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Parameterized Strategies Specification in
Maude?

Rubén Rubio(B), Narciso Mart́ı-Oliet, Isabel Pita, Alberto Verdejo

Universidad Complutense de Madrid, Spain
{rubenrub,narciso,ipandreu,jalberto}@ucm.es

Abstract. Strategies and parameterization are two convenient tools for
building clear and easily configurable specifications of complex compu-
tational systems, compositionally. Parameterization is a widely used fea-
ture of the Maude rewriting framework, whose strategy language imple-
mentation we have recently completed with strategy modules.
This paper describes the Maude strategy language and the associated
parameterization techniques. Then, the specification and analysis of some
examples of strategy parameterized systems are shown.

Keywords: Rewriting logic · Strategies · Maude · Parameterized spec-
ification

1 Introduction

Strategies are ubiquitous in Computer Science. As recipes to tackle search prob-
lems and bound nondeterminism, they appear in algorithms, automatic deduc-
tion, language semantics, artificial intelligence, . . . . In rewriting logic [13], some
of these examples are better specified compositionally, abstracting not only data
representation and rules but also the way they are applied. This parametric con-
trol of the rewriting process is conveniently expressed using strategies that take
other strategies as parameters.

Maude [6,7] is a declarative high-level language based on rewriting logic that
allows the description, execution and analysis of concurrent and distributed sys-
tem models at different levels. First, sorts, symbols, equations and membership
axioms are expressed in terms of membership equational logic [3]. Then, we add
rewrite rules to represent transitions of a concurrent system, which need nei-
ther be deterministic, nor confluent, nor terminating. Above this, we can control
how rules are applied using a strategy language [8,11]. Its implementation, at
the Core Maude level in C++, has been recently completed as an extension of
Maude 2.7.1 [7].

The strategy language is based in its authors experience with strategies in
Maude and in previous strategy languages like ELAN [2] and Stratego [5]. It
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has already been exploited in the specification of algorithms, inference systems,
and language semantics: Milner’s CCS [12], the ambient calculus [12], the se-
mantics of the parallel functional language Eden [9], equational logic completion
procedures [16], a proof calculus for membrane systems [1], etc. These examples
are likely to be expressed and generalized using control parameterization with
strategies, whose implementation was not available at that time. Once expressed
in this way, the specified systems can be both executed and tested with different
alternative strategies provided as parameters, or analyzed at different levels with
specific tools, like a model checker.

The next section introduces Maude, its strategy language, and the rudiments
of parameterization. A generic backtracking scheme serves as an introductory
example. The following sections describe some other examples of parameterized
systems, targeting the simplex algorithm, the λ-calculus, and a functional pro-
gram interpreter. These and more examples can be downloaded from [15], as
well as the current version of Maude with full strategy support.

2 Maude

A Maude program consists of a hierarchy of modules, describing the data repre-
sentation and behavior of the system specified. There are different module types
for different specification levels.

Functional modules define membership equational logic theories, whose signa-
ture (K,Σ, S) consists of a set of kinds K, a many-kinded collection of operators
Σ = {Σk1···kn,k : (k1 · · · kn, k) ∈ K∗×K}, and S = {Sk : k ∈ K} a many-kinded
set of partially ordered sorts. Equations and sort membership axioms E are
defined on them

(∀X)
t = t′

t : s
if

∧
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∧
j

vj : sj

In addition, operators can be annotated with structural axioms, like commutativ-
ity (comm), associativity (assoc), and identity (id). For example, the following
functional module specifies sets of integer numbers using both equations and
axioms.

fmod INT-SET i s
p r o t e c t i ng INT . *** INT module importation

s o r t IntSet .

subso r t Int < IntSet .

*** IntSet contructors (ctor)

op empty : → IntSet [ctor] .

op __ : IntSet IntSet → IntSet

[ctor assoc comm id: empty] . *** union

var X : Int .

eq X X = X .

endfm



Functional modules are bound to some executability requirements, like conflu-
ence, termination, and sort-decreasingness.

System modules describe rewriting logic theories R = (Σ,E ∪A,R), adding
rewriting rules R on top of the equational theory. Rules do not have to be either
confluent or terminating, so they are likely to express non-deterministic behavior.

(∀X) t⇒ t′ if
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wk ⇒ w′k

Anyhow, rules are required to be coherent with equations and axioms [7, §5.3].
Conditions of the third type are called rewriting conditions, and hold true iff the
term wk can be rewritten to match the term w′k.

mod SUM-SET i s
p r o t e c t i ng INT-SET .

va r s X Y : Int .

r l [sum] : X Y ⇒ X + Y . *** matches any two elems

endm

The module SUM-SET above introduces a rule sum that takes two integers in the
set and replaces them by their sum.

Strategy modules allow finer control of the rule rewriting process by means
of the strategy language and recursive strategy definitions. They are described
in the next section.

2.1 The strategy language

Rules in rewriting logic can be applied in any order, at any position, and with dif-
ferent matches. Maude provides various commands, like rewrite and frewrite,
that execute all available rules against a given term until none can be applied
or an optional step bound is reached. They use some internal fixed criteria to
select the next rule application. In turn, the search command explores all possi-
ble rewriting paths to find a target term meeting some conditions. However, the
specifier is sometimes interested in imposing constrains on the allowed execution
paths, like a particular precedence of rules, or to which subterms they must be
applied, etc. This is when strategies get inside the game.

From the point of view of the results, a strategy α is an operation transform-
ing a term t into a set of terms, since the restrictions need not make the process
deterministic. Strategies can be executed with the command srewrite t using
α. The most elementary strategy is rule application

top(label[x1 <- t1, . . . ,xn <- tn]{α1, . . . ,αm}),

that executes any available rules with label label on any subterm of the subject
term. Variables in the rule and its condition can be instantiated before appli-
cation with the substitution that maps xk to tk, and if the rule contains any
rewriting condition, it must be controlled with a substrategy αk. Moreover, the



optional top modifier restricts the application of the rule to the top of the sub-
ject term. A more powerful tool for selecting where to apply a strategy is the
matchrew operator

matchrew P (x1, . . . , xn) s.t. C by x1 using α1 , . . . , xn using αn

It matches the pattern P on top of the subject term, and for each match sat-
isfying the condition C, the subterms corresponding to x1, . . . , xn are rewritten
using α1, . . . , αn, and reassembled again. The operator name can be prefixed by
a or x to match anywhere within the term or modulo structural axioms. Similar
format follow the tests match P s.t. C, to check if P matches the subject term
and satisfies C. Regular expressions are included in the strategy language by
means of the alternation α|β, the concatenation α;β, the Kleene star α∗, and
the constants idle and fail. A conditional strategy α ?β : γ is also available. It
executes α and then β on its results, but if α does not produce any, it applies γ
to the initial term.

The last ingredient of the strategy language are potentially recursive named
strategies. These strategies are defined in strategy modules, which have the form
smod M is ... endsm and contain:

– Strategy declarations strat sname : T1 ... Tn @ T, which state their pa-
rameter types T1 to Tn, and the type T of the subject terms the strategy
will be applied to.

– Strategy definitions sd sname(t1, . . . , tn) := α. The free variables in the
right-hand side strategy expression α must be included in the terms t1 to tn.
Conditional strategy definitions, introduced by csd, are available too, and
impose conditions as in regular equations. A named strategy can be given
any number of strategy definitions, and all definitions whose left-hand side
matches the call term will be executed.

Now, we will illustrate all the different strategy constructors described above
with a very simple example. Consider the following system module:

mod SIMPLE i s
s o r t Term .

ops a b c d : → Term [ctor] .

op f : Term → Term [ctor] .

op g : Term Term → Term [ctor] .

va r s X Y : Term .

r l [ab] : a ⇒ b . r l [ac] : a ⇒ c .

r l [bc] : b ⇒ c . r l [pf] : f(X) ⇒ X .

r l [ad] : f(a) ⇒ d .

endm



The SIMPLE module defines some constants and functions to build terms, and
various rules that transform them. For example, we can apply the pf rule to
the term f(g(f(a), b)) by means of the srewrite command, whose initial
keyword can be abbreviated to srew:

Maude > srew f(g(f(a), b)) using pf .

Solution 1

result Term: g(f(a), b)

Solution 2

result Term: f(g(a, b))

No more solutions.

Maude > srew f(g(f(a), b)) using pf[T <- a] .

Solution 1

result Term: f(g(a, b))

No more solutions.

Notice that all possible rewrites are returned as different solutions. In the first
case, the rule can be applied both to the first and to the second occurrence
of f. However, in the second case, the initial substitution restricts its appli-
cation to the subterm f(a). Using the strategy top(pf) instead, pf is only
applied on top and only g(f(a), b) is obtained. Finer precision on where to
apply a strategy can be achieved by the subterm rewriting operator. For ex-
ample, matchrew g(X, Y) by X using pf restricts the application to the first
argument of g. Then g(f(b), f(c)) rewrites only to g(b, f(c)). Moreover,
multiple subterms can be rewritten in parallel by strategies like

amatchrew g(X, Y) by X using pf, Y using bc,

which transforms the initial term f(g(f(a), b)) in f(g(a, c)).
Once we are able to apply strategies to particular subterms, we need regular

expressions to compose rewriting sequences. If we rewrite g(a, b) by the con-
catenation ab ; bc, we obtain g(c, b) and g(b, c), since the rule bc has been
applied after ab, at the same or at a different position. Instead, when executing
the alternation ab | bc, only one of these is applied, and we get g(b, b) and
g(a, c) as solutions. Finally, the iteration pf* applies pf zero or more times
consecutively, so it rewrites f(f(a)) to f(f(a)), f(a), and a.

Other useful resources are the tests like match g(X, Y) s.t. X 6= Y. It does
not produce any solution for g(a, a), but for g(a, b), the solution is the
term itself. Tests easily combine with conditionals. For example, the strategy
match f(X) ? ab : bc applies ab if the subject term top symbol is an f, and
otherwise executes bc. Then, f(a) rewrites to f(b), b to c, and no solution is
produced for a. However, conditionals can be used with any strategy as condi-
tion, as we will see soon and throughout the paper.

Finally, to define named and recursive strategies, we need to write strategy
modules like the following:



smod SIMPLE-STRAT i s
p r o t e c t i ng SIMPLE . *** controls SIMPLE

s t r a t rewrite @ Term .

sd rewrite := all ? rewrite : idle .

endsm

where all is a built-in constant that executes any available rule. In this case,
it can be seen as equivalent to ab | ac | bc | pf | ad. Hence, the strategy
rewrite applies any rule until no more rules can be applied, as the usual rewrite
command does. Running this strategy for the term g(f(a), f(b)) we obtain:

Maude > srew g(f(a), f(b)) using rewrite .

Solution 1

result Term: g(d, c)

Solution 2

result Term: g(c, c)

No more solutions.

In Figure 1, the strategy language semantics is described in brief. Apart from
the initial term, the semantic function JαK : (X → TΣ/E) × TΣ/E → P(TΣ/E)
receives a substitution by way of variable environment, because function calls
and matchrews bind variables. The semantics of the strategy definitions δ is
calculated as a fixed point of a continuous operator, and here∆(sl, t1 · · · tn) refers
to the set of strategy definitions for sl whose left-hand side matches t1, . . . , tn,
along with the corresponding substitution σ.

2.2 Parameterization

Parameterization is achieved using three basic building blocks: theories, views,
and parameterized modules [6,7]. A parameterized module is a usual module
taking a set of formal parameters, bound to some theories.

mod NAME{X1 :: TH1, ..., XN :: THN} is ... endm.

A theory declares the interface, the syntactic and semantic requirements, the
actual parameter must respect. Each module type (functional, system, strategy)
has its theory counterpart. They are structurally identical, but theories are not
required to fulfill the executability properties of a module. Module parameters
can only be bound to theories of their type or simpler types. Finally, a view is
the way to express how a module honors a theory, mapping each sort, operator,
and strategy declared in the theory to the actual value in the module. Then,
views are used to instantiate parameterized modules.

As an example, the most basic predefined theory is TRIV, which declares a
single sort.



JidleK(θ, t) = {t} JfailK(θ, t) = ∅

Jα ;βK(θ, t) =
⋃
t′∈JαK(θ,t)JβK(θ, t′) Jα |βK(θ, t) = JαK(θ, t) ∪ JβK(θ, t)

Jα*K(θ, t) =
⋃
n≥0

JαKn(θ, t)

Jα ?β : γK(t) =

{
Jα;βK(θ, t) if JαK(θ, t) 6= ∅
JγK(θ, t) if JαK(θ, t) = ∅

Jmatch P s.t. C K(θ, t) =

{
{t} if match(P, t, C, θ−occur(P )) 6= ∅
∅ otherwise

Jmatchrew P s.t. C by x1 using α1 ,. . ., xn using αnK(θ, t) =⋃
σ∈match(P,t,C,θ−occcur(P ))

⋃
t1∈Jα1K(σ◦θ,σ(x1))

· · ·
⋃

tn∈JαnK(σ◦θ,σ(xn))

P [x1/t1, . . . , xn/tn]

Jsl(t1, . . . , tn)K(θ, t) =
⋃

(δ,σ)∈∆(sl,θ(t1)···θ(tn))

JδK(σ, t)

Fig. 1. Strategic set-theoretic semantics definitions

f t h TRIV i s
s o r t Elt .

endfth

The module NAT can be viewed as a TRIV:

view Nat from TRIV to NAT i s
s o r t Elt to Nat .

endv

Then, the view Nat can be used to instantiate modules like lists LIST{Nat}, sets
SET{Nat}, . . . . Module instantiation is based on the pushout along a view:

TRIV

LIST{X :: TRIV} LIST{Nat}

NAT
Nat

A simplified version of the LIST module is the following:

fmod LIST{X :: TRIV} i s
s o r t List .

subso r t X$Elt < List .

op nil : → List [ctor] .

op __ : List List → List [ctor assoc id: nil] .

endfm



Inside parameterized modules, sorts coming from theories are accessed by
prefixing their names by their parameter name followed by a $ sign. Opera-
tors and strategies retain their names as in the parameter theory. The Maude
standard prelude includes some general theories like TRIV, TOTAL-PREORDER,
STRICT-WEAK-ORDER, . . . , and many views from the standard data types to those
theories [6,7].

3 An introductory example

A simple example of parameterized control is the generic backtracking scheme.

The abstract backtracking problem is specified in two nested theories, the first
proclaims the functional requirements, and the second extends it with the strate-
gic ones. They require a State sort for states, and a strategy expand to rewrite
a state to any of its direct successors, non-deterministically. We admit that the
generated successors may not be valid, so we require a predicate isOk to test
them, and also a predicate isSolution to determine whether a given state is
already a solution.

f t h BT-ELEMS-BASE i s
p r o t e c t i ng BOOL .

s o r t State .

op isOk : State → Bool .

op isSolution : State → Bool .

endfth

sth BT-ELEMS i s
i n c l u d i n g BT-ELEMS-BASE .

s t r a t expand @ State .

endsth

Then, a parameterized module BT-STRAT, given the specification of the problem
following BT-ELEMS, defines a strategy solve for executing the backtracking
algorithm. This is the following module, where parameters are highlighted in
italics.

smod BT-STRAT{X :: BT-ELEMS} i s
s t r a t solve @ X$State .

var S : X$State .

sd solve := (match S s . t . isSolution(S)) ? idle

: (expand ; match S s . t . isOk(S) ; solve) .

endsm

The solve strategy is recursive. It concludes successfully when it finds a
solution. Otherwise, it applies the strategy expand to obtain a successor, tests



whether it is valid, and iterates the process by a recursive call. Rewriting paths
are discarded either when a successor not satisfying isOk is reached or when
the expand strategy does not provide any successor. Indeed, each result of the
expand strategy opens a new branch of the execution tree.

Although we call it backtracking, the strategy is abstract enough to be in-
terpreted or executed otherwise, depending on the order in which the branches
are explored. For backtracking, we understand a depth-first exploration, going
backwards to try another branch when the current one has been exhausted with-
out finding a solution. However, the default strategy rewriting implementation
obeys a fair scheduling, which combines depth and breadth-first search. Here,
the fair execution policy will usually require more time and memory usage than
a real backtracking.

The generic algorithm is useless without actual instances. They can be spec-
ified in separate modules or files, but finally they have to fit in the frame of an
abstract backtracking problem by means of a view from BT-ELEMS. The follow-
ing module specifies the search for a Hamiltonian cycle in a graph, i.e. a cycle
visiting every vertex of the graph only once.

mod HAMILTONIAN i s
p r o t e c t i ng LIST{Nat} .

s o r t s Edge Adjacency Graph .

subso r t Edge < Adjacency .

op e : Nat Nat → Edge [ctor comm] .

op nil : → Adjacency [ctor] .

op __ : Adjacency Adjacency → Adjacency

[ctor assoc comm id: nil] .

op noCross : List{Nat} → Bool .

va r s K L N V : Nat .

va r s P Q R : List{Nat} .

var As : Adjacency .

eq noCross(P K Q K R) = false .

eq noCross(P) = true [owise] .

op graph : Nat Adjacency List{Nat} → Graph [ctor] .

op isOk : Graph → Bool .

op isSolution : Graph → Bool .

eq isSolution(graph(N,As,V P V)) = N == size(V P) .

eq isSolution(G:Graph) = false [owise] .

eq isOk(graph(N, As , V P V)) = noCross(V P) .

eq isOk(graph(N, As , P)) = noCross(P) [owise] .

r l [next] : graph(N, e(V, K) As , P V)

⇒ graph(N, As, P V K) .

endm

The module defines Graph, including both the graph and the current path,
which can be extended up to a Hamiltonian cycle using the rule next whenever
possible. Finally, as we said, the problem has to be presented as a backtracking



instance using a view. Identity mappings do not need to be written, but we have
included them to illustrate the syntax.

view HamiltonianBT from BT-ELEMS to HAMILTONIAN i s
s o r t State to Graph .

op isOk to isOk .

op isSolution to isSolution .

strat expand to-expr next .

endv

This instance is specially simple, the expand strategy has been defined inline
as the next rule. In general, more elaborated strategies can be defined in a
strategy module. In that case, the strategy module must be the to part of the
view and the strategy is mapped by strat expand to sname. This can be seen in
other examples available in the webpage [15] like the labyrinth escape problem,
the n-queens problem, the graph m-coloring problem, etc.

A refinement of backtracking is branch and bound. This algorithmic technique
was also programmed with parameterized strategies. Its problem specification,
its theories, include richer functional and strategic requirements, so we do not
describe them here. In this case, we cannot use an expand strategy that non-
deterministically evolves to a successor, we need to examine them all to decide
which to explore first according to the rank function. Hence, we have experi-
mented with multiple approaches using different problem signatures. These can
also be downloaded from [15].

4 The simplex algorithm

The simplex method [14] is a well-known algorithm for solving linear program-
ming problems, i.e. for finding solutions that maximize (or minimize) a linear
functional subject to some linear constraints.

max /min c1 x1 + · · ·+ cn xn

a11x1 + · · ·+ a1nxn ≤ b1
a21x1 + · · ·+ a2nxn = b2
a31x1 + · · ·+ a3nxn ≥ b3
x1, . . . , xn ≥ 0

Formulated by George Dantzig in the late 1940s, it has had many industrial
applications. Here we present an executable linear programming solver written
in Maude using this method. The various non-deterministic steps are controlled
by strategies, which are configurable through parameterization.

Figure 2 shows all the specification modules. LINPROG includes some basic
definitions of linear algebra (polynomials, inequalities, . . . , and operations on
them), as well as linear programming problems. Then, SIMPLEX-TABLE defines
the simplex tables (the state of the algorithm) and some operations to obtain
information and modify them. At the rule level, SIMPLEX-CONSTR defines how



LINPROG

SIMPLEX-TABLE

SIMPLEX-LEXICO

SIMPLEX-CONSTR SIMPLEX-EXECUTION

SIMPLEX-PIVOTINGSIMPLEX-STRAT{X :: PIVOTING-STRAT}

PIVOTING-STRAT

Functional

System

Strategy

Fig. 2. Module structure for the simplex algorithm specification

to build a table from a linear programming problem, and SIMPLEX-EXECUTION

provides the rules for the different actions of the simplex method. The most
important is pivot, which changes the algorithm basis

c r l [pivot] : Table ⇒ pivot(Table , Ve, Vl) i f
Ve, R := enterVars(Table) ∧
Vl, S := leaveVars(Table , Ve) .

This rule is non-deterministic because Ve and Vl can be chosen among different
alternatives. Pivoting carelessly may even lead to cycles, so that the algorithm
may not terminate. Fortunately, there are different cycle prevention techniques
to avoid non-termination. The more common ones are the Bland rule and the
lexicographic rule. These rules (or any other) can be switched by means of pa-
rameterization.

The global solving process starts with a linear programming problem. The
first stage is the generation of the simplex table, a non-deterministic process
which produces equivalent tables up to renaming. So, we will concentrate on the
second stage, the simplex method itself.

sd solve := makeTable ; simplex .

sd simplex := step ? simplex : idle .

sd step := (unbounded | finish | phase2 | unfeas)

or−e l se pivotingStrat .

The simplex strategy executes a simplex step until no more can be applied. Each
step first applies some rules that transform the table in some specific situations:
unbounded detects when the problem is unbounded and transforms the table in
a description of the beam of infinite improvement, and finish detects when the
problem is already solved and presents the solution in a more readable form.
The other rules are related to the two phases method, which may be sometimes
needed to find an initial feasible solution of the linear system: unfeas signals



that the problem is unfeasible; and phase2 transforms the table to a usual table
whenever possible. Finally, if none of these (cheaper and concluding) rules can be
applied, the pivoting strategy pivotingStrat is applied. This is the parameter
of the SIMPLEX-STRAT module, provided by the theory PIVOTING-STRAT, which
declares a single strategy without parameters applicable to the simplex table
sort. For instance, the Bland rule is specified in SIMPLEX-PIVOTING with the
following strategy

sd bland := matchrew T s . t .
Ve := minVar(enterVars(T)) ∧
Vl := minVar(leaveVars(T, Ve))

by T us ing pivot[Ve <- Ve, Vl <- Vl] .

where minVar equationally computes the minimum variable within a set (a
total order < is defined on them). A view Bland from PIVOTING-STRAT to
SIMPLEX-PIVOTING, mapping pivotingStrat to bland, is then used to instan-
tiate SIMPLEX-STRAT.

4.1 Parameterized analysis

A natural analysis of parameterized systems is the comparison of the behavior
of their multiple instances, which can be executed or simulated, looking at the
execution time, the number of rewriting steps, or the memory requirements. More
essential properties can be inspected by tracing the state of the system while
running the simulation. Strategies are a useful tool for that purpose. Apart from
this, parameterized modules can be analyzed with specific tools like the Maude
model checker.

For the simplex method, we have compared the performance of two pivoting
strategies and free rewriting in terms of time and number of rewrites, against a
linear programming exercises set. Since these properties depend on the actual
Maude implementation, we also consider an intrinsic property of the algorithm:
the number of iterations or pivoting steps until a solution is found. To obtain
this attribute, we count the number of pivot rule executions with the aid of a
parameterized analyzer module that maintains a pair watch(T, N) of a simplex
table and a counter, applies the rules to the table using matchrew, and updates
the counter accordingly. This can be compared with the unrestricted better case
and worst case number of iterations, which can be calculated using strategies
too.

Free Bland Lexicographic
Iterations above better case 2.05 2.05 1.47

Number of rewrites 4246 5195 5191
Time (ms) 1.84 2.29 2.2

We observe that the lexicographic rule reduces the mean number of iterations,
but since its decisions require more computations, its performance is similar to
Bland’s. The free strategy, executing the rules at the discretion of the Maude
rewriting engine, performs quite well.



Regarding auxiliary tools, we have applied an experimental prototype of a
strategy-aware model checker. Thanks to it, we can check whether the algorithm
following a given strategy, for a fixed example, may cycle or not. Predictably, no
example cycles with the Bland and lexicographic rules, but some do with free
rewriting.

5 The λ-calculus

The λ-calculus can be easily expressed and executed in Maude [10]. β-reduction
is the single rule of the rewriting system, so a term can be reduced by simply
using the rewrite and search commands.

subso r t Var < LambdaTerm .

op \_._ : Var LambdaTerm → LambdaTerm [ctor] .

op __ : LambdaTerm LambdaTerm → LambdaTerm [ctor] .

r l [beta] : (\ x . M) N ⇒ subst(M, x, N) .

However, which β-redex is reduced first is an important choice. Some reduction
paths may not terminate while others reach an irreducible term, even though
this is unique by the Church-Rosser property. The normalization theorem says
that reducing the leftmost outermost redex first guarantees finding a normal
form in case it exists.

(KI)Ω
(KI)Ω

(λy.I)Ω I

K = λx.(λy.x)

I = λx.x
Ω = (λx.xx)(λx.xx)

We allow selecting which strategy step to use for a single reduction step and,
using a parameterized module, we define a strategy that reduces the term to an
irreducible form, if any.

s t r a t reduce @ LambdaTerm .

sd reduce := step ! .

The operator α! executes α until it cannot be further applied. The different
implemented strategies for a single reduction are:

– Applicative order (inner rightmost redex first)

sd applicative :=
matchrew \ x . M by M us ing applicative

| matchrew M N by N us ing applicative

or−e l se matchrew M N by M us ing applicative

or−e l se top(beta) .

– Normalizing strategy (outer leftmost redex first)

sd normal := matchrew \ x . M by M us ing normal

| top(beta)
or−e l se matchrew M N by M us ing normal

or−e l se matchrew M N by N us ing normal .



– By name (normalizing but no reduction inside abstraction)

sd byname := top(beta)
or−e l se matchrew M N by M us ing byname

or−e l se matchrew M N by N us ing byname .

– By value (only outermost redex and when argument is value)

sd byvalue := (match (\ x . M) z

| match (\ x . M) (\ y . N)) ; top(beta) .

For example, srew (K I) Omega using applicative does not finish, but
srew (K I) Omega using normal produces \ x . x as a result. Moreover, de-
pending on the reduction strategy, we obtain different canonical forms. From
(K z) t we get z using all strategies but byvalue, whose canonical form is the
term unchanged.

6 Semantics of programming languages

The semantics of programming languages is an interesting field to apply both
strategies [4] and parameterization. The Maude implementation of Eden [9], a
concurrent language based on Haskell, can be cited as example. The general idea
is that strategies control the execution process and can be used to tweak some
semantic choices, and see how alternatives perform. Here we describe a simpler
example, the Recursion equations (REC) language [17, Chapter 9].

A REC program consists of a closed integer expression to evaluate and a set
of integer function definitions of the form f(x1, . . . , xaf ) = 〈expr〉. Expressions
contain integer constants, sums, products, subtractions, conditionals, and calls to
any defined function. Hence, functions can be recursive and mutually recursive.
An organized set of modules (see Figure 3) specifies the representation of REC
programs and its basic rules:

r l [apply] : Q(Args) ⇒ apply(find(Q, Defs), Args)

[nonexec] .

c r l [cond] : if C then E else F ⇒
if C == 0 then E else F fi i f C : Int .

The rule apply replaces a function call Q(Args) by its definition according to
the list of definitions Defs, substituting its variables by the call arguments using
the equational function apply. This rule is not directly executable since Defs,
absent in the left-hand side, must be provided from the context in the application
strategy substitution, as we will see. Rule cond resolves a conditional when
its condition expression has already been reduced to an integer. In any other
case, integer expressions are reduced equationally, since the REC expressions
sort RecExpr has been defined as an extension of the built-in sort Int. REC
programs are executed following a reduce strategy that receives a list of function
definitions as an argument. It is parameterized by a strategy st that is intended
to expand function calls, and which we will later instantiate with byvalue and
byname alternatives.



REC-EXPR

REC-DEFS

REC-RULES

REC-STRATS STRAT-EXTENSION{X :: REC-STRATEGY}

REC-MAIN{X :: REC-STRATEGY}

REC-STRATEGY

Functional

System

Strategy

Fig. 3. Module structure for the REC language specification

smod REC-MAIN{X :: REC-STRATEGY} i s
s t r a t reduce : List{FunctionDef} @ RecExpr .

var FL : List{FunctionDef} .

sd reduce(FL) := (cond or−e l se st(FL)) ! .

endsm

According to the reduce definition, conditionals and calls are reduced as long
as possible, but conditionals are reduced first. This is convenient, since function
calls may appear anywhere inside the integer expression, and a simple recursive
example like the factorial

eq factorial = ’f(’n) := if ’n then 1

else ’n * ’f(’n-1) .

shows that expanding calls anywhere is problematic. In effect, the precedence of
cond avoids the non-terminating reduction

’f(0)→st if 0 then 1 else 0 * ’f(-1)

→st if 0 then 1 else 0 * (if -1 then 0 else ’f(-2)) . . .

Still, this is not enough when evaluating terms like ’f(’f(0)). So, in general, we
must ensure not to reduce conditional branches until the condition is solved, no
matter if calling by value or by name. To make strategies aware of these precau-
tions while saving code, we will take advantage of strategy parameterization too:
we define an additional parameterized module STRAT-EXTENSION that extends
a strategy facing function calls st to a strategy xst that applies the reduction
step to any program term, but reducing conditions first.

smod STRAT-EXTENSION{X :: REC-STRATEGY} i s
s t r a t xst : List{FunctionDef} @ RecExpr .

va r s E F G : RecExpr .



var FL : List{FunctionDef} .

sd xst(FL) := st(FL)

| matchrew E + F by E us ing xst(FL)

or−e l se matchrew E + F by F us ing xst(FL)

| matchrew E * F by E us ing xst(FL)

or−e l se matchrew E * F by F us ing xst(FL)

| (matchrew E - F by E us ing xst(FL))

or−e l se matchrew E - F by F us ing xst(FL)

| matchrew if E then F else G by E us ing xst(FL) .

endsm

Now, the strategy extension is a reusable component that can be used to de-
fine the alternative strategies succinctly, avoiding boilerplate code. First, we
instantiate STRAT-EXTENSION with views for byname and byvalue, defined in
REC-STRATS, to obtain the extended strategies. Then, we instantiate REC-MAIN

with new views from REC-STRATEGY to the instantiated modules, mapping st

to the extended strategies. On the contrary, the strategy free applies reduction
carelessly and anywhere, so it instantiates REC-MAIN directly.

sd free(FL) := apply[Defs <- FL] .

sd byname(FL) := top(apply[Defs <- FL]) .

sd byvalue(FL) := (matchrew E, NeArgs

by E us ing byvalue(FL))

or−e l se matchrew E, NeArgs

by NeArgs us ing byvalue(FL)

| (matchrew Q(Args) by Args us ing byvalue(FL))

or−e l se top(apply[Defs <- FL]) .

The FL parameter must be filled with the program function definitions. For
example, with the Ackermann function defined below we execute

srew 1 + ’A(2, 3) using reduce(ackermann) .

and obtain 10.

eq ackermann = ’A(’m, ’n) := if ’m then ’n + 1 else

(if ’n then ’A(’m - 1, 1)

else ’A(’m - 1, ’A(’m, ’n - 1))) .

eq nameonly = (’f(’x) := ’f(’x) + 1) (’g(’x) := 7) .

The differences between call by value and call by name are appreciated with the
nameonly example, since g(f(0)) will be evaluated to 7 by name while it will
never finish by value.

7 Conclusions

Rewriting strategies are a useful tool in the description of concurrent and logical
systems, in accordance with the separation of concerns principle. A stratified



specification of rules and its global control allows discharging the functional
and rule levels of improper complexity, and makes the specified systems more
configurable and adaptable. On the other hand, parameterized modules are a
basic feature for building complex systems, reusing abstract specifications, and
switching between alternative components. Such specifications can be compared
in their multiple instances or analyzed parametrically.

The Maude strategy language implementation is now complete, including pa-
rameterized strategy modules. In this paper we have seen some examples of pa-
rameterized specification with strategies related to algorithms and programming
languages. In the future, the combination of strategies and parameterization can
be used as a fundamental approach to specify more complex and interesting
systems. Also, more elaborated analyses can be done on these, including model
checking, whose strategy-aware implementation is currently under development.
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2. Borovanský, P., Kirchner, C., Kirchner, H., Ringeissen, C.: Rewriting with strate-
gies in ELAN: A functional semantics. Int. J. Found. Comput. Sci. 12(1), 69–95
(2001). https://doi.org/10.1142/S0129054101000412

3. Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in mem-
bership equational logic. Theoretical Computer Science 236(1), 35–132 (2000).
https://doi.org/10.1016/S0304-3975(99)00206-6

4. Braga, C., Verdejo, A.: Modular structural operational semantics with strate-
gies. In: van Glabbeek, R., Mosses, P.D. (eds.) Proceedings of the Third
Workshop on Structural Operational Semantics, SOS 2006, Bonn, Ger-
many, August 26, 2006. ENTCS, vol. 175(1), pp. 3–17. Elsevier (2007).
https://doi.org/10.1016/j.entcs.2006.10.024

5. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A
language and toolset for program transformation. Science of Computer Program-
ming 72(1-2), 52–70 (2008). https://doi.org/10.1016/j.scico.2007.11.003

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude-A High-Performance Logical Framework, LNCS, vol. 4350.
Springer (2007). https://doi.org/10.1007/978-3-540-71999-1

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: Maude Manual (v2.7.1) (July 2016), http://maude.cs.uiuc.edu/

8. Eker, S., Mart́ı-Oliet, N., Meseguer, J., Verdejo, A.: Deduction, strategies, and
rewriting. In: Archer, M., de la Tour, T.B., Muñoz, C. (eds.) Proceedings of the
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