Skip to main content

A Systematic Approach for Analyzing Students’ Computational Modeling Processes in C2STEM

  • Conference paper
  • First Online:
Book cover Artificial Intelligence in Education (AIED 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11626))

Included in the following conference series:

Abstract

Introducing computational modeling into STEM classrooms can provide opportunities for the simultaneous learning of computational thinking (CT) and STEM. This paper describes the C2STEM modeling environment for learning physics, and the processes students can apply to their learning and modeling tasks. We use an unsupervised learning method to characterize student learning behaviors and how these behaviors relate to learning gains in STEM and CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basu, S., Biswas, G., Kinnebrew, J.S.: Learner modeling for adaptive scaffolding in a computational thinking-based science learning environment. User Model. User-Adap. Inter. 27(1), 5–53 (2017)

    Article  Google Scholar 

  2. Basu, S., McElhaney, K., Grover, S., Harris, C., Biswas, G.: A principled approach to designing assessments that integrate science and computational thinking. In: Proceedings of ICLS 2018 (2018)

    Google Scholar 

  3. Basu, S., Dickes, A., Kinnebrew, J.S., Sengupta, P., Biswas, G.: CTSiM: A computational thinking environment for learning science through simulation and modeling. In: Conference on Computer Supported Education, pp. 369–378, Germany (2013)

    Google Scholar 

  4. Berland, M., Martin, T., Benton, T., Smith, C.P., Davis, D.: Using learning analytics to understand the learning pathways of novice programmers. J. Learn. Sci. 22(4), 564–599 (2013)

    Article  Google Scholar 

  5. Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., Koller, D.: Programming pluralism: using learning analytics to detect patterns in the learning of computer programming. J. Learn. Sci. 23(4), 561–599 (2014)

    Article  Google Scholar 

  6. Grover, S., Jackiw, N., Lundh, P.: Concepts before coding: non-programming interactives to advance learning of introductory programming concepts in middle school. Comput. Sci. Educ. (2019). https://doi.org/10.1080/08993408.2019.1568955

  7. Hestenes, D., Wells, M., Swackhamer, G.: Force concept inventory. Phys. Teach. 30(3), 141–158 (1992)

    Article  Google Scholar 

  8. Hutchins, N., Biswas, G., Maroti, M., Broll, B., Ledezci, A.: C2STEM: a design-based approach to a classroom-centered OELE. In: Proceedings of AIED 2018 (2018)

    Google Scholar 

  9. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)

    Article  Google Scholar 

  10. Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K., Weintrop, D., Beheshti, E.: Embedding computational thinking in science, technology, engineering, and math (CT-STEM). In: Future Directions in Computer Science Education Summit Meeting, Orlando, FL (2014)

    Google Scholar 

  11. Jonassen, D., Strobel, J., Gottdenker, J.: Model building for conceptual change. Interact. Learn. Environ. 13(1–2), 15–37 (2005)

    Article  Google Scholar 

  12. NGSS Lead States: Next Generation Science Standards: For states, by states. National Academies Press, Washington, DC (2013)

    Google Scholar 

  13. Piech, C., Huang, J., Nguyen, A., Phulsuksombati, M., Sahami, M., Guibas, L.: Learning program embeddings to propagate feedback on student code. In: Proceedings of the 32nd International Conference on Machine Learning, Lille, France pp. 1093–1102 (2015)

    Google Scholar 

  14. Sengupta, P., Dickes, A., Farris, A.V., Karan, A., Martin, D., Wright, M.: Programming in K-12 science classrooms. Commun. ACM 58(11), 33–35 (2015)

    Article  Google Scholar 

  15. Sengupta, P., Farris, A.V., Wright, M.: From agents to continuous change via aesthetics: learning mechanics with visual agent-based computational modeling. Technol. Knowl. Learn. 17(1–2), 23–42 (2012)

    Article  Google Scholar 

  16. Sengupta, P., Kinnebrew, J.S., Basu, S., Biswas, G., Clark, D.: Integrating computational thinking with K-12 science education using agent-based computation: a theoretical framework. Educ. Inf. Technol. 18(2), 351–380 (2013)

    Article  Google Scholar 

  17. Shen, J., Lei, J., Chang, H.-Y., Namdar, B.: Technology-enhanced, modeling-based instruction (TMBI) in science education. In: Spector, J.M., Merrill, M.D., Elen, J., Bishop, M.J. (eds.) Handbook of Research on Educational Communications and Technology, pp. 529–540. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-3185-5_41

    Chapter  Google Scholar 

  18. Weintrop, D., et al.: Defining computational thinking for mathematics and science classrooms. J. Sci. Educ. Technol. 25(1), 127–147 (2016)

    Article  Google Scholar 

  19. Werner, L., McDowell, C., Denner, J.: A first step in learning analytics: pre-processing low-level Alice logging data of middle school students. J. Educ. Data Min. 5(2), 11–37 (2013)

    Google Scholar 

Download references

Acknowledgments

We thank Marian Rushdy, Naveed Mohammed, and our other collaborators at Vanderbilt University, Stanford University, Salem State University, SRI International, and ETS. This research is supported by NSF grant #1640199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Hutchins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hutchins, N., Biswas, G., Grover, S., Basu, S., Snyder, C. (2019). A Systematic Approach for Analyzing Students’ Computational Modeling Processes in C2STEM. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds) Artificial Intelligence in Education. AIED 2019. Lecture Notes in Computer Science(), vol 11626. Springer, Cham. https://doi.org/10.1007/978-3-030-23207-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23207-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23206-1

  • Online ISBN: 978-3-030-23207-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics