Skip to main content

Covering Concept Lattices with Concept Chains

  • Conference paper
  • First Online:
Graph-Based Representation and Reasoning (ICCS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11530))

Included in the following conference series:

Abstract

The total number of concepts in a concept lattice tends to grow exponentially with the size of a context. There are numerous methods for selecting a subset of concepts based on some interestingness measure. We propose a method for finding interesting concept chains instead of interesting concepts. Concept chains also correspond to a certain visual rearrangement of a binary data table called a seriation. In a case study on the performance data of 852 students 80% of the corresponding formal context was covered by a single concept chain. We present three heuristic algorithms (MS-Chain, FL-Sort, KM-chain) for finding the concept chain cover in an efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpineto, C., Romano, G.: Using concept lattices for text retrieval and mining. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 161–179. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_9

    Chapter  MATH  Google Scholar 

  2. Dias, S.M., Newton, J.V.: Concept lattices reduction: definition, analysis and classification. Expert. Syst. Appl. 42(20), 7084–7097 (2015)

    Article  Google Scholar 

  3. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  4. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: K-means clustering algorithm. J. R. Stat. Soc. 28, 100–108 (1979)

    MATH  Google Scholar 

  5. Hesse, W., Tilley, T.: Formal concept analysis used for software analysis and modelling. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 288–303. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_15

    Chapter  MATH  Google Scholar 

  6. Klimushkin, M., Obiedkov, S., Roth, C.: Approaches to the selection of relevant concepts in the case of noisy data. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS (LNAI), vol. 5986, pp. 255–266. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11928-6_18

    Chapter  Google Scholar 

  7. Kuznetsov, S.O., Makhalova, T.: On interestingness measures of formal concepts. arXiv preprint arXiv:1611.02646 (2016)

  8. Kuznetsov, S.O.: Galois connections in data analysis: contributions from the Soviet era and modern Russian research. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_11

    Chapter  Google Scholar 

  9. Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1–4), 101–115 (2007)

    Article  MathSciNet  Google Scholar 

  10. Lakhal, L., Stumme, G.: Efficient mining of association rules based on formal concept analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 180–195. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_10

    Chapter  MATH  Google Scholar 

  11. Mets, M.: Simplifying concept lattices with concept chains. Master thesis in Estonian, Tallinn (2018)

    Google Scholar 

  12. Neznanov, A., Ilvovsky, D., Parinov, A.: Advancing FCA workflow in FCART system for knowledge discovery in quantitative data. Procedia Comput. Sci. 31, 201–210 (2014)

    Article  Google Scholar 

  13. Ore, O.: Chains in partially ordered sets. Bull. Am. Math. Soc. 49(8), 558–566 (1943)

    Article  MathSciNet  Google Scholar 

  14. Priss, U.: Linguistic applications of formal concept analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 149–160. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_8

    Chapter  MATH  Google Scholar 

  15. Torim, A., Lindroos, K.: Sorting concepts by priority using the theory of monotone systems. In: Eklund, P., Haemmerlé, O. (eds.) ICCS-ConceptStruct 2008. LNCS (LNAI), vol. 5113, pp. 175–188. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70596-3_12

    Chapter  Google Scholar 

  16. Torim, A.: Galois sub-hierarchies used for use case modeling. In: CLA, pp. 21–32 (2013)

    Google Scholar 

  17. Vaidya, J., Vijayalakshmi, A., Qi, G.: The role mining problem: finding a minimal descriptive set of roles. In: Proceedings of the 12th ACM Symposium on Access Control Models and Technologies. ACM (2007)

    Google Scholar 

  18. Valtchev, P., et al.: Galicia: an open platform for lattices. In: Using Conceptual Structures: Contributions to the 11th International Conference on Conceptual Structures (ICCS 2003) (2003)

    Google Scholar 

  19. Wille, R.: Formal concept analysis as mathematical theory of concepts and concept hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 1–33. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_1

    Chapter  MATH  Google Scholar 

  20. Võhandu, L., et al.: Some algorithms for data table (re) ordering using Monotone Systems. In: Proceedings of the 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases: 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases (AIKED 2006) (2006)

    Google Scholar 

  21. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Springer, Dordrecht (1982). https://doi.org/10.1007/978-94-009-7798-3_15

    Chapter  Google Scholar 

  22. Liiv, I.: Pattern Discovery Using Seriation and Matrix Reordering: A Unified View, Extensions and an Application to Inventory Management. TUT Press, Tallinn (2008)

    Google Scholar 

  23. Yevtushenko, S. A.: System of data analysis “Concept Explorer”. In: Proceedings of the 7th National Conference on Artificial Intelligence, KII 2000, Russia, pp. 127–134 (2000). (In Russian)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Marko Kääramees for helping to provide the student data and UCI Machine Learning Repository for providing the datasets used for algorithm comparison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ants Torim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torim, A., Mets, M., Raun, K. (2019). Covering Concept Lattices with Concept Chains. In: Endres, D., Alam, M., Şotropa, D. (eds) Graph-Based Representation and Reasoning. ICCS 2019. Lecture Notes in Computer Science(), vol 11530. Springer, Cham. https://doi.org/10.1007/978-3-030-23182-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23182-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23181-1

  • Online ISBN: 978-3-030-23182-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics