Skip to main content

Uniform Relativization

  • Conference paper
  • First Online:
  • 362 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11558))

Abstract

This paper is a tutorial on uniform relativization. The usual relativization considers computation using an oracle, and the computation may not work for other oracles, which is similar to Turing reduction. The uniform relativization also considers computation using oracles, however, the computation should work for all oracles, which is similar to truth-table reduction. The distinction between these relativizations is important when we relativize randomness notions in algorithmic randomness, especially Schnorr randomness. For Martin-Löf randomness, its usual relativization and uniform relativization are the same so we do not need to care about this uniform relativization.

We focus on two specific examples of uniform relativization: van Lambalgen’s theorem and lowness. Van Lambalgen’s theorem holds for Schnorr randomness with the uniform relativization, but not with the usual relativization. Schnorr triviality is equivalent to lowness for Schnorr randomness with the uniform relativization, but not with the usual relativization. We also discuss some related known results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Every noncomputable c.e. Turing degree contains a hypersimple set [26, Proposition III.3.13] while a hypersimple set is not tt-complete [26, Theorem III.3.10].

References

  1. Bienvenu, L., Merkle, W.: Reconciling data compression and kolmogorov complexity. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 643–654. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_56

    Chapter  MATH  Google Scholar 

  2. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 425–491. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5_18

    Chapter  Google Scholar 

  3. Chaitin, G.J.: A theory of program size formally identical to information theory. J. Assoc. Comput. Mach. 22, 329–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cooper, S.B.: Computability Theory. CRC Press, New York (2004)

    MATH  Google Scholar 

  5. Diamondstone, D., Greenberg, N., Turetsky, D.: A van Lambalgen theorem for Demuth randomness. In: Downey, R., Brendle, J., Goldblatt, R., Kim, B. (eds.) Proceedings of the 12th Asian Logic Conference, pp. 115–124 (2013)

    Google Scholar 

  6. Downey, R., Greenberg, N., Mihailovic, N., Nies, A.: Lowness for computable machines. In: Chong, C.T., Feng, Q., Slaman, T.A., Woodin, W.H., Yang, Y. (eds.) Computational Prospects of Infinity: Part II. Lecture Notes Series, pp. 79–86. World Scientific Publishing Company, Singapore (2008)

    Chapter  Google Scholar 

  7. Downey, R., Griffiths, E.: Schnorr randomness. J. Symbolic Logic 69(2), 533–554 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Downey, R., Griffiths, E., LaForte, G.: On Schnorr and computable randomness, martingales, and machines. Math. Logic Q. 50(6), 613–627 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer, New York (2010). https://doi.org/10.1007/978-0-387-68441-3

    Book  MATH  Google Scholar 

  10. Franklin, J.N.Y., Stephan, F.: Schnorr trivial sets and truth-table reducibility. J. Symbolic Logic 75(2), 501–521 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Franklin, J.N.Y., Stephan, F., Yu, L.: Relativizations of randomness and genericity notions. Bull. London Math. Soc. 43(4), 721–733 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hölzl, R., Merkle, W.: Traceable sets. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IAICT, vol. 323, pp. 301–315. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15240-5_22

    Chapter  Google Scholar 

  13. Kihara, T., Miyabe, K.: Uniform Kurtz randomness. J. Logic Comput. 24(4), 863–882 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kjos-Hanssen, B., Miller, J.S., Solomon, D.R.: Lowness notions, measure, and domination. J. London Math. Soc. 85(3), 869–888 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kjos-Hanssen, B., Nies, A., Stephan, F.: Lowness for the class of Schnorr random reals. SIAM J. Comput. 35(3), 647–657 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. van Lambalgen, M.: Random sequences. Ph.D. thesis, University of Amsterdam (1987)

    Google Scholar 

  17. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. TCS. Springer, New York (2008). https://doi.org/10.1007/978-0-387-49820-1

    Book  MATH  Google Scholar 

  18. Merkle, W., Miller, J., Nies, A., Reimann, J., Stephan, F.: Kolmogorov-Loveland randomness and stochasticity. Ann. Pure Appl. Logic 138(1–3), 183–210 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Miyabe, K.: Truth-table Schnorr randomness and truth-table reducible randomness. Math. Logic Q. 57(3), 323–338 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miyabe, K.: \(L^1\)-computability, layerwise computability and Solovay reducibility. Computability 2, 15–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miyabe, K.: Schnorr triviality and its equivalent notions. Theory Comput. Syst. 56(3), 465–486 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miyabe, K.: Reducibilities relating to Schnorr randomness. Theory Comput. Syst. 58(3), 441–462 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miyabe, K., Rute, J.: Van Lambalgen’s Theorem for uniformly relative Schnorr and computable randomness. In: Downey, R., Brendle, J., Goldblatt, R., Kim, B. (eds.) Proceedings of the 12th Asian Logic Conference, pp. 251–270, July 2013

    Google Scholar 

  24. Nies, A.: Eliminating concepts. In: Computational prospects of infinity II. IMS Lecture Notes Series, vol. 15, pp. 225–248 (2008)

    Google Scholar 

  25. Nies, A.: Computability and Randomness, Oxford Logic Guides, vol. 51. Oxford University Press, Oxford (2009). https://doi.org/10.1093/acprof:oso/9780199230761.001.0001

    Book  MATH  Google Scholar 

  26. Odifreddi, P.: Classical Recursion Theory, vol. 1. North-Holland (1990)

    Google Scholar 

  27. Rute, J.: Schnorr randomness for noncomputable measures. Inf. Comput. 258, 50–78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. LNM, vol. 218. Springer, Heidelberg (1971). https://doi.org/10.1007/BFb0112458

    Book  MATH  Google Scholar 

  29. Schnorr, C.: A unified approach to the definition of a random sequence. Math. Syst. Theory 5, 246–258 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Soare, R.I.: Turing Computability. Theory and Applications of Computability. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-642-31933-4

    Book  MATH  Google Scholar 

  31. Terwijn, S.A., Zambella, D.: Computational randomness and lowness. J. Symbolic Logic 66(3), 1199–1205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

  33. Yu, L.: When van Lambalgen’s theorem fails. Proc. Am. Math. Soc. 135(3), 861–864 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous reviewers for their careful reading of the manuscript and their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenshi Miyabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miyabe, K. (2019). Uniform Relativization. In: Manea, F., Martin, B., Paulusma, D., Primiero, G. (eds) Computing with Foresight and Industry. CiE 2019. Lecture Notes in Computer Science(), vol 11558. Springer, Cham. https://doi.org/10.1007/978-3-030-22996-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22996-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22995-5

  • Online ISBN: 978-3-030-22996-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics