Since {v, w} 6∈ S, we have {v, z} ∈ S.

Thus, {u, v}, {v, z}, {w, z} ∈ S and therefore I3 is a yes-instance.

Case 3: G[{u, v, w, z}] is an IIZ-Diamond. Then, {u, z} forms a bicolored P3 with {w, z} and

with {v, z} in G − {u, v}. Since {u, z} 6∈ S, it follows that {w, z}, {v, z} ∈ S and therefore I3 is a

yes-instance.

Branching Rule 3. If there are vertices u, v, w, z1, z2 ∈ V such that G[{u, v, w, z1, z2}] is a CC-

Hourglass as given in Figure 4 (d), then branch into the cases

• I1 := (G− {v, w}, k − 1),

• I2 := (G− {{u, v}, {v, z1}}, k − 2), and

• I3 := (G− {{u, v}, {u, z1}, {v, z2}}, k − 3).

Lemma 5.5. Branching Rule 3 is correct.

Proof: We show that (G, k) is a yes-instance of BPD if and only if at least one of the instances I1, I2,

or I3 is a yes-instance of BPD.

(⇐) This direction obviously holds since in every instance Ii the parameter k is decreased by the exact

amount of edges deleted from G.

(⇒) Let S be a solution for G. The edges {u, v} and {v, w} form a bicolored P3 in G and there-

fore {u, v} ∈ S or {v, w} ∈ S. If {v, w} ∈ S, then I1 is a yes-instance. Otherwise, if {v, w} 6∈ S,

then {u, v} ∈ S. The edge {v, z1} forms a bicolored P3 with {u, z1} and {v, z2} in G − {u, v}.
If {v, z1} ∈ S, then I2 is a yes-instance. Otherwise, if {v, z1} 6∈ S, then {u, z1}, {v, z2} ∈ S. Hence, I3
is a yes-instance.

We use the Branching Rules 1–3 to state the following theorem.
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Theorem 5.6. BPD can be solved in O(1.84k · nm) time.

Proof: We solve BPD for an instance (G, k) as follows: Initially, we compute the adjacency matrix

of G in O(n2) time. We then compute one of the structures we branch on, which is an induced LC-

Diamond, LO-Diamond, IIZ-Diamond, CC-Hourglass or some edge which forms a bicolored P3 with

two other edges. Next, we branch according to the Branching Rules 1, 2, and 3. If no further branching

rule is applicable we check in O(nm) time whether the remaining instance is a yes-instance or not. This

is possible by Corollary 5.2. The branching vectors are (1, 2) for Branching Rule 1, and (1, 2, 3) for

Branching Rules 2 and 3. This delivers a branching factor smaller than 1.8393. We next describe in detail

how we can find one of the structures we branch on, in such a way that the algorithm described above runs

in O(1.84k · nm) time

Isolated vertices do not contribute to the solution of the instance. Thus, we delete all isolated vertices

in O(n) time. Hence we can assume n ≤ 2m in the following. Afterwards, we compute a maximal

packing P of edge-disjoint bicolored P3s. Here, we represent a bicolored P3 by an edge set of size two.

We define P :=
⋃

p∈P p as the set of all edges of bicolored P3s in P . Note that P and thus P can be

found in O(nm) time by enumerating all bicolored P3s in G. If |P | > 2k, the graph G contains more

than k edge-disjoint bicolored P3s and (G, k) is a no instance. In this case we can stop and return no.

Otherwise, we have |P | ≤ 2k and use P to compute the structures we apply Branching Rules 1–3 on as

follows.

Note that in any LC-, LO- or IIZ- Diamond G[{u, v, w, z}] the edges {u, v} and {v, w} form a bi-

colored P3 in G and thus, {u, v} ∈ P or {v, w} ∈ P . Therefore, we can find G[{u, v, w, z}] in O(km)
time by iterating over all possible tuples (e1, e2) with e1 ∈ P and e2 ∈ E and then check with the

adjacency matrix in O(1) time if the induced subgraph G[e1 ∪ e2] is an LC-, LO- or IIZ- Diamond.

Furthermore, observe that any CC-Hourglass G[{u, v, w, z1, z2}] contains the two edge-disjoint bi-

colored P3s {{u, v}, {v, w}} and {{z1, v}, {v, z2}}. Thus, at least two edges of G[{u, v, w, z1, z2}] are

elements of P . Therefore, we can find G[{u, v, w, z1, z2}] in O(k2n2) time by iterating over all possible

tuples (e1, e2, x, y) with e1, e2 ∈ P and x, y ∈ V and then check with the adjacency matrix in O(1) time

if the induced subgraph G[e1 ∪ e2 ∪ {x, y}] is a CC-Hourglass.

Finally, let e1 be an edge that forms two bicoloredP3s with other edges e2 and e3. Again, at least one of

the edges e1, e2, or e3 is an element of P . Thus, we can find e1, e2, and e3 in O(kn2) time iterating over

all triples containing an edge from P and two vertices from V , which form the remaining two endpoints.

Since n ≤ 2m we can find one of the structures on which we apply Branching Rules 1–3 in O(k2nm)
time. This gives us a total running time of O(1.8393k · k2nm) ⊆ O(1.84k · nm) time as claimed.

It is possible to improve the branching rules on LO-Diamonds, IIZ-Diamonds, and CC-Hourglasses

to obtain a branching vector (2, 2, 3, 3), but branching on LC-Diamonds still needs a branching vector

of (1, 2, 3), which is the bottleneck. To put the running time of Theorem 5.6 into perspective note that

CLUSTER DELETION, which can be viewed as the uncolored version of BPD, can be solved inO(1.42k+
m) time [5]. Thus there is a large gap between the running time bounds of the problems. It would be

interesting to know if this gap can be closed or if BPD is significantly harder than CLUSTER DELETION.

5.2 On Problem Kernelization

Finally, we consider problem kernelization for BPD parameterized by (k,∆) and ℓ := m − k. Recall

that ∆ denotes the maximum degree of the input graph. We show that BPD admits problem kernels

with O(k∆min(k,∆)) vertices or at most 2ℓ edges, respectively.
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In the following, we provide two reduction rules leading to an O(k∆min(k,∆)) vertex kernel for

BPD. The first reduction rule deletes all edges which form more than k bicolored P3s.

Reduction Rule 3. If G contains an edge {u, v} such that there exist vertices w1, . . . , wt with t > k such

that G[{u, v, wi}] is a bicolored P3 for each i, then remove {u, v} and decrease k by one.

Lemma 5.7. Reduction Rule 3 is correct and can be applied exhaustively in O(nm) time.

Proof: First, we prove the correctness of Reduction Rule 3. Let S be a solution for (G, k). Without loss of

generality, consider an edge {u, v} ∈ Er such that there exist vertices w1, . . . , wt such that for each i the

graph G[{u, v, wi}] is a bicolored P3. At least one edge of each bicolored P3, G[{u, v, wi}] is an element

of S. Assume towards a contradiction {u, v} /∈ S. In each bicolored P3, G[{u, v, wi}] the blue edge

which is either {v, wi} or {u,wi} has to be removed. Note that for each wi these are pairwise different

edges. Thus, since t > k, |S| > k, a contradiction to |S| ≤ k. Hence, {u, v} ∈ S and S \ {{u, v}} is

a solution for (G − {u, v}, k − 1). For the opposite direction, if S is a solution for (G − {u, v}, k − 1)
then S ∪ {{u, v}} is is a solution for (G, k).

Second, we bound the running time of applying Reduction Rule 3 exhaustively. In a first step, for each

edge e ∈ E compute the number of bicolored P3s containing e. This can be done in O(nm) time. In a

second step, check if an edge e = {u, v} is part of more than k bicolored P3s and remove e if this is the

case. After the removal of e, every new bicolored P3 contains vertices u and v. Hence, for each remaining

vertex w ∈ V , check if G[{u, v, w}] is a new bicolored P3 in G− {u, v}. If yes, then update the number

of bicolored P3s for edges {u,w} and {v, w}. This can be done in O(n) time. Since k < m, the overall

running time of Reduction Rule 3 is O(nm).

Let P denote the set of all vertices of G which are part of bicolored P3s. Then, the set N [P ] contains

all vertices which are either part of a bicolored P3 or which are adjacent to a vertex in a bicolored P3. In

other words, a vertex v is contained in V \ N [P ] if and only if each vertex u ∈ N [v] is not part of any

bicolored P3. In the following, we present a reduction rule to remove all vertices in V \N [P ].

Reduction Rule 4. If G contains a vertex v ∈ V such that each vertex u ∈ N [v] is not part of any

bicolored P3, then, remove v from G.

To show that Rule 4 is correct, we provide two simple lemmas about edge deletion sets.

Lemma 5.8. Let G = (V,E) be a graph and let S ⊆ E be an edge deletion set. If two edges {u, v} ∈ E
and {v, w} ∈ E do not form a bicolored P3 in G and form a bicolored P3 in G− S, then {u,w} ∈ S.

The proof of Lemma 5.8 is trivial and thus omitted.

Lemma 5.9. Let (G, k) be an instance of BPD and let S be a solution for (G, k) of minimum size. Then,

there exists an ordering (e1, . . . , e|S|) of S such that for each i ∈ {1, . . . , |S|} the edge ei is part of

a bicolored P3 in G− {e1, . . . , ei−1}.

Proof: Assume towards a contradiction that such an ordering does not exist. Then, for every ordering

of S, there exists a maximal index 1 ≤ i < |S| such that there is a finite sequence (e1, . . . , ei) where for

each 1 ≤ j ≤ i the edge ej is part of a bicolored P3 in G− {e1, . . . , ej−1}. According to our choice of i,
there exists no edge of S which is part of a bicolored P3 in G−{e1, . . . , ei}. If G−{e1, . . . , ei} contains

a bicolored P3 formed by {x, y} and {y, z}, then {x, y} 6∈ S and {y, z} 6∈ S. This contradicts the fact

that S is a solution for (G, k). Otherwise, G− {e1, . . . , ei} is bicolored-P3-free. Then, {e1, . . . , ei} ( S
is a solution for (G, k). This contradicts the fact that S is a solution of minimum size for (G, k).
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We next use the Lemmas 5.8 and 5.9 to show the correctness of Rule 4.

Lemma 5.10. Reduction Rule 4 is correct and can be applied exhaustively in O(nm) time.

Proof:

Let H := G[V \ {v}]. We prove that there exists a solution S for (G, k) if and only if S is also a

solution for (H, k).

(⇒) Let S be a solution for (G, k). Since H is an induced subgraph of G, S ∩ E(H) is a solution

for (H, k).

(⇐) Let S be a solution for (H, k) of minimum size. If S = ∅, S is also a solution for (G, k). Thus, in

the following we assume that S 6= ∅. We show that G− S is bicolored-P3-free. To this end, we provide a

claim to show that there are no edge-deletions in the neighborhood of v.

Claim 4. In S, there are no edge deletions that are incident with some vertex in NG[v].

Proof . Assume towards a contradiction that S contains such edge deletions. We consider an orderingF =
(e1, . . . , e|S|) from Lemma 5.9 such that every ei is part of a bicolored P3 in H − {e1, . . . , ei−1}. Note

that this implies that every ei is in a bicolored P3 in G − {e1, . . . , ei−1}. Let t ∈ {1, . . . , |S|} be the

minimum index such that et =: {w, z} is incident with some w ∈ NG[v].
Consider the case z ∈ NG[v]. Then, since {w, z} is part of a bicolored P3 in G − {e1, . . . , et−1}

and {w, z} is not part of a bicolored P3 in G, Lemma 5.8 implies that there exists some index j < t
such that ej ∈ S is incident with w or with z. This contradicts the minimality of t. Thus, we may

assume z ∈ N2
G(v) and therefore w ∈ NG(v) for the rest of this proof. Without loss of generality

we may assume that {v, w} is red. Observe that this implies that {w, z} is red, since v is not part of

any bicolored P3 in G.

Since {w, z} is part of a bicolored P3 in G− {e1, . . . , et−1}, there exists some vertex y such that G−
{e1, . . . , et−1}[w, z, y] is a bicolored P3. We show that the following cases are contradictory.

Case 1: y ∈ NG(v). Then, since G − {e1, . . . , et−1}[w, z, y] is a bicolored P3and G[w, z, y] is not

a bicolored P3, Lemma 5.8 implies that there exists some index j < t and there is an edge ej in the

ordering F that is incident with y or with w. This contradicts the minimality of t since y and w are

elements of NG(v).
Case 2: y ∈ N2

G(v). Then, {w, z} and {w, y} do not form a bicolored P3 in G− {e1, . . . , et−1} since

all edges in EG({w}, N2
G(v)) are red since v is not part of any bicolored P3 in G. Consequently, {w, z}

and {z, y} form a bicolored P3 in G − {e1, . . . , et−1}. Then, analogous to Case 1, Lemma 5.8 implies

that there exists some ej with j < t and ej = {w, y} which is a contradiction to the minimality of t.
Case 3: y ∈ V \(NG(v)∪N2

G(v)). Then, {w, z} and {z, y} form a bicoloredP3 in G−{e1, . . . , et−1}.
Moreover, {w, y} 6∈ E, since y 6∈ N2

G(v). Then, {w, z} and {z, y} also form a bicolored P3 in G
contradicting the fact that no vertex in NG[v] is part of a bicolored P3. ✸

We next use Claim 4 to show that G − S is bicolored-P3-free. Observe that it suffices to show that

no edge incident with v is part of a bicolored P3 in G − S. Consider an edge {u, v} ∈ E. Then, by

Claim 4, u and v are incident with the same edges in G as in G − S. Therefore, since {u, v} is not part

of any bicolored P3 in G, the edge {u, v} is not part of any bicolored P3 in G − S. Consequently, S is a

solution for (G, k).
It remains to consider the running time of applying Reduction Rule 4 exhaustively. In a first step,

determine all bicolored P3s in G. Afterwards, determine for each vertex v ∈ V if v is part of some
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bicolored P3. This needs O(nm) time. Now, check for each vertex v ∈ V if each vertex u ∈ N [v] is not

part of any bicolored P3. This can be done in O(m) time. The claimed running time follows.

Theorem 5.11. BPD admits a O(k∆min(k,∆))-vertex kernel that can be computed in O(nm) time.

Proof: First, apply Reduction Rule 3 exhaustively. Second, apply Reduction Rule 4 exhaustively. This

needs O(nm) time altogether. We prove that G contains at most 12 · k∆min(k,∆) vertices if (G, k) is

a yes-instance. Let P be the set of vertices which are contained in a bicolored P3 in G, and let P be a

maximal set of edge-disjoint bicolored P3s in G. If (G, k) is a yes-instance for BPD, then |P | ≤ k. Since

Reduction Rule 3 was applied exhaustively, each edge is part of at most min(k, 2∆) bicoloredP3s. Hence,

the total number of bicolored P3s in G is at most 2kmin(k, 2∆). Consequently, |P| ≤ 6kmin(k, 2∆).
Since Reduction Rule 4 was applied exhaustively, V \ N [P ] = ∅. In other words, set P has no second

neighborhood in G. Since each vertex has degree at most ∆ we have |N(P)| ≤ 6k∆min(k, 2∆). Hence,

the overall number of vertices in G is 12 · k∆min(k,∆) if (G, k) is a yes-instance for BPD.

By the above, BPD admits a linear problem kernel in k if G has constant maximum degree. Note that

a kernelization by ∆ alone is unlikely since BPD is NP-hard even if ∆ = 8 by Theorem 3.1. Since

BPD is fixed-parameter tractable with respect to parameter k, we can trivially conclude that it admits an

exponential-size problem kernel. It is open if there is a polynomial kernel depending only on k while

CLUSTER DELETION has a relatively simple 4k-vertex kernel [16]. Summarizing, BPD seems to be

somewhat harder than CLUSTER DELETION if parameterized by k.

In contrast, BPD seems to be easier than CLUSTER DELETION if parameterized by the dual parame-

ter ℓ := m − k: there is little hope that CLUSTER DELETION admits a problem kernel of size ℓO(1) [15]

while BPD has a trivial linear-size problem kernel as we show below.

Theorem 5.12. BPD admits a problem kernel with 2ℓ edges and vertices which can be computed inO(n+
m) time.

Proof: We show that instances with at least 2ℓ edges are trivial yes-instances. Let (G = (V,Er, Eb), k)
with |E| ≥ 2ℓ be an instance of BPD. Then, since Er and Eb form a partition of E, we have |Er| ≥ ℓ
or |Eb| ≥ ℓ. Without loss of generality let |Er | ≥ ℓ. Since |Eb| = m − |Er| ≤ m − ℓ = k, Eb is a

solution for (G, k).

6 Outlook

We have initiated the algorithmic study of a natural edge-deletion problem on edge-colored graphs. In

companion work, we considered the problem of destroying paths of length at least 4 that fulfill certain

coloring constraints [11, 12]. With this exception, however, the study of graph modification problems on

edge-colored graphs has been neglected so far. Consequently, the complexity of many natural problems

and a study of natural edge-colored graph classes remain open.

For the particular case of bicolored-P3-free graphs, we have also left open many questions for future

work. First, it would be interesting to further investigate the structure of bicolored-P3-free graphs. Since

each color class may induce an arbitrary graph it seems difficult to obtain a concise and non-trivial struc-

tural characterization of these graphs. One may, however, exploit the connection with Gallai colorings

which are colorings where no triangle receives more than two colors. In particular, the following charac-

terization of Gallai colorings is known [14, 17]: any Gallai coloring of a complete graph can be obtained
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by taking some complete 2-colored graph and substituting its vertices with a complete graph and some

Gallai coloring of this complete graph. This characterization relies on the decomposition property that in

any Gallai coloring of a complete graph G with at least three colors, there is at least one edge color that

spans a disconnected graph H . Then, by the property of Gallai colorings, the edges in G that are between

two different components H1 and H2 of H have the same color.

Second, there are many open questions concerning BICOLORED P3 DELETION. Does BICOLORED P3

DELETION admit a polynomial-size kernel for k? Can BICOLORED P3 DELETION be solved in 2O(n)

time? Can BICOLORED P3 DELETION be solved in polynomial time on graphs that contain no monochro-

matic P3? Can BICOLORED P3 DELETION be solved in polynomial time on graphs that contain no cycle

consisting only of blue edges? Even simpler is the following question: Can BICOLORED P3 DELETION

be solved in polynomial time if the subgraphs induced by the red edges and the subgraph induced by the

blue edges are each a disjoint union of paths? Moreover, it would be interesting to perform a similar study

on BICOLORED P3 EDITING where we may also insert blue and red edges. Furthermore, it is open if

BICOLORED-P3-FREE COMPLETION where we only may insert red or blue edges is NP-hard. Observe

in this context that the uncolored problem CLUSTER COMPLETION can easily be solved by adding all

missing edges in each connected component.

Third, it would also be interesting to identify graph problems that are NP-hard on general two-edge

colored graphs but polynomial-time solvable on bicolored-P3-free graphs. Finally, we were not able to

resolve the following question: Can we find bicolored P3s in O(n+m) time?

Using the connection to Gallai colorings and the decomposition property of Gallai colorings seems to

be a promising approach to address these open questions.
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