Skip to main content

The Importance of Automated Real-Time Performance Feedback in Virtual Reality Temporal Bone Surgery Training

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11625))

Abstract

Virtual reality (VR) is increasingly being used as a training platform in many fields including surgery. However, practice on VR simulators alone is not sufficient to impart skills. Provision of performance feedback is essential to enable skill acquisition by ensuring that mistakes are identified and corrected, strengths are reinforced, and insights into consequences of actions are provided. As such, for a simulation system to be an effective training platform and to enable self-directed learning, it is imperative that automated performance feedback is provided by the system. Although there has been increased interest in the development of feedback methodologies in VR-based surgical training in recent years, their effectiveness in practice has rarely been investigated. In this paper, we investigate the impact of performance feedback in a VR-based surgical training platform with respect to skill acquisition and retention through a randomized controlled trial. We show that feedback during training is essential for both acquisition and retention of surgical skills.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ackerman, P.L.: Determinants of individual differences during skill acquisition: cognitive abilities and information processing. J. Exp. Psychol. Gen. 117(3), 288 (1988)

    Article  Google Scholar 

  2. Ahlberg, G., Heikkinen, T., Iselius, L., Leijonmarck, C.E., Rutqvist, J., Arvidsson, D.: Does training in a virtual reality simulator improve surgical performance? Surg. Endosc. Other Intervent. Techn. 16(1), 126–129 (2002)

    Article  Google Scholar 

  3. Beyer-Berjot, L., Aggarwal, R.: Toward technology-supported surgical training: the potential of virtual simulators in laparoscopic surgery. Scand. J. Surg. 102(4), 221–226 (2013)

    Article  Google Scholar 

  4. Bhutta, M.: A review of simulation platforms in surgery of the temporal bone. Clin. Otolaryngol. 41(5), 539–545 (2016)

    Article  Google Scholar 

  5. Blum, M.G., Powers, T.W., Sundaresan, S.: Bronchoscopy simulator effectively prepares junior residents to competently perform basic clinical bronchoscopy. Ann. Thorac. Surg. 78(1), 287–291 (2004)

    Article  Google Scholar 

  6. Chang, J.Y., Chang, G.L., Chien, C.J.C., Chung, K.C., Hsu, A.T.: Effectiveness of two forms of feedback on training of a joint mobilization skill by using a joint translation simulator. Phys. Ther. 87(4), 418–430 (2007)

    Article  Google Scholar 

  7. Copson, B., et al.: Supporting skill acquisition in cochlear implant surgery through virtual reality simulation. Cochlear Implants Int. 18(2), 89–96 (2017)

    Article  Google Scholar 

  8. Day, T., Iles, N., Griffiths, P.: Effect of performance feedback on tracheal suctioning knowledge and skills: randomized controlled trial. J. Adv. Nurs. 65(7), 1423–1431 (2009)

    Article  Google Scholar 

  9. Driscoll, M.P., Driscoll, M.P.: Psychology of learning for instruction (2005)

    Google Scholar 

  10. Ericsson, K.A.: Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad. Med. 79(10), S70–S81 (2004)

    Article  Google Scholar 

  11. Francis, H.W., et al.: Technical skills improve after practice on virtual-reality temporal bone simulator. Laryngoscope 122(6), 1385–1391 (2012)

    Article  Google Scholar 

  12. Fried, G.M.: Lessons from the surgical experience with simulators: incorporation into training and utilization in determining competency. Gastrointest. Endosc. Clin. 16(3), 425–434 (2006)

    Article  Google Scholar 

  13. Gamito, P., et al.: Cognitive training on stroke patients via virtual reality-based serious games. Disabil. Rehabil. 39(4), 385–388 (2017)

    Article  Google Scholar 

  14. Grantcharov, T.P., Kristiansen, V., Bendix, J., Bardram, L., Rosenberg, J., Funch-Jensen, P.: Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br. J. Surg. 91(2), 146–150 (2004)

    Article  Google Scholar 

  15. Hall, R., et al.: Towards haptic performance analysis using k-metrics. In: Pirhonen, A., Brewster, S. (eds.) HAID 2008. LNCS, vol. 5270, pp. 50–59. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87883-4_6

    Chapter  Google Scholar 

  16. Hamilton, E., et al.: Comparison of video trainer and virtual reality training systems on acquisition of laparoscopic skills. Surg. Endosc. Other Intervent. Tech. 16(3), 406–411 (2002)

    Article  Google Scholar 

  17. Hammoud, M.M., et al.: To the point: medical education review of the role of simulators in surgical training. Am. J. Obstet. Gynecol. 199(4), 338–343 (2008)

    Article  Google Scholar 

  18. Hatala, R., Cook, D.A., Zendejas, B., Hamstra, S.J., Brydges, R.: Feedback for simulation-based procedural skills training: a meta-analysis and critical narrative synthesis. Adv. Health Sci. Educ. 19(2), 251–272 (2014)

    Article  Google Scholar 

  19. Hattie, J., Timperley, H.: The power of feedback. Rev. Educ. Res. 77(1), 81–112 (2007)

    Article  Google Scholar 

  20. Hogle, N., et al.: Validation of laparoscopic surgical skills training outside the operating room: a long road. Surg. Endosc. 23(7), 1476–1482 (2009)

    Article  Google Scholar 

  21. Huang, Y., Churches, L., Reilly, B.: A case study on virtual reality American football training. In: Proceedings of the 2015 Virtual Reality International Conference, p. 6. ACM (2015)

    Google Scholar 

  22. Koedinger, K.R., Corbett, A.T., Perfetti, C.: The knowledge-learning-instruction framework: bridging the science-practice chasm to enhance robust student learning. Cogn. Sci. 36(5), 757–798 (2012)

    Article  Google Scholar 

  23. Laeeq, K., et al.: Pilot testing of an assessment tool for competency in mastoidectomy. Laryngoscope 119(12), 2402–2410 (2009)

    Article  Google Scholar 

  24. Leuwer, R., et al.: Voxel-man temposurg a virtual reality temporal bone surgery simulator. J. Jpn. Soc. Head Neck Surg. 17(3), 203–207 (2008)

    Article  Google Scholar 

  25. Ma, X., et al.: Adversarial generation of real-time feedback with neural networks for simulation-based training. arXiv preprint arXiv:1703.01460 (2017)

  26. Ma, X., Wijewickrema, S., Zhou, Y., Zhou, S., O’Leary, S., Bailey, J.: Providing effective real-time feedback in simulation-based surgical training. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 566–574. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_64

    Chapter  Google Scholar 

  27. Mao, Y., et al.: Effects of virtual reality with robot training on the gait of subacute stroke patients. Ann. Phys. Rehabil. Med. 61, e180 (2018)

    Article  Google Scholar 

  28. McGaghie, W.C., Issenberg, S.B., Petrusa, E.R., Scalese, R.J.: A critical review of simulation-based medical education research: 2003–2009. Med. Educ. 44(1), 50–63 (2010)

    Article  Google Scholar 

  29. Morris, D., Sewell, C., Blevins, N., Barbagli, F., Salisbury, K.: A collaborative virtual environment for the simulation of temporal bone surgery. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 319–327. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30136-3_40

    Chapter  Google Scholar 

  30. Murcia-Lopez, M., Steed, A.: A comparison of virtual and physical training transfer of bimanual assembly tasks. IEEE Trans. Visual Comput. Graphics 24(4), 1574–1583 (2018)

    Article  Google Scholar 

  31. O’leary, S.J., et al.: Validation of a networked virtual reality simulation of temporal bone surgery. Laryngoscope 118(6), 1040–1046 (2008)

    Article  Google Scholar 

  32. Ost, D., De Rosiers, A., Britt, E.J., Fein, A.M., Lesser, M.L., Mehta, A.C.: Assessment of a bronchoscopy simulator. Am. J. Respir. Crit. Care Med. 164(12), 2248–2255 (2001)

    Article  Google Scholar 

  33. Reddy-Kolanu, G., Alderson, D.: Evaluating the effectiveness of the voxel-man temposurg virtual reality simulator in facilitating learning mastoid surgery. Ann. R. Coll. Surg. Engl. 93(3), 205–208 (2011)

    Article  Google Scholar 

  34. Rowe, R., Cohen, R.A.: An evaluation of a virtual reality airway simulator. Anesth. Analg. 95(1), 62–66 (2002)

    Article  Google Scholar 

  35. Sacks, R., Perlman, A., Barak, R.: Construction safety training using immersive virtual reality. Constr. Manag. Econ. 31(9), 1005–1017 (2013)

    Article  Google Scholar 

  36. Schmidt, R., Lee, T.: Motor Control and Learning: A Behavioral Emphasis. Human Kinetics (2011)

    Google Scholar 

  37. Sedlack, R.E., Kolars, J.C.: Computer simulator training enhances the competency of gastroenterology fellows at colonoscopy: results of a pilot study. Am. J. Gastroenterol. 99(1), 33 (2004)

    Article  Google Scholar 

  38. Sedlack, R.E., Kolars, J.C., Alexander, J.A.: Computer simulation training enhances patient comfort during endoscopy. Clin. Gastroenterol. Hepatol. 2(4), 348–352 (2004)

    Article  Google Scholar 

  39. Sewell, C., et al.: Providing metrics and performance feedback in a surgical simulator. Comput. Aided Surg. 13(2), 63–81 (2008)

    Article  Google Scholar 

  40. Seymour, N.E., et al.: Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann. Surg. 236(4), 458 (2002)

    Article  Google Scholar 

  41. Sonny, C., Peter, L., Dong Hoon, L., et al.: A virtual surgical environment for rehearsal of tympanomastoidectomy. Stud. Health Technol. Inform. 163, 112 (2011)

    Google Scholar 

  42. Sørensen, M.S., Dobrzeniecki, A.B., Larsen, P., Frisch, T., Sporring, J., Darvann, T.A.: The visible ear: a digital image library of the temporal bone. ORL 64(6), 378–381 (2002)

    Article  Google Scholar 

  43. Sorensen, M.S., Mosegaard, J., Trier, P.: The visible ear simulator: a public PC application for GPU-accelerated haptic 3D simulation of ear surgery based on the visible ear data. Otol. Neurotol. 30(4), 484–487 (2009)

    Article  Google Scholar 

  44. Stefanidis, D.: Optimal acquisition and assessment of proficiency on simulators in surgery. Surg. Clin. North Am. 90(3), 475–489 (2010)

    Article  Google Scholar 

  45. Stefanidis, D., Heniford, B.T.: The formula for a successful laparoscopic skills curriculum. Arch. Surg. 144(1), 77–82 (2009)

    Article  Google Scholar 

  46. Van Merrienboer, J.J., Sweller, J.: Cognitive load theory and complex learning: recent developments and future directions. Educ. Psychol. Rev. 17(2), 147–177 (2005)

    Article  Google Scholar 

  47. Wiet, G.J., et al.: Virtual temporal bone dissection system: OSU virtual temporal bone system: development and testing. Laryngoscope 122(S1), S1–S12 (2012)

    Article  Google Scholar 

  48. Wiet, G.J., Stredney, D., Sessanna, D., Bryan, J.A., Welling, D.B., Schmalbrock, P.: Virtual temporal bone dissection: an interactive surgical simulator. Otolaryngol. Head Neck Surg. 127(1), 79–83 (2002)

    Article  Google Scholar 

  49. Wijewickrema, S., et al.: Development and validation of a virtual reality tutor to teach clinically oriented surgical anatomy of the ear. In: IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), pp. 12–17, June 2018. https://doi.org/10.1109/CBMS.2018.00010

  50. Wijewickrema, S., et al.: Presentation of automated procedural guidance in surgical simulation: results of two randomised controlled trials. J. Laryngol. Otol. 132(3), 257–263 (2018)

    Article  Google Scholar 

  51. Wijewickrema, S., et al.: Region-specific automated feedback in temporal bone surgery simulation. In: IEEE 28th International Symposium on Computer-Based Medical Systems (CBMS), pp. 310–315. IEEE (2015)

    Google Scholar 

  52. Wijewickrema, S., et al.: Providing Automated Real-Time Technical Feedback for Virtual Reality Based Surgical Training: Is the Simpler the Better? In: Penstein Rosé, C., Martínez-Maldonado, R., Hoppe, H.U., Luckin, R., Mavrikis, M., Porayska-Pomsta, K., McLaren, B., du Boulay, B. (eds.) AIED 2018. LNCS (LNAI), vol. 10947, pp. 584–598. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93843-1_43

    Chapter  Google Scholar 

  53. Wijewickrema, S., et al.: Developing effective automated feedback in temporal bone surgery simulation. Otolaryngol. Head Neck Surg. 152(6), 1082–1088 (2015)

    Article  Google Scholar 

  54. Wijewickrema, S., Zhou, Y., Bailey, J., Kennedy, G., O’Leary, S.: Provision of automated step-by-step procedural guidance in virtual reality surgery simulation. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, pp. 69–72. ACM (2016)

    Google Scholar 

  55. Xeroulis, G.J., Park, J., Moulton, C.A., Reznick, R.K., LeBlanc, V., Dubrowski, A.: Teaching suturing and knot-tying skills to medical students: a randomized controlled study comparing computer-based video instruction and (concurrent and summary) expert feedback. Surgery 141(4), 442–449 (2007)

    Article  Google Scholar 

  56. Zhao, Y.C., Kennedy, G., Yukawa, K., Pyman, B., O’Leary, S.: Improving temporal bone dissection using self-directed virtual reality simulation: results of a randomized blinded control trial. Otolaryngol. Head Neck Surg. 144(3), 357–364 (2011)

    Article  Google Scholar 

  57. Zhou, Y., Bailey, J., Ioannou, I., Wijewickrema, S., Kennedy, G., O’Leary, S.: Constructive real time feedback for a temporal bone simulator. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 315–322. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_40

    Chapter  Google Scholar 

  58. Zhou, Y., Bailey, J., Ioannou, I., Wijewickrema, S., O’Leary, S., Kennedy, G.: Pattern-based real-time feedback for a temporal bone simulator. In: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology, pp. 7–16. ACM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudanthi Wijewickrema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davaris, M. et al. (2019). The Importance of Automated Real-Time Performance Feedback in Virtual Reality Temporal Bone Surgery Training. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds) Artificial Intelligence in Education. AIED 2019. Lecture Notes in Computer Science(), vol 11625. Springer, Cham. https://doi.org/10.1007/978-3-030-23204-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23204-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23203-0

  • Online ISBN: 978-3-030-23204-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics